首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of glutamine and alanine into rat colonocytes.   总被引:1,自引:1,他引:0       下载免费PDF全文
The transport of glutamine and alanine into isolated rat colonocytes was studied. The transport of both amino acids appears to be dependent on a Na+ gradient. The apparent Km values for the transport of glutamine and alanine were 2.56 +/- 0.84 and 5.35 +/- 1.20 mM respectively, but with similar Vmax. values. Glutamine and alanine transport were mutually competitive, and the transport of both amino acids was competitively inhibited by 2-methylaminoisobutyrate. In contrast, histidine inhibited the transport of both glutamine and alanine non-competitively. It is concluded that glutamine and alanine are transported into rat colonocytes by a common carrier system similar to System A of other cells. It is suggested that the metabolic function of this transport system in rat colonocytes might be the partial exchange of extracellular glutamine for intracellular alanine.  相似文献   

2.
The transport of glutamine into rat mesenteric lymphocytes   总被引:2,自引:0,他引:2  
The transport of glutamine into isolated rat mesenteric lymphocytes was studied. This transport appears to be dependent upon the Na+ gradient. The Km for glutamine transport was about 1.0 mM. A large number of amino acids were shown to inhibit the rate of transport of both serine and glutamine into lymphocytes. The transport of glutamine was competitively inhibited by serine and that for serine was similarly inhibited by glutamine. In contrast, histidine and 2-(methylamino)isobutyrate inhibited the transport of both serine and glutamine noncompetitively. It is concluded that glutamine is transported into rat mesenteric lymphocytes by a process similar to System ASC described for other cells.  相似文献   

3.
Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into the vesicle was demonstrated. When Na+ was equilibrated across the membrane, countertransport stimulation of L-[3H]alanine uptake occurred in the presence of accumulated unlabeled L-alanine, 2-aminoisobutyric acid, or L-methionine. Competitive interactions among neutral amino acids, pH profiles, and apparent Km values for Na+ gradient-stimulated transport into vesicles were similar to those previously described for amino acid uptake in Ehrlich ascites cells, which suggests that the transport activity assayed in vesicles is a component of the corresponding cellular uptake process. Both the initial rate and quasi-steady state of uptake were stimulated as a function of a Na+ gradient (external Na+ greater than internal Na+) applied artificially across the membrane and were independent of endogenous (Na+ + K+)-ATPase activity. Stimulation by Na+ was decreased when the Na+ gradient was dissipated by monensin, gramicidin D or Na+ preincubation. Na+ decreased the apparent Km for alanine, 2-aminoisobutyric acid, and glutamine transport. Na+ gradient-stimulated amino acid transport was electrogenic, stimulated by conditions expected to generate an interior-negative membrane potential, such as the presence of the permeant anions NO3- and SCN-. Na+-stimulated L-alanine transport was also stimulated by an electrogenic potassium diffusion potential (K+ internal greater than K+ external) catalyzed by valinomycin; this stimulation was blocked by nigericin. These observations provide support for a mechanism of active neutral amino acid transport via the "A system" of the plasma membrane in which both a Na+ gradient and membrane potential contribute to the total driving force.  相似文献   

4.
Vacuoles of internodal cells of Chara australis (or Chara corallina) were loaded with a 10 millimolar amount of various amino acids by a perfusion method and incubated under continuous light. After 20 to 24 hours, the cell sap was collected, and free amino acids in it and the rest of the cell (cytoplasm) were analyzed. The only amino acid metabolized completely was alanine. About 40 to 80% of the aspartic acid, glutamine, serine, and glycine were metabolized, whereas less than 30% of the threonine, asparagine, isoasparagine, isoleucine, phenylalanine, γ-aminobutyric acid, lysine, and arginine were metabolized. The figure for glutamic acid fluctuated between 10 and 100%. The main metabolites of alanine were glutamine, glycine and ammonia, which accumulated in the vacuole. Alanine utilization was not affected by l-methionine-d,l-sulfoximine or azaserine, but was strongly inhibited by aminooxyacetate. The cell extract contained enough alanine aminotransferase activity to account for the rate of alanine metabolism.  相似文献   

5.
Na+ dependent [3H]glutamine uptake was found in liposomes reconstituted with solubilized rat kidney brush border in the presence of intraliposomal K+. The reconstituted system was optimised with respect to the critical parameters of the cyclic detergent removal procedure, i.e., the detergent used for the solubilization, the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. Time dependent [3H]glutamine accumulation in proteoliposomes occurred only in the presence of external Na+ and internal K+. The transporter showed low if there is any tolerance towards the substitution of Na+ or K+ for other cations. Valinomycin strongly stimulated the transport indicating that it is electrogenic. Intraliposomal glutamine had no effect. From the dependence of the transport rate on the Na+ concentration cooperativity index close to 1 was derived, indicating that 1 Na+ should be involved in the cotransport with glutamine. The electrogenicity of the transport originated from the Na+ transport. Optimal rate of 0.1 mM [3H]glutamine uptake was found in the presence of 50 mM intraliposomal K-gluconate. At higher K-gluconate concentrations the transport rate decreased. The activity of the reconstituted transporter was pH dependent with optimal function in the range pH 6.5-7.0. [3H]glutamine (and [3H]leucine) uptake was inhibited by all the neutral but not by the positively or negatively charged amino acids. The sulfhydryl reagents HgCl2, mersalyl, p-hydroxymercuribenzoate and the substrate analogue 2-aminobicyclo[2,2,1]heptane-2-carboxylate strongly inhibited the transporter, whereas the amino acid analogue alpha-(methylamino)isobutyrate had no effect. The inhibition by mersalyl was protected by the presence of the substrate. On the basis of the Na+ dependence, the electrogenic transport mode and the specificity towards the amino acids, the reconstituted transporter was classified as B degrees-like.  相似文献   

6.
Several Na+-dependent carriers of amino acids exist on the abluminal membrane of the blood-brain barrier (BBB). These Na+-dependent carriers are in a position to transfer amino acids from the extracellular fluid of brain to the endothelial cells and thence to the circulation. To date, carriers have been found that may remove nonessential, nitrogen-rich, or acidic (excitatory) amino acids, all of which may be detrimental to brain function. We describe here Na+-dependent transport of large neutral amino acids across the abluminal membrane of the BBB that cannot be ascribed to currently known systems. Fresh brains, from cows killed for food, were used. Microvessels were isolated, and contaminating fragments of basement membranes, astrocyte fragments, and pericytes were removed. Abluminal-enriched membrane fractions from these microvessels were prepared. Transport was Na+ dependent, voltage sensitive, and inhibited by 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid, a particular inhibitor of the facilitative large neutral amino acid transporter 1 (LAT1) system. The carrier has a high affinity for leucine (Km 21 +/- 7 microM) and is inhibited by other neutral amino acids, including glutamine, histidine, methionine, phenylalanine, serine, threonine, tryptophan, and tyrosine. Other established neutral amino acids may enter the brain by way of LAT1-type facilitative transport. The presence of a Na+-dependent carrier on the abluminal membrane capable of removing large neutral amino acids, most of which are essential, from brain indicates a more complex situation that has implications for the control of essential amino acid content of brain.  相似文献   

7.
1. Factors regulating the release of alanine and glutamine in vivo were investigated in starved rats by removing the liver from the circulation and monitoring blood metabolite changes for 30 min. 2. Alanine and glutamine were the predominant amino acids released into the circulation in this preparation. 3. Dichloroacetate, an activator of pyruvate dehydrogenase, inhibited net alanine release: it also interfered with the metabolism of the branched-chain amino acids valine, leucine and isoleucine. 4. L-Cycloserine, an inhibitor of alanine aminotransferase, decreased alanine accumulation by 80% after functional hepatectomy, whereas methionine sulphoximine, an inhibitor of glutamine synthetase, decreased glutamine accumulation by the same amount. 5. It was concluded that: (a) the alanine aminotransferase and the glutamine synthetase pathways respectively were responsible for 80% of the alanine and glutamine released into the circulation by the extrasplanchnic tissues, and extrahepatic proteolysis could account for a maximum of 20%; (b) alanine formation by the peripheral tissues was dependent on availability of pyruvate and not of glutamate; (c) glutamate availability could influence glutamine formation subject, possibly, to renal control.  相似文献   

8.
(1) Cyclic AMP stimulated alanine transport in isolated hepatocytes by approx. 30%, in the range 0.2-5 mM alanine. (2) Alanine utilisation was also stimulated by cyclic AMP. The rates of transport and metabolism were comparable, both in the presence and absence of cyclic AMP. (3) At concentrations of alanine above 1 mM, addition of ouabain, or the reduction of the Na+ concentration, could partially inhibit transport without affecting the rate of metabolism. (4) At these alanine concentrations, stimulation of metabolism by cyclic AMP was associated with a decrease in the intracellular to extracellular alanine concentration ratio. (5) At alanine concentrations below 0.5 mM, or at higher concentrations when transport was inhibited by reducing the Na+ concentration, cyclic AMP caused an increase in the alanine concentration ratio. (6) It is concluded that at concentrations of alanine above 1 mM, alanine transport is not rate-limiting for alanine metabolism in hepatocytes from fed rats, and cyclic AMP stimulates alanine metabolism primarily by an effect on an intracellular reaction. At physiological concentrations of alanine, however, alanine transport appears to be rate-limiting in agreement with a previous report.  相似文献   

9.
The effects of three types of amino acids on 45Ca2+ fluxes in rat pancreatic islets have been compared. Alanine, a non-insulinotropic neutral amino acid, transported with Na+, increased 45Ca2+ efflux in the presence or in the absence of extracellular Ca2+, but not in the absence of Na+. Its effects in Na+-solutions were practically abolished by 7 mM-glucose. Alanine slightly stimulated 45Ca2+ influx (5 min uptake) only when Na+ was present. Two insulinotropic cationic amino acids (arginine and lysine) triggered similar changes in 45Ca2+ efflux. They accelerated the efflux in the presence of Ca2+ and inhibited the efflux in a Ca2+-free medium, whether glucose was present or not. In an Na+-free Ca2+-medium, arginine and lysine markedly accelerated 45Ca2+ efflux, but this effect was suppressed by 7 mM-glucose. Arginine stimulated 45Ca2+ influx irrespective of the presence or absence of glucose and Na+. Leucine, a neutral insulinotropic amino acid well metabolized by islet cells, inhibited 45Ca2+ efflux from the islets in a Ca2+-free medium; this effect was potentiated by glutamine. In the presence of Ca2+ and Na+, leucine was ineffective alone, but triggered a marked increase in 45Ca2+ efflux when combined with glutamine. In an Na+-free Ca2+-medium, leucine accelerated 45Ca2+ efflux to the same extent with or without glutamine. Leucine also stimulated 45Ca2+ influx in the presence or in the absence of Na+, but its effects were potentiated by glutamine only in the presence of Na+. The results show that amino acids of various types cause distinct changes in 45Ca2+ fluxes in pancreatic islets. Certain of these changes involve an Na+-mediated mobilization of cellular Ca2+ from sequestering sites where glucose appears to exert an opposite effect.  相似文献   

10.
Na+-Dependent transmembrane transport of small neutral amino acids, such as glutamine and alanine, is mediated, among others, by the neutral amino acid transporters of the solute carrier 1 [SLC1, alanine serine cysteine transporter 1 (ASCT1), and ASCT2] and SLC38 families [sodium-coupled neutral amino acid transporter 1 (SNAT1), SNAT2, and SNAT4]. Many mechanistic aspects of amino acid transport by these systems are not well-understood. Here, we describe a new photolabile alanine derivative based on protection of alanine with the 4-methoxy-7-nitroindolinyl (MNI) caging group, which we use for pre-steady-state kinetic analysis of alanine transport by ASCT2, SNAT1, and SNAT2. MNI-alanine has favorable photochemical properties and is stable in aqueous solution. It is also inert with respect to the transport systems studied. Photolytic release of free alanine results in the generation of significant transient current components in HEK293 cells expressing the ASCT2, SNAT1, and SNAT2 proteins. In ASCT2, these currents show biphasic decay with time constants, tau, in the 1-30 ms time range. They are fully inhibited in the absence of extracellular Na+, demonstrating that Na+ binding to the transporter is necessary for induction of the alanine-mediated current. For SNAT1, these transient currents differ in their time course (tau = 1.6 ms) from previously described pre-steady-state currents generated by applying steps in the membrane potential (tau approximately 4-5 ms), indicating that they are associated with a fast, previously undetected, electrogenic partial reaction in the SNAT1 transport cycle. The implications of these results for the mechanisms of transmembrane transport of alanine are discussed. The new caged alanine derivative will provide a useful tool for future, more detailed studies of neutral amino acid transport.  相似文献   

11.
1. Bicarbonate ions stimulate the transport of serine and alanine into isolated hepatocytes. 2. The effect of bicarbonate is to increase the Vmax. of the transport process without changing the apparent Km. 3. The intracellular pH was estimated from the distribution of the weak base methylamine and the weak acid 5,5'-dimethyloxazolidine-2,4-dione (DMO) across the plasma membrane. 4. The addition of bicarbonate to a cell suspension caused the internal pH to become more acid. 5. The initial rate of serine, alanine and glycine transport was a linear function of the initial difference in pH across the membrane. 6. It is concluded that bicarbonate activates the transport of these amino acids primarily by increasing the pH difference across the plasma membrane. 7. It is suggested that the uptake of serine together with Na+ ions occurs in exchange for H+ ions, which are translocated outwards on the same carrier system. Some preliminary evidence consistent with this model is presented.  相似文献   

12.
The synthesis and release of alanine and glutamine were investigated with an intact rat epitrochlaris muscle preparation. This preparation will maintain on incubation for up to 6 hours, tissue levels of phosphocreatine, ATP, ADP, lactate, and pyruvate closely approximating those values observed in gastrocnemius muscles freeze-clamped in vivo. The epitrochlaris preparation releases amino acids in the same relative proportions and amounts as a perfused rat hindquarter preparation and human skeletal muscle. Since amino acids were released during incubation without observable changes in tissue amino acids levels, rates of alanine and glutamine release closely approximate net amino acid synthesis. Large increases in either glucose uptake or glycolysis in muscle were not accompanied by changes in either alanine or glutamine synthesis. Insulin increased muscle glucose uptake 4-fold, but was without effect on alanine and glutamine release. Inhibition of glycolysis by iodacetate did not decrease the rate of alanine synthesis. The rates of alanine and glutamine synthesis and release from muscle decreased significantly during prolonged incubation despite a constant rate of glucose uptake and pyruvate production. Alanine synthesis and release were decreased by aminooxyacetic acid, an inhibitor of alanine aminotransferase. This inhibition was accompanied by a compensatory increase in the release of other amino acids, such as aspartate, an amino acid which was not otherwise released in appreciable quantities by muscle. The release of alanine, pyruvate, glutamate, and glutamine were observed to be interrelated events, reflecting a probable near-equilibrium state of alanine aminotransferase in skeletal muscle. It is concluded that glucose metabolism and amino acid release are functionally independent processes in skeletal muscle. Alanine release reflects the de novo synthesis of the amino acid and does not arise from the selective proteolysis of an alanine-rich storage protein. It appears that the rate of alanine and glutamine synthesis in skeletal muscle is dependent upon the transformation and metabolism of amino acid precursors.  相似文献   

13.
Several lines of evidence with intact tissues suggest amino acid transport is mediated by a proton-amino acid symport (L Rheinhold, A Kaplan 1984 Annu Rev Plant Physiol 35: 45-83). However, biochemical studies of proton-coupled amino acid transport in isolated membrane vesicles have not been reported. In the experiments presented here, amino acid transport was studied in membrane vesicles isolated from zucchini (Cucurbita pepo L. cv Black Beauty) hypocotyls. An imposed pH gradient (basic interior) was used to energize isolated membrane vesicles and drive amino acid transport. Proton-coupled amino acid accumulation was demonstrated for alanine, glutamate, glutamine, leucine, and tabtoxinine-β-lactam. Alanine transport into the isolated membrane vesicles was studied in detail. Alanine transport was protonophore sensitive and accumulation ratios exceeding 10 times that predicted by diffusion alone were observed. ΔpH-Dependent alanine transport exhibited saturation kinetics, suggesting translocation was mediated via a carrier transport system. In support of that conclusion, 50 micromolar N,N′-dicyclohexylcarbodiimide, a hydrophobic modifier of protein carboxyls, completely inhibited proton-coupled alanine accumulation. Transport activity, equilibrated on a linear sucrose gradient, peaked at 1.16 grams per cubic centimeter and co-migrated with a plasmalemma marker (vanadate-sensitive K+-Mg2+-ATPase). These results provide direct evidence in support of a proton-amino acid symport in the plasmalemma of higher plants.  相似文献   

14.
Mesophyll protoplasts from leaves of well-fertilized barley (Hordeum vulgare L.) plants contained amino acids at concentrations as high as 120 millimoles per liter. With the exception of glutamic acid, which is predominantly localized in the cytoplasm, a major part of all other amino acids was contained inside the large central vacuole. Alanine, leucine, and glutamine are the dominant vacuolar amino acids in barley. Their transport into isolated vacuoles was studied using 14C-labeled amino acids. Uptake was slow in the absence of ATP. A three- to sixfold stimulation of uptake was observed after addition of ATP or adenylyl imidodiphosphate an ATP analogue not being hydrolyzed by ATPases. Other nucleotides were ineffective in increasing the rate of uptake. ATP-Stimulated amino acid transport was not dependent on the transtonoplast pH or membrane potential. p-Chloromercuriphenylsulfonic acid and n-ethyl maleimide increased transport independently of ATP. Neutral amino acids such as valine or leucine effectively decreased the rate of alanine transport. Glutamine and glycine were less effective or not effective as competitive inhibitors of alanine transport. The results indicate the existence of a uniport translocator specific for neutral or basic amino acids that is under control of metabolic effectors.  相似文献   

15.
Alanine and glutamine formation and release were studied using the intact epitrochlaris preparation of rat skeletal muscle. Alanine release from skeletal muscle was increased by fasting (65%), cortisone (145%), thyroxine (200%), and diabetes (185%). Glutamine release was decreased by cortisone (37%) and diabetes (23%) but not significantly affected by fasting or thyroxine. Tissue levels of alanine were unchanged but tissue glutamine levels were markedly reduced (30 to 60%) in all treatment groups. Insulin added in vitro did not affect amino acid release even with preparations obtained from diabetic animals. Inhibition of glycolysis with 0.2 mM iodoacetate had no effect on the rate of alanine and glutamine formation in any treatment group. Pyruvate generation was increased by all treatments even in the presence of the inhibitor. Total skeletal muscle alanine, aspartate, and branched chain aminotransferase, glutamate dehydrogenase, and malic enzyme activities were not significantly altered in any treatment groups. The addition of 10 mM aspartate, cysteine, branched chain amino acids, and serine significantly increased alanine formation, whereas the maximal rate of glutamine formation in the presence of stimulating amino acids was reduced in each treatment groups--the most marked effects were noted with cortisone and diabetic preparations. Although accelerated muscle proteolysis is an important factor regulating alanine formation in skeletal muscle, the redirection of carbon flow from glutamine toward alanine formation observed in fasting, cortisone, thyroxine-treated, and diabetic rats, indicates that factors other than proteolysis also participate in the control of amino acid release from muscle.  相似文献   

16.
Plasma-membrane vesicles prepared from the liver of rats fed either a low-(LP) or a high-protein (HP) diet exhibited Na(+)-dependent active transport of alanine and serine. The process gave apparent kinetic parameters compatible with a single saturable component for both amino acids. Na,K-ATPase (EC 3.6.1.37), marker of the basolateral domain of the hepatocyte plasma-membrane, was chosen as reference for the expression of amino acid transport in vesicle preparations. The high-protein diet induced a significant increase in liver Na,K-ATPase activity also found in corresponding plasma-membrane preparations, in parallel with an increase in the capacity towards amino acid transport. This suggests that in rats fed the high protein diet, transcellular Na+ exchange, although increased, remains well balanced. N-Methylaminoisobutyric acid (MeAIB), due to its poor velocity, proved unsuitable to distinguish between systems A and ASC in the experimental model. Comparing Na(+)- and Li(+)-driven transport, a family of carriers with strict Na(+)-dependency (A-like) was evidenced in LP vesicles but not in HP vesicles. The sensitivity to the lowering of the pH from 7.5 to 6.5 in the external medium was similar in both type of vesicles when Na+ was the driving ion. In the HP vesicles the Li(+)-tolerant, pH-insensitive component (ASC-like) was increased in parallel with overall Na(+)-dependent transport. These functional properties suggest that the carriers involved in the stimulation of transport in HP vesicles are composite in nature. Increasing concentrations of an amino acid mixture mimicking the changes of portal aminoacidemia inhibited the transport of alanine and of serine. The degree of inhibition was correlated with the relative concentration of substrate and was independent of the nutritional treatment.  相似文献   

17.
The glutamine/amino acid transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted glutamine/amino acid transporter catalysed a first-order antiport reaction stimulated by external, not internal, Na+. Optimal activity was found at pH 7.0. The sulfhydryl reagents HgCl2, mersalyl and p-hydroxymercuribenzoate and the amino acids alanine, serine, threonine, cysteine, asparagine, methionine and valine strongly inhibited the transport, whereas the amino acid analogue methylaminoisobutyrate had no effect. Glutamine, alanine, serine, asparagine, threonine were efficiently translocated from outside to inside and from inside to outside the proteoliposomes as well. Cysteine and valine were translocated preferentially from outside to inside. The Km for glutamine on the external and internal side of the transporter was 0.47 and 11 mM, respectively; the values were not influenced by the type of the counter substrate. The transporter is functionally asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. By a bisubstrate kinetic analysis of the glutamine antiport, a random simultaneous mechanism was found. The glutamine antiport was strongly stimulated by internal nucleoside triphosphates and, to a lower extent, by pyrophoshate. The reconstituted glutamine/amino acid transporter functionally corresponds to the ASCT2 protein.  相似文献   

18.
Espie GS  Kandasamy RA 《Plant physiology》1994,104(4):1419-1428
The effect of monensin, an ionophore that mediates Na+/H+ exchange, on the activity of the inorganic carbon transport systems of the cyanobacterium Synechococcus UTEX 625 was investigated using transport assays based on the measurement of chlorophyll a fluorescence emission or 14C uptake. In Synechococcus cells grown in standing culture at about 20 [mu]M CO2 + HCO3-, 50 [mu]M monensin transiently inhibited active CO2 and Na+-independent HCO3- transport, intracellular CO2 and HCO3- accumulation, and photosynthesis in the presence but not in the absence of 25 mM Na+. These activities returned to near-normal levels within 15 min. Transient inhibition was attributed to monensin-mediated intracellular alkalinization, whereas recovery may have been facilitated by cellular mechanisms involved in pH homeostasis or by monensin-mediated H+ uptake with concomitant K+ efflux. In air-grown cells grown at 200 [mu]M CO2 + HCO3- and standing culture cells, Na+-dependent HCO3- transport, intracellular HCO3- accumulation, and photosynthesis were also inhibited by monensin, but there was little recovery in activity over time. However, normal photosynthetic activity could be restored to air-grown cells by the addition of carbonic anhydrase, which increased the rate of CO2 supply to the cells. This observation indicated that of all the processes required to support photosynthesis only Na+-dependent HCO3- transport was significantly inhibited by monensin. Monensin-mediated dissipation of the Na+ chemical gradient between the medium and the cells largely accounted for the decline in the HCO3- accumulation ratio from 751 to 55. The two HCO3- transport systems were further distinguished in that Na+-dependent HCO3- transport was inhibited by Li+, whereas Na+-independent HCO3- transport was not. It is suggested that Na+-dependent HCO3- transport involves an Na+/HCO3- symport mechanism that is energized by the Na+ electrochemical potential.  相似文献   

19.
Threonine content of brain decreases in young rats fed a threonine-limiting, low protein diet containing a supplement of small neutral amino acids (serine, glycine and alanine), which are competitors of threonine transport in other systems (Tews et al., 1977). Threonine transport by brain slices was inhibited more by a complex amino acid mixture resembling plasma from rats fed the small neutral amino acid supplement than by mixtures resembling plasma from control rats or from rats fed a supplement of large neutral amino acids. Greater inhibition was seen with mixtures containing only the small neutral amino acids than with mixtures containing only large neutral amino acids. On an equimolar basis, serine and alanine were the most inhibitory; large neutrals were moderately so; and glycine and lysine were without effect. Threonine transport was also strongly inhibited by α-amino-n-butyric acid and homoserine, less so by α-aminoisobutyric acid, and not at all by GABA. The complex amino acid mixtures strongly inhibited α-aminoisobutyric acid transport by brain or liver slices but, in contrast to effects in brain, the extent of the inhibition in liver was not much affected by altering the composition of the mixture. Tryptophan accumulation by brain slices was effectively inhibited by other large neutral amino acids in physiologically occurring concentrations. Threonine, or a mixture of serine, glycine and alanine only slightly inhibited tryptophan uptake; basic amino acids were without effect and histidine stimulated tryptophan transport slightly. These results support the conclusion that a diet-induced decrease in the concentration in brain of a specific amino acid may be related to increased inhibition of its transport into brain by increases in the concentrations of transport-related, plasma amino acids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号