首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-association of hexadeoxynucleotide 5'-d(TpApCpGpTpA) and its complexation with antitumor antibiotic daunomycin were studied by one- and two-dimensional homonuclear 1H NMR spectroscopy and heteronuclear 1H-31P NMR spectroscopy in water-salt solution. The concentration and temperature dependences of proton chemical shifts of the hexadeoxynucleotide and the ligand were measured, and equilibrium constants and thermodynamic parameters of corresponding reactions were calculated on this basis using models for the formation of hexadeoxynucleotide duplex and its complex with the antibiotic. The spatial structure of daunomycin-d(TACGTA)2 complex in solution was calculated using X-PLOR software on the basis of 2D NOE spectral data and the limit values of proton chemical shifts of the ligand. Comparative analysis of different intermolecular interactions in sequence-specific binding of the antibiotic to the DNA fragment was carried out.  相似文献   

2.
Veselkov  A. N.  Eaton  R. J.  Semanin  A. V.  Pakhomov  V. I.  Djimant  L. N.  Karawaew  L.  Davies  D. B. 《Molecular Biology》2002,36(5):708-717
Complex formation of hairpin-producing heptadeoxynucleotide 5"-d(GCGAAGC) with aromatic molecules: acridine dye proflavine and anthracycline antibiotic daunomycin was studied by one-dimensional 1H NMR and two-dimensional correlation 1H–1H (2D-TOCSY, 2D-NOESY), 1H–31P (2D-HMBC) NMR spectroscopy (500 and 600 MHz) in aqueous solution. Concentration and temperature dependences for the chemical shifts of ligand protons were measured, molecular models of equilibrium in solution were developed, and equilibrium thermodynamic parameters for the formation of intercalation complexes were calculated. Spatial structures of dye and antibiotic complexes with the heptamer hairpin were constructed on the basis of 2D-NOE data and the calculated values of limiting chemical shifts of ligand protons.  相似文献   

3.
The heteroassociation of caffeine (CAF) and the synthetic antibiotic actinocyl-bis(3-dimethylaminopropylamine) (ACT) was studied in aqueous solution by one- and two-dimensional 1H NMR spectroscopy at 500 MHz. The equilibrium reaction constants, thermodynamic parameters (H and S) of ACT heteroassociation with CAF, the limiting values of proton chemical shifts of their molecules in the heteroassociation complex, and the spatial structure of the ACT–CAF complex were determined from the experimental dependences of proton chemical shifts of the aromatic molecules on concentration and temperature. The parameters of CAF heteroassociation with the phenoxazone antibiotic actinomycin D and its synthetic analogue ACT were comparatively analyzed and conclusions were made on the crucial role of stacking interactions of the chromophores of CAF and the phenoxazone antibiotics in the formation of the heterocomplexes in aqueous solution.  相似文献   

4.
Heteroassociation of antibacterial antibiotic norfloxacin with aromatic vitamins nicotinamide and flavin mononucleotide in aqueous solution was studied by 1H NMR spectroscopy (500 MHz). Equilibrium constants, induced proton chemical shifts, and thermodynamic parameters (ΔH, ΔS) for the reactions of heteroassociation of the molecules were determined on the basis of the concentration and temperature dependences of proton chemical shifts for interacting aromatic molecules. The analysis of the results obtained indicates the formation of heterocomplexes between vitamin molecules and norfloxacin owing to stacking interactions between aromatic chromophores and additional intermolecular hydrogen bonding in norfloxacin-nicotinamide. The most probable spatial structures of 1:1 norfloxacin-flavin mononucleotide and norfloxacin-nicotinamide heterocomplexes were determined by molecular modeling methods using X-PLOR software on the basis of analysis of induced proton chemical shifts.  相似文献   

5.
A heteroassociation of the antitumor antibiotic novatrone (NOV) and flavin mononucleotide (FMN) in aqueous solution was studied by one- and two-dimentional 1H NMR spectroscopy (500 MHz) to elucidate the molecular mechanism of the possible combined action of the antibiotic and the vitamin. The equilibrium reaction constants, the induced proton chemical shifts, and the thermodynamic parameters (ΔH and ΔS) of the NOV and FMN heteroassociation were determined from the concentration and temperature dependences of proton chemical shifts of the aromatic molecules. The most favorable structure of the 1 : 1 NOV-FMN complex was determined by both the method of molecular mechanics (X-PLOR software) and the induced proton chemical shifts of the molecules. An analysis of the results suggests that the NOV-FMN intermolecular complexes are mainly stabilized by stacking interactions of their aromatic chromophores. An additional stabilization is possible due to intermolecular hydrogen bonds. It was concluded that the aromatic molecules of vitamins, in particular, FMN, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solutions, which could result in a modulation of their medical and biological action.  相似文献   

6.
Complex formation of hairpin-producing heptadeoxynucleotide 5'-d(GCGAAGC) with aromatic molecules: acridine dye proflavine and anthracycline antibiotic daunomycin was studied by one-dimensional 1H NMR and two-dimensional correlation 1H-1H (2M-TOCSY, 2M-NOESY), 1H-31P (2M-HMBC) NMR spectroscopy (500 and 600 MHz) in aqueous solution. Concentration and temperature dependences for the chemical shifts of ligand protons were measured, molecular models of equilibrium in solution were developed, and equilibrium thermodynamic parameters for the formation of intercalation complexes were calculated. Spatial structures of dye and antibiotic complexes with the heptamer hairpin were constructed on the basis of 2M-NOE data and the calculated values of limiting chemical shifts of ligand protons.  相似文献   

7.
Mg(II)–porphyrin–ligand and (bacterio)chlorophyl–ligand coordination interactions have been studied by solution and solid-state MAS NMR spectroscopy. 1H, 13C and 15N coordination shifts due to ring currents, electronic perturbations and structural effects are resolved for imidazole (Im) and 1-methylimidazole (1-MeIm) coordinated axially to Mg(II)-OEP and (B)Chl a. As a consequence of a single axial coordination of Im or 1-MeIm to the Mg(II) ion, 0.9–5.2 ppm 1H, 0.2–5.5 ppm 13C and 2.1–27.2 ppm 15N coordination shifts were measured for selectively labeled [1,3-15N]-Im, [1,3-15N,2-13C]-Im and [1,3-15N,1,2-13C]-1-MeIm. The coordination shifts depend on the distance of the nuclei to the porphyrin plane and the perturbation of the electronic structure. The signal intensities in the 1H NMR spectrum reveal a five-coordinated complex, and the isotropic chemical shift analysis shows a close analogy with the electronic structure of the BChl a–histidine in natural light harvesting 2 complexes. The line broadening of the ligand responses support the complementary IR data and provide evidence for a dynamic coordination bond in the complex.Abbreviations (B)Chl a (bacterio)chlorophyll a - HMBC heteronuclear multiple bond correlation - Im imidazole - LH light-harvesting - 1-MeIm 1-methylimidazole - Mg(II)-Por Mg(II)-porphyrin macrocycle - OEP 2,3,7,8,12,13,17,18-octaethylporphyrin  相似文献   

8.
The reduced forms of cytochrome P-450cam and chloroperoxidase were examined by proton NMR spectroscopy. The pH and temperature dependences of the proton NMR spectra of both ferrous enzymes are reported. A series of alkyl mercaptide complexes of both synthetic and natural-derivative iron(II) porphyrins was also examined. The proton NMR spectra of these complexes facilitated the assignment of resonances due to the axial ligand in the model compounds on the basis of their isotropic shifts and multiplicities. Comparison of model compound data with that for the reduced enzymes supports assignment of the methylene protons for the axial cysteinate of ferrous cytochrome P-450cam and ferrous chloroperoxidase to proton NMR resonances at 279 and 200 ppm (pH 7.0, 298K), respectively. Differences in the active site structure of the two enzymes are further demonstrated by 15N-NMR spectroscopy of the cyanide complexes of the ferric forms.  相似文献   

9.
The self-association of the synthetic antibiotic actinocyl-bis(3-dimethylaminopropylamine) was studied in aqueous solution by one- and two-dimensional 1H NMR spectroscopy at 500 MHz. The two-dimensional homonuclear correlation NMR techniques (TOCSY and ROESY) were used to completely assign all the proton signals of the antibiotic and to quantitatively analyze the mutual arrangement of the antibiotic molecules in their aggregates. The concentration and temperature dependences of proton chemical shifts were used to determine the equilibrium constants and the thermodynamic parameters (H and S) of the self-association, as well as the limiting values of proton chemical shifts in associates. The experimental results were analyzed using both the indefinite noncooperative and cooperative models of the molecular self-association. The calculated value of the cooperativity coefficient ( 1.1) for our synthetic antibiotic confirmed a substantially lower anticooperative effect at the aggregation of its molecules in comparison with that of the antitumor antibiotic actinomycin D ( 1.5). We calculated the most favorable structure of the dimeric associate of the synthetic antibiotic in aqueous solution and found that, like in the actinomycin D dimer, the antiparallel orientation of the phenoxazone chromophore planes of interacting molecules is characteristic of its dimer.  相似文献   

10.
Nearly complete 1H, 13C and15 N NMR assignments have been obtained for a doubly labeled 14-base pair DNA duplex in solution both in the free state and complexed with the uniformly 15N-labeled Antennapedia homeodomain. The DNA was either fully 13C,15N-labeled or contained uniformly 13C, 15N-labeled nucleotides only at those positions which form the protein–DNA interface in the previously determined NMR solution structure of the Antennapedia homeodomain–DNA complex. The resonance assignments were obtained in three steps: (i) identification of the deoxyribose spin systems via scalar couplings using 2D and 3D HCCH-COSY and soft-relayed HCCH-COSY; (ii) sequential assignment of the nucleotides via1 H–1H NOEs observed in 3D13 C-resolved NOESY; and (iii) assignment of the imino and amino groups via 1H–1H NOEs and15 N–1H correlation spectroscopy. The assignment of the duplex in the 17 kDa protein–DNA complex was greatly facilitated by the fact that 1H signals of the protein were filtered out in 13C-resolved spectroscopy and by the excellent carbon chemical shift dispersion of the DNA duplex. Comparison of corresponding 13C chemical shifts of the free and the protein-bound DNA indicates conformational changes in the DNA upon complex formation.  相似文献   

11.
The molecular mechanism of the combined action of antibiotic and vitamin was studied by NMR spectroscopy. The heteroassociation of the antitumor antibiotic actinomycin D and flavin mononucleotide was investigated as a function of concentration and temperature by 500 MHz 1H NMR spectroscopy. The equilibrium association constant, the thermodynamic parameters (deltaH, deltaS) of heteroassociation of actinomycin D with flavin mononucleotide, and the limiting values of proton chemical shifts in the heterocomplex were determined from the concentration and temperature dependences of proton chemical shifts of molecules. The most favorable structure of the 1:1 actinomycin D-flavin mononucleotide heteroassociation complex was determined using both the molecular mechanics methods (X-PLOR software) and the limiting values of proton chemical shifts of the molecules. In the calculated structure, the planes of the chromophores of actinomycin D and flavin mononucleotide molecules in the 1:1 heterocomplex are parallel and separated from each other by a distance of about 0.34 nm. At the same time, there is a probability of formation of intermolecular hydrogen bonds in the calculated structure of 1:1 actinomycin D-flavin mononucleotide complex. The analysis of the results obtained suggests that aromatic molecules of vitamins, e.g., flavin mononucleotide, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solution, modulating thereby the efficacy of their medical and biological action.  相似文献   

12.
The heteroassociation of caffeine (CAF) and the synthetic antibiotic actinocyl-bis(3-dimethylaminopropylamine) (ACT) was studied in aqueous solution by one- and two-dimensional 1H NMR spectroscopy at 500 MHz. The equilibrium reaction constants, thermodynamic parameters (delta H and delta S) of ACT heteroassociation with CAF, the limiting values of proton chemical shifts of their molecules in the heteroassociation complex, and the spatial structure of the ACT-CAF complex were determined from the experimental dependences of proton chemical shifts of the aromatic molecules on concentration and temperature. The parameters of CAF heteroassociation with the phenoxazone antibiotic actinomycin D and its synthetic analogue ACT were comparatively analyzed and conclusions were made on the crucial role of stacking interactions of the chromophores of CAF and the phenoxazone antibiotics in the formation of the heterocomplexes in aqueous solution.  相似文献   

13.
The effect of aminoacylation and ternary complex formation with elongation factor Tu•GTP on the tertiary structure of yeast tRNAPhe was examined by 1H-NMR spectroscopy. Esterification of phenylalanine to tRNAPhe does not lead to changes with respect to the secondary and tertiary base pair interactions of tRNA. Complex formation of Phe-tRNAPhe with elongation factor Tu•GTP results in a broadening of all imino proton resonances of the tRNA. The chemical shifts of several NH proton resonances are slightly changed as compared to free tRNA, indicating a minor conformational rearrangement of Phe-tRNAPhe upon binding to elongation factor Tu•GTP. All NH proton resonances corresponding to the secondary and tertiary base pairs of tRNA, except those arising from the first three base pairs in the aminoacyl stem, are detectable in the Phe-tRNAPhe•elongation factor Tu•GTP ternary complex. Thus, although the interactions between elongation factor Tu and tRNA accelerate the rate of NH proton exchange in the aminoacyl stem-region, the Phe-tRNAPhe preserves its typical L-shaped tertiary structure in the complex. At high (> 10−4 M) ligand concentrations a complex between tRNAPhe and elongation factor Tu•GDP can be detected on the NMR time-scale. Formation of this complex is inhibited by the presence of any RNA not related to the tRNA structure. Using the known tertiary structures of yeast tRNAPhe and Thermus thermophilus elongation factor Tu in its active, GTP form, a model of the ternary complex was constructed.  相似文献   

14.
C, N CP MAS and high resolution multinuclear NMR study of methyl

Four new derivatives of methyl

were studied by 1H, 13C, 15N NMR in CDCl3 solutions and by 13C, 15N NMR in the solid state. The replacement of one aryl substituent by another has no influence on the proton and carbon chemical shifts within the sugar moiety, in solution. The differences in 13C chemical shifts Δ = δliquid - δsolid are significant for C-3 (deshielding of -3.4 to -3.8 ppm), C-5 and OMe but not observed for C-2, where the ureido substituent is linked, thus indicating that this fragment of the structure is rigid. The values of Δ in 15N chemical shifts of N-3′ are -2.3 to -2.8 ppm (increase of shielding in the solids); the effect of replacement of substituent at aromatic ring is larger than the contribution of intermolecular H-bond interaction. The values of 15.5–16.1 Hz for 1JC-1′-N and 21.2–21.5 Hz for 1JCO-N indicate that the two C---N-3′ bonds are of significant double bond character.  相似文献   

15.
GTP:adenosylcobinamide-phosphate (AdoCbi-P) guanylyl transferase (CobY) is an enzyme that transfers the GMP moiety of GTP to AdoCbi yielding AdoCbi-GDP in the late steps of the assembly of Ado-cobamides in archaea. The failure of repeated attempts to crystallize ligand-free (apo) CobY prompted us to explore its 3D structure by solution NMR spectroscopy. As reported here, the solution structure has a mixed α/β fold consisting of seven β-strands and five α-helices, which is very similar to a Rossmann fold. Titration of apo-CobY with GTP resulted in large changes in amide proton chemical shifts that indicated major structural perturbations upon complex formation. However, the CobY:GTP complex as followed by 1H-15N HSQC spectra was found to be unstable over time: GTP hydrolyzed and the protein converted slowly to a species with an NMR spectrum similar to that of apo-CobY. The variant CobYG153D, whose GTP complex was studied by X-ray crystallography, yielded NMR spectra similar to those of wild-type CobY in both its apo- state and in complex with GTP. The CobYG153D:GTP complex was also found to be unstable over time.  相似文献   

16.
The self-association of the synthetic antibiotic actinocyl-bis(3-dimethylaminopropylamine) was studied in aqueous solution by one- and two-dimensional 1H NMR spectroscopy at 500 MHz. The two-dimensional homonuclear correlation NMR techniques (TOCSY and ROESY) were used to completely assign all the proton signals of the antibiotic and to quantitatively analyze the mutual arrangement of the antibiotic molecules in their aggregates. The concentration and temperature dependences of proton chemical shifts were used to determine the equilibrium constants and the thermodynamic parameters (delta H and delta S) of the self-association, as well as the limiting values of proton chemical shifts in associates. The experimental results were analyzed using both the indefinite noncooperative and cooperative models of the molecular self-association. The calculated value of the cooperativity coefficient (sigma approximately 1.1) for our synthetic antibiotic confirmed a substantially lower anticooperative effect at the aggregation of its molecules in comparison with that of the antitumor antibiotic actinomycin D (sigma approximately 1.5). We calculated the most favorable structure of the dimeric associate of the synthetic antibiotic in aqueous solution and found that, like in the actinomycin D dimer, the antiparallel orientation of the phenoxazone chromophore planes of interacting molecules is characteristic of its dimer. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2002, vol. 28, no. 4; see also http://www.maik.ru.  相似文献   

17.
A new method is proposed for docking ligands into proteins in cases where an NMR-determined solution structure of a related complex is available. The method uses a set of experimentally determined values for protein–ligand, ligand–ligand, and protein–protein restraints for residues in or near to the binding site, combined with a set of protein–protein restraints involving all the other residues which is taken from the list of restraints previously used to generate the reference structure of a related complex. This approach differs from ordinary docking methods where the calculation uses fixed atomic coordinates from the reference structure rather than the restraints used to determine the reference structure. The binding site residues influenced by replacing the reference ligand by the new ligand were determined by monitoring differences in 1H chemical shifts. The method has been validated by showing the excellent agreement between structures of L. casei dihydrofolate reductase.trimetrexate calculated by conventional methods using a full experimentally determined set of restraints and those using this new restraint docking method based on an L. casei dihydrofolate reductase.methotrexate reference structure.  相似文献   

18.
We determined the solution structure of myristoylated Mason-Pfizer monkey virus matrix protein by NMR spectroscopy. The myristoyl group is buried inside the protein and causes a slight reorientation of the helices. This reorientation leads to the creation of a binding site for phosphatidylinositols. The interaction between the matrix protein and phosphatidylinositols carrying C8 fatty acid chains was monitored by observation of concentration‐dependent chemical shift changes of the affected amino acid residues, a saturation transfer difference experiment and changes in 31P chemical shifts. No differences in the binding mode or affinity were observed with differently phosphorylated phosphatidylinositols. The structure of the matrix protein–phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] complex was then calculated with HADDOCK software based on the intermolecular nuclear Overhauser enhancement contacts between the ligand and the matrix protein obtained from a 13C-filtered/13C-edited nuclear Overhauser enhancement spectroscopy experiment. PI(4,5)P2 binding was not strong enough for triggering of the myristoyl‐switch. The structural changes of the myristoylated matrix protein were also found to result in a drop in the oligomerization capacity of the protein.  相似文献   

19.
Overlap of NMR signals is the major cause of difficulties associated with NMR structure elucidation of molecules contained in complex mixtures. A 2D homonuclear correlation spectroscopy in particular suffers from low dispersion of 1H chemical shifts; larger dispersion of 13C chemical shifts is often used to reduce this overlap, while still providing the proton–proton correlation information e.g. in the form of a 2D 1H, 13C HSQC-TOCSY experiment. For this methodology to work, 13C chemical shift must be resolved. In case of 13C chemical shifts overlap, 1H chemical shifts can be used to achieve the desired resolution. The proposed (3, 2)D 1H, 13C BIRDr,X-HSQC-TOCSY experiment achieves this while preserving singlet character of cross peaks in the F1 dimension. The required high-resolution in the 13C dimension is thus retained, while the cross peak overlap occurring in a regular HSQC-TOCSY experiment is eliminated. The method is illustrated on the analysis of a complex carbohydrate mixture obtained by depolymerisation of a fucosylated chondroitin sulfate isolated from the body wall of the sea cucumber Holothuria forskali.  相似文献   

20.
This study reports the sequence specific chemical shifts assignments for 76 residues of the 94 residues containing monomeric unit of the photosynthetic light-harvesting 2 transmembrane protein complex from Rhodopseudomonas acidophila strain 10050, using Magic Angle Spinning (MAS) NMR in combination with extensive and selective biosynthetic isotope labeling methods. The sequence specific chemical shifts assignment is an essential step for structure determination by MAS NMR. Assignments have been performed on the basis of 2-dimensional proton-driven spin diffusion 13C–13C correlation experiments with mixing times of 20 and 500 ms and band selective 13C–15N correlation spectroscopy on a series of site-specific biosynthetically labeled samples. The decreased line width and the reduced number of correlation signals of the selectively labeled samples with respect to the uniformly labeled samples enable to resolve the narrowly distributed correlation signals of the backbone carbons and nitrogens involved in the long -helical transmembrane segments. Inter-space correlations between nearby residues and between residues and the labeled BChl a cofactors, provided by the 13C–13C correlation experiments using a 500 ms spin diffusion period, are used to arrive at sequence specific chemical shift assignments for many residues in the protein complex. In this way it is demonstrated that MAS NMR methods combined with site-specific biosynthetic isotope labeling can be used for sequence specific assignment of the NMR response of transmembrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号