首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We compared the changes in monocarboxylate transporter 1 (MCT1) and 4 (MCT4) proteins in heart and skeletal muscles in sedentary control and streptozotocin (STZ)-induced diabetic rats (3 wk) and in trained (3 wk) control and STZ-induced diabetic animals. In nondiabetic animals, training increased MCT1 in the plantaris (+51%; P < 0.01) but not in the soleus (+9%) or the heart (+14%). MCT4 was increased in the plantaris (+48%; P < 0.01) but not in the soleus muscles of trained nondiabetic animals. In sedentary diabetic animals, MCT1 was reduced in the heart (-30%), and in the plantaris (-31%; P < 0.01) and soleus (-26%) muscles. MCT4 content was also reduced in sedentary diabetic animals in the plantaris (-52%; P < 0.01) and soleus (-25%) muscles. In contrast, in trained diabetic animals, MCT1 and MCT4 in heart and/or muscle were similar to those of sedentary, nondiabetic animals (P > 0.05) but were markedly greater than in the sedentary diabetic animals [MCT1: plantaris +63%, soleus +51%, heart +51% (P > 0.05); MCT4: plantaris +107%, soleus +17% (P > 0.05)]. These studies have shown that 1) with STZ-induced diabetes, MCT1 and MCT4 are reduced in skeletal muscle and/or the heart and 2) exercise training alleviated these diabetes-induced reductions.  相似文献   

3.
Heat stress inhibits skeletal muscle hypertrophy   总被引:1,自引:1,他引:0       下载免费PDF全文
Heat shock proteins (Hsps) are molecular chaperones that aid in protein synthesis and trafficking and have been shown to protect cells/tissues from various protein damaging stressors. To determine the extent to which a single heat stress and the concurrent accumulation of Hsps influences the early events of skeletal muscle hypertrophy, Sprague-Dawley rats were heat stressed (42 degrees C, 15 minutes) 24 hours prior to overloading 1 plantaris muscle by surgical removal of the gastrocnemius muscle. The contralateral plantaris muscles served as controls. Heat-stressed and/or overloaded plantaris muscles were assessed for muscle mass, total muscle protein, muscle protein concentration, Type I myosin heavy chain (Type I MHC) content, as well as Hsp72 and Hsp25 content over the course of 7 days following removal of the gastrocnemius muscle. As expected, in non-heat-stressed animals, muscle mass, total muscle protein and MHC I content were significantly increased (P < 0.05) following overload. In addition, Hsp25 and Hsp72 increased significantly after 2 and 3 days of overload, respectively. A prior heat stress-elevated Hsp25 content to levels similar to those measured following overload alone, but heat stress-induced Hsp72 content was increased significantly greater than was elicited by overload alone. Moreover, overloaded muscles from animals that experienced a prior heat stress showed a lower muscle mass increase at 5 and 7 days; a reduced total muscle protein elevation at 3, 5, and 7 days; reduced protein concentration; and a diminished Type I MHC content accumulation at 3, 5, and 7 days relative to nonheat-stressed animals. These data suggest that a prior heat stress and/or the consequent accumulation of Hsps may inhibit increases in muscle mass, total muscle protein content, and Type I MHC in muscles undergoing hypertrophy.  相似文献   

4.
The effects of hypergravity (HG) on soleus and plantaris muscles were studied in Long Evans rats aged 100 days, born and reared in 2-g conditions (HG group). The morphological and contractile properties and the myosin heavy chain (MHC) content were examined in whole muscles and compared with terrestrial control (Cont) age-paired rats. The growth of HG rats was slowed compared with Cont rats. A decrease in absolute muscle weight was observed. An increase in fiber cross-sectional area/muscle wet weight was demonstrated, associated with an increase in relative maximal tension. The soleus muscle changed into a slower type both in contractile parameters and in MHC content, since HG soleus contained only the MHC I isoform. The HG plantaris muscle presented a faster contractile behavior. Moreover, the diversity of hybrid fiber types expressing multiple MHC isoforms (including MHC IIB and MHC IIX isoforms) was increased in plantaris muscle after HG. Thus the HG environment appears as an important inductor of muscular plasticity both in slow and fast muscle types.  相似文献   

5.
This study investigated the effects of voluntary wheel running on the myosin heavy chain (MHC) composition of the soleus (Sol) and plantaris muscles (Pla) in rats developing under hypobaric choronic hypoxia (CH) conditions during 4 wk in comparison with those of control rats maintained under local barometric pressure conditions (C) or rats pair-fed an equivalent quantity of food to that consumed by CH animals (PF). Compared with C animals, sedentary rats subjected to CH conditions showed a significant decrease in type I MHC in Sol (-12%, P < 0.01). Although strongly decreased under hypoxia, spontaneous running activity increased the expression of type I MHC (P < 0.01) so that no difference in the MHC profile of Sol was shown between CH active and C active rats. The MHC distribution in Sol of PF rats was not significantly different from that found in C animals. CH resulted in a significant decrease in type I (P < 0.01) and type IIA (P < 0.005) MHC, concomitant with an increase in type IIB MHC in Pla (P < 0.001), compared with C and PF animals. In contrast to results in Sol muscle, this slow-to-fast shift in the MHC profile was unaffected by spontaneous running activity. These results suggest that running exercise suppresses the hypoxia-induced slow-to-fast transition in the MHC expression in Sol muscles only. The hypoxia-induced decrease in food intake has no major influence on MHC expression in developing rats.  相似文献   

6.
α-Actinins are actin-binding proteins, and two isoforms (α-actinin-2 and -3) are major structural components of the sarcomeric Z line in mammalian skeletal muscle. Based on human and knockout mice studies, α-actinin-3 is thought to be associated with muscle force output and high contraction velocities. However, fiber-type specific expression of α-actinin isoforms is not well understood and may vary among species. In this study, we investigated the expression of α-actinin isoforms and the difference between fiber types in rat skeletal muscle and compared it with those of humans and mice from previous reports. Soleus and plantaris muscles were analyzed immunohistochemically to identify muscle fiber types and α-actinin protein expression. α-Actinin-2 was stained in all muscle fibers in both the soleus and plantaris muscles; i.e., all α-actinin-3 co-expressed with α-actinin-2 in rat skeletal muscles. The proportions of α-actinin-3 expression, regardless of fiber type, were significantly higher in the plantaris (75.8 ± 0.6%) than the soleus (8.0 ± 1.7%). No α-actinin-3 expression was observed in type I fibers, whereas all type IIx+b fibers expressed α-actinin-3. α-Actinin-3 was also expressed in type IIa fibers; however, approximately 75% of type IIa fibers were not stained by α-actinin-3, and the proportion varied between muscles. The proportion of α-actinin-3 expression in type IIa fibers was significantly higher in the soleus muscle than the plantaris muscle. Our results showed that fiber-type specific expression of α-actinin isoforms in rats is more similar to that in humans compared to that of the mouse, whereas the proportion of α-actinin-3 protein varied between muscles.  相似文献   

7.
Skeletal muscle adaptations to microgravity exposure in the mouse.   总被引:4,自引:0,他引:4  
To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to approximately 11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced (P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb (P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.  相似文献   

8.
The purpose of this study was to investigate potential differences in single-fiber contractile physiology of fibers with the same myosin heavy chain isoform (MHC I and MHC IIa) originating from different muscles. Vastus lateralis (VL) and soleus biopsies were obtained from 27 recreationally active females (31 +/- 1 yr, 59 +/- 1 kg). A total of 943 single fibers (MHC I = 562; MHC IIa = 301) were isolated and examined for diameter, peak tension (Po), shortening velocity (Vo), and power. The soleus had larger (P < 0.05) fibers (MHC I +18%; MHC IIa +19%), higher MHC I Vo (+13%), and higher MHC I Po (+18%) compared with fibers from the VL. In contrast, fibers from the VL had higher (P < 0.05) specific tension (MHC I +18%; MHC IIa +20%), and MHC I normalized power (+25%) compared with the soleus. There was a trend for MHC IIa soleus fibers to have higher Vo [MHC IIa +13% (P = 0.058)], whereas VL MHC IIa fibers showed a trend for higher normalized power compared with soleus fibers [MHC IIa +33% (P = 0.079)]. No differences in absolute power were detected between muscles. These data highlight muscle-specific differences in single-fiber contractile function that should serve as a scientific basis for consideration when extending observations of skeletal muscle tissue from one muscle of interest to other muscles of origin. This is important when examining skeletal muscle adaptation to physical states such as aging, unloading, and training.  相似文献   

9.
Indirect immunofluorescence analysis of different rat skeletal muscles using anti-myosin heavy chain (MHC) monoclonal antibodies (MAb) revealed the presence of two immunologically distinct kinds of fibers within the IIB fibers, histochemically identified by myosin ATPase staining. Some IIB fibers (designated here as IIB1) were unreactive with one anti-fast MHC MAb, whereas they did react with another anti-fast MHC MAb; other IIB fibers (designated here as IIB2) reacted with both anti-fast MAbs. Neither of the two IIB fiber subtypes was significantly reactive with a neonatal MHC MAb. The number of each IIB fiber subtype was age-dependent, at least in the plantaris muscle. IIB1 fibers were observed only in the superficial portion of the plantaris and gastrocnemius muscle. The ratio of IIB1:IIB2 fibers was about the same throughout the extensor digitorum longus and extraocular muscles. Therefore, the two kinds of IIB fibers here observed have a different myosin heavy chain content. On the basis of their specific immunoreactivities, we suggest that IIB1 fibers contain the previously described MHCB. IIB2 fibers contain either a unique new MHC isoform or a mixture of at least two MHC, possibly composed of the MHCB and either the previously described MHCA or a new MHC isoform.  相似文献   

10.
朱道立 《四川动物》2006,25(4):718-725,F0002
应用建立在肌球蛋白重链异构体基础上的标准肌动球蛋白ATP酶和琥珀酸脱氢酶组织化学方法,分析大鼠和家兔出生后发育各年龄阶段跖肌纤维型分布。在生后2周至24周龄的大鼠和家兔Ⅰ、ⅡX型肌纤维百分比例减少,而ⅡA、ⅡB型纤维则增加。进行大量单肌纤维的组织化学特征的比较和相关性探讨。结果显示动物平均体重与跖肌的平均湿重随生后发育逐渐增加,Ⅰ、ⅡX、ⅡA及ⅡB型纤维均在生后各年龄组的全部肌肉内被发现,但出生后2日龄组是个例外。在生后发育期间,雄性大鼠和家兔ⅡB型纤维的平均肌纤维型构成要大于雌性大鼠和家兔,而雄性大鼠和家兔Ⅰ、ⅡX、ⅡA型三种氧化组织化学分类的肌纤维型构成均小于雌性大鼠和家兔。大鼠Ⅰ、ⅡX、ⅡA和ⅡB型纤维的平均横切面积显然要比家兔的同类型肌纤维要小。在大鼠和家兔可见明显的性别差异。大鼠和家兔的ⅡX型纤维横切面积是最小的,Ⅰ、ⅡA型纤维呈中等大小,ⅡB型纤维最大。该重要的测试有助于我们深入研究啮齿类动物快肌纤维生理特征的适应。  相似文献   

11.
Skeletal muscle mass declines with age, as does the potential for overload-induced fast-twitch skeletal muscle hypertrophy. Because 5'-AMP-activated protein kinase (AMPK) activity is thought to inhibit skeletal muscle protein synthesis and may therefore modulate muscle mass and hypertrophy, the purpose of this investigation was to examine AMPK phosphorylation status (a marker of AMPK activity) and its potential association with the attenuated overload-induced hypertrophy observed in aged skeletal muscle. One-week overload of fast-twitch plantaris and slow-twitch soleus muscles was achieved in young adult (8 mo; n = 7) and old (30 mo; n = 7) Fischer344 x Brown Norway male rats via unilateral gastrocnemius ablation. Significant (P < or = 0.05) age-related atrophy (as measured by total protein content) was noted in plantaris and soleus control (sham-operated) muscles. In fast-twitch plantaris muscles, percent hypertrophy with overload was significantly attenuated with age, whereas AMPK phosphorylation status as determined by Western blotting [phospho-AMPK (Thr172)/total AMPK] was significantly elevated with age (regardless of loading status). There was also a main effect of loading on AMPK phosphorylation status in plantaris muscles (overload > control). Moreover, a strong and significant negative correlation (r = -0.82) was observed between AMPK phosphorylation status and percent hypertrophy in the overloaded plantaris muscles of all animals. In contrast to the plantaris, overload-induced hypertrophy of the slow-twitch soleus muscle was similar between ages, and AMPK phosphorylation in this muscle was also unaffected by age or overload. These data support the possibility that an age-related elevation in AMPK phosphorylation may partly contribute to the attenuated hypertrophic response observed with age in overloaded fast-twitch plantaris muscle.  相似文献   

12.
Increases in aerobic capacity in both young and senescent rats consequent to endurance exercise training are now known to occur not only in locomotor skeletal muscle but also in diaphragm. In the current study the effects of aging and exercise training on the myosin heavy chain (MHC) composition were determined in both the costal and crural diaphragm regions of female Fischer 344 rats. Exercise training [treadmill running at 75% maximal oxygen consumption (1 h/day, 5 day/wk, x 10 wk)] resulted in similar increases in plantaris muscle citrate synthase activity in both young (5 mo) and old (23 mo) trained animals (P < 0.05). Computerized densitometric image analysis of fast and slow MHC bands revealed the ratio of fast to slow MHC to be significantly higher (P < 0.005) in the crural compared with costal diaphragm region in both age groups. In addition, a significant age-related increase (P < 0.05) in percentage of slow MHC was observed in both diaphragm regions. However, exercise training failed to change the relative proportion of slow MHC in either the costal or crural region.  相似文献   

13.
The primary purpose of this investigation was to determine the effects of microgravity on muscle fibers of the predominantly fast-twitch muscles in the rat. Cross sectional area and myosin heavy chain (MHC) composition were assessed in order to establish the acute effects of microgravity associated with spaceflight. The extensor digitorum longus (EDL) and gastrocnemius muscles were removed from 12 male Fisher 344 rats which had undergone 10 days of spaceflight aboard the space shuttle Endeavor and from 12 age- and weight-matched control animals. Both groups of animals received similar amounts of food and water and were synchronized for photoperiods, environmental temperature, and humidity. Significant (P < 0.05) reductions in muscle fiber size were observed in the gastrocnemius (fiber types I, IIA, IIDB, and IIB) and EDL (fiber type IIB) muscles after spaceflight. Significant MHC isoform transformations also resulted during this brief period of microgravity exposure with a significant decrease in MHC IId isoform in the EDL muscle. A significant decrease was also observed in the MHC IId isoform in the superficial (white) component of the gastrocnemius muscle after spaceflight, although no alterations in MHC profile were demonstrated in the deep (red) component of this muscle. These findings highlight the rapid plasticity of skeletal muscle during short-term spaceflight. If such pronounced adaptations to spaceflight also occur in humans, then astronauts are likely to suffer severe decrements in skeletal muscle performance with long-term space flight and upon return to earth after both short- and long-term missions. Thus, countermeasures aimed at slowing or even preventing muscle fiber atrophy are warranted.  相似文献   

14.
The purpose of this study was to determine whether skeletal muscle mass, myofibrillar adenosinetriphosphatase activity, and the expression of myosin heavy (MHC) and light chain subunits are differentially affected in juvenile (4 wk) and young adult (12 wk) rats by a hypertrophic growth stimulus. Hypertrophy of the plantaris or soleus was studied 4 wk after ablation of either two [gastrocnemius (GTN) and soleus or plantaris] or one (GTN) synergistic muscle(s). There was no difference in the relative magnitude of hypertrophy because of age. Plantaris myofibrillar adenosinetriphosphatase activity was decreased 21 and 12% in juvenile and adult rats, respectively, as a result of ablation of both the GTN and soleus. Slow myosin light chain isoforms (1s and 2s) were expressed to a greater extent in hypertrophied plantaris muscles of both ages, but the increase in 1s was greater in juvenile rats. The relative expression of slow beta-MHC in hypertrophied plantaris muscles increased by 470 and 350%, whereas MHC IIb decreased by 70 and 33% in juvenile and adult rats, respectively. The relative expression of MHC IIa increased (56%) in the plantaris after ablation in juvenile rats only. These shifts in myosin subunit expression and the increases in mass were generally about one-half the magnitude when only the GTN was removed. There were no detectable myosin shifts in hypertrophied soleus muscles. Although the extent of muscle hypertrophy is similar, the shifts in myosin subunits were greater in juvenile than in young adult rats.  相似文献   

15.
5'-AMP-activated protein kinase (AMPK) signaling initiates adaptive changes in skeletal muscle fibers that restore homeostatic energy balance. The purpose of this investigation was to examine, in rats, the fiber-type protein expression patterns of the alpha-catalytic subunit isoforms in various skeletal muscles, and changes in their respective contents within the tibialis anterior (TA) after chronic low-frequency electrical stimulation (CLFS; 10 Hz, 10 h daily), applied for 4 +/- 1.2 or 25 +/- 4.8 days. Immunocytochemical staining of soleus (SOL) and medial gastrocnemius (MG) showed that 86 +/- 4.1 to 97 +/- 1.4% of type IIA fibers stained for both the alpha1- and alpha2-isoforms progressively decreased to 63 +/- 12.2% of type IID/X and 9 +/- 2.4% of IIB fibers. 39 +/- 11.4% of IID/X and 83 +/- 7.9% of IIB fibers expressed only the alpha2 isoform in the MG, much of which was localized within nuclei. alpha1 and alpha2 contents, assessed by immunoblot, were lowest in the white gastrocnemius [WG; 80% myosin heavy chain (MHC) IIb; 20% MHCIId/x]. Compared with the WG, alpha1 content was 1.6 +/- 0.08 (P < 0.001) and 1.8 +/- 0.04 (P < 0.0001)-fold greater in the red gastrocnemius (RG: 13%, MHCIIa) and SOL (21%, MHCIIa), respectively, and increased in proportion to MHCIIa content. Similarly, alpha2 content was 1.4 +/- 0.10 (P < 0.02) and 1.5 +/- 0.07 (P < 0.001)-fold greater in RG and SOL compared with WG. CLFS induced 1.43 +/- 0.13 (P < 0.007) and 1.33 +/- 0.08 (P < 0.009)-fold increases in the alpha1 and alpha2 contents of the TA and coincided with the transition of faster type IIB and IID/X fibers toward IIA fibers. These findings indicate that fiber types differ with regard to their capacity for AMPK signaling and that this potential is increased by CLFS.  相似文献   

16.
17.
To examine the effect of extreme old age on muscle plasticity, 6- (adult) and 36-mo-old (old) male Fischer 344 x Brown Norway hybrid rats underwent bilateral surgical ablation of the gastrocnemius muscle to functionally overload (OV) the fast-twitch plantaris muscle for 8 wk. Plantaris muscle wet weight, muscle cross-sectional area (CSA), and average fiber CSA decreased by 44, 42, and 40%, respectively, in old compared with adult rats, and peak isometric tetanic tension decreased by 83%. Compared with muscles in age-matched controls, plantaris muscle mass increased by 53% and type I, IIA, and IIX/IIB CSA increased by 91, 76, and 103%, respectively, in adult-OV rats, but neither wet mass nor fiber CSA increased in old-OV rats. OV decreased type I, IIA, and IIX/IIB mean fiber CSA by 31, 35, and 30%, respectively, in old-OV rats. Collectively, our data indicate that in extreme old age the plantaris muscle undergoes significant loss of mass, fiber CSA, and contractile function, as well as its capacity to undergo hypertrophy in response to a chronic increase in mechanical load.  相似文献   

18.
The effects of growth hormone (GH) on diaphragm muscle myosin heavy chain (MHC) composition and mechanical performance were investigated in Fischer 344 male rats aged to senescence (24.5 mo of age). Chronic undernutrition (UN), refeeding (RF), and RF+GH were compared with ad libitum feeding by using a model of UN that produced a 50% decrease in body weight over a 12-mo period. The effect of aging was assessed by comparing MHC composition of ad libitum-fed rats at 12 and 24.5 mo of age. At senescence, significant decreases in slow type I (-23%) and fast type IIA (-31%) MHC had occurred with aging. Conversely, UN over this aging period increased types I (32-73%) and IIA (22-23%) MHC and decreased fast types IIB (32-54%) and IIX (30-31%) MHC. RF and RF+GH reversed these shifts back toward control values. At senescence, maximal specific force, maximal velocity, and specific power capacity were not different across treatment groups. During repetitive isotonic contraction trials, the diaphragms of UN rats maintained power production over time (54% of initial power at 60 s), whereas the power production of diaphragms of ad libitum-fed rats fell to 0% (P < 0.05). In comparison with UN rats, the diaphragms of RF and RF+GH rats produced 23 (not significant) and 11% (P < 0.05) of initial power, respectively, suggesting that RF+GH treatment restored performance characteristics after UN. We conclude that RF+GH can reverse alterations in MHC composition and mechanical performance produced by chronic UN in the aged rat diaphragm.  相似文献   

19.
Because optimal overload-induced skeletal muscle hypertrophy requires ANG II, we aimed to determine the effects of blocking ANG II production [via angiotensin-converting enzyme (ACE) inhibition] on potential mediators of hypertrophy in overloaded skeletal muscle, namely, myonuclear addition and fibroblast content. In a 2 x 2 design, adult (200-225 g) female Sprague-Dawley rats were placed into one of four groups (n = 8/group): 7-day skeletal muscle overload, sham operation, 7-day skeletal muscle overload with ACE inhibition, or sham operation with ACE inhibition. Functional overloads of the plantaris and soleus muscles were produced via bilateral surgical ablation of the synergistic gastrocnemius muscle, and ACE inhibition was accomplished by the addition of the ACE inhibitor enalapril maleate to the animals' daily drinking water (0.3 mg/ml). Myonuclear addition and extrasarcolemmal nuclear proliferation, as measured by in vivo 5-bromo-2'-deoxyuridine labeling, were significantly (P < or = 0.05) increased by overload in both the slow-twitch soleus and fast-twitch plantaris muscles. Furthermore, ACE inhibition attenuated these overload-induced increases in the soleus muscle but not in the plantaris muscle. However, the effect of ACE inhibition on soleus extrasarcolemmal nuclei was not likely due to differences in fibroblast content because overload elicited significant increases in vimentin-positive areas in soleus and plantaris muscles, and these areas were unaffected by ACE inhibition in either muscle. There was no effect of ACE inhibition on any measure in sham-operated muscles. Collectively, these data indicate that ANG II may mediate the satellite cell response to overload in slow-twitch soleus but not in fast-twitch plantaris muscles and that this effect may occur independently of changes in fibroblast content.  相似文献   

20.
Ischemia followed by reperfusion in the presence of polymorphonuclear leukocytes (PMNs) results in cardiac dysfunction. C-peptide, a cleavage product of proinsulin to insulin processing, induces nitric oxide (NO)-mediated vasodilation. NO is reported to attenuate cardiac dysfunction caused by PMNs after ischemia-reperfusion (I/R). Therefore, we hypothesized that C-peptide could attenuate PMN-induced cardiac dysfunction. We examined the effects of C-peptide in isolated ischemic (20 min) and reperfused (45 min) rat hearts perfused with PMNs. C-peptide (70 nmol/kg iv) given 4 or 24 h before I/R significantly improved coronary flow (P < 0.05), left ventricular developed pressure (LVDP) (P < 0.01), and the maximal rate of development of LVDP (+dP/dt(max)) compared with I/R hearts obtained from rats given 0.9% NaCl (P < 0.01). N(G)-nitro-L-arginine methyl ester (L-NAME) (50 micromol/l) blocked these cardioprotective effects. In addition, C-peptide significantly reduced cardiac PMN infiltration from 183 +/- 24 PMNs/mm(2) in untreated hearts to 44 +/- 10 and 58 +/- 25 PMNs/mm(2) in hearts from 4- and 24-h C-peptide-treated rats, respectively. Rat PMN adherence to rat superior mesenteric artery exposed to 2 U/ml thrombin was significantly reduced in rats given C-peptide compared with rats given 0.9% NaCl (P < 0.001). Moreover, C-peptide enhanced basal NO release from rat aortic segments. These results provide evidence that C-peptide can significantly attenuate PMN-induced cardiac contractile dysfunction in the isolated perfused rat heart subjected to I/R at least in part via enhanced NO release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号