首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gyrodactylus salaris was isolated from rainbow trout in a Danish freshwater trout farm, and a laboratory population of this particular parasite form was established on rainbow trout. Challenge infections were performed using different salmonid strains and species, including East Atlantic salmon Salmo salar (from the Danish River Skjern?), Baltic salmon S. salar (from the Swedish River Ume Alv) and rainbow trout Oncorhynchus mykiss (from the Danish rainbow trout farm Fousing). These were compared to infection studies on the Norwegian Laerdalselva parasite form kept under exactly the same conditions in the laboratory. The Danish G. salaris form had low virulence towards both Atlantic and Baltic salmon, whereas rainbow trout proved susceptible to the parasite. The Danish G. salaris form was able to maintain a very low infection on East Atlantic salmon, but not on the Baltic salmon, which eliminated the infection within 2 wk. Rainbow trout developed infection intensities ranging up to several hundred parasites per host. The host colonization patterns of the parasite differed clearly from those of previous studies on microhabitats of the Norwegian form of G. salaris. A comparative study on morphological characters (opisthaptoral hard parts) from the Danish parasite form and Norwegian G. salaris showed no significant differences. Selected genes comprising internal transcribed spacers 1 and 2 (ITS), ribosomal RNA intergenic spacer (IGS) and cytochrome c oxidase subunit I (COI) regions were cloned and sequenced. Five sequenced ITS clones from 5 individuals of the Danish strain consistently revealed a single base substitution compared to ITS sequences from all other known species and strains of Gyrodactylus. Mitochondrial COI gene sequences demonstrated that the Danish G. salaris form is closely similar to the Laerdalselva parasite form found in Norway. The IGS sequences were highly variable, but very similar to those obtained from German isolates of G. salaris.  相似文献   

2.
Gyrodactylus salaris is a freshwater, monogenean ectoparasite of Baltic strains of Atlantic salmon Salmo salar on which it generally causes no clinical disease. Infection of other strains of Atlantic salmon in Norway has resulted in high levels of juvenile salmon mortality and highly significant reductions in the population. The parasite is a major exotic disease threat to wild Atlantic salmon in the UK. This paper qualitatively assesses the risk of introduction and establishment of G. salaris into the UK. The current UK fish health regime prevents the importation of live salmonids from freshwater in territories that have not substantiated freedom from G. salaris. The importation of other species, e.g. eels Anguilla anguilla and non-salmonid fish, represents a low risk because the likelihood of infection is very low and the parasite can only survive on these hosts for less than 50 d. Importation of salmon carcasses presents a negligible risk because harvested fish originate from seawater sites and the parasite cannot survive full strength salinity. The importation of rainbow trout Oncorhynchus mykiss carcasses from G. salaris infected freshwater sites might introduce the parasite, but establishment is only likely if carcasses are processed on a salmonid farm in the UK. A number of mechanical transmission routes were considered (e.g. angling equipment, canoes, ballast water) and the most important was judged to be the movement of live fish transporters from farms on mainland Europe direct to UK fish farms. In the future, territories may have to substantiate freedom from G. salaris and economic drivers for live salmonid imports may strengthen. Under these circumstances, legal or illegal live salmonid imports would become the most significant risk of introduction.  相似文献   

3.
To test the hypothesis that host-switching can be an important step in the speciation of gyrodactylid monogenean flatworms, we inferred the phylogeny within a cluster of parasites morphologically close to Gyrodactylus salaris Malmberg 1957, collected from Atlantic, Baltic and White Sea salmon (Salmo salar), farmed rainbow trout (Oncorhynchus mykiss), and grayling (Thymallus thymallus) from Northern Europe. The internal transcribed spacer region of the nuclear ribosomal gene was sequenced for taxonomic identification. Parasites on grayling from the White Sea Basin differed from the others by one nucleotide (0.08%), the remainder were identical to the sequence published earlier from Norway (G. salaris on salmon), England (Gyrodactylus thymalli on grayling), and the Czech Republic (unidentified salaris/thymalli on trout). For increased resolution, 813 nucleotides of the mitochondrial COI gene of 88 parasites were sequenced and compared with 76 published sequences using phylogenetic analysis. For all tree building algorithms (NJ, MP), the parasites formed a star-like phylogeny of six definite sister clades, indicating nearly simultaneous radiation. Average K2P distances between clades were 1.8-2.6%, and internal mean distances 0.2-1.1%. The genetic distance to the nearest known relative, Gyrodactylus lavareti Malmberg, was 24%. A variable salmon-specific mitochondrial Clade I was observed both in the Baltic Basin and in pathogenic populations introduced to the Atlantic and White Sea coasts. An invariable Clade II was common in rainbow trout farms in Sweden, Denmark and Finland; the same haplotype was also infecting salmon in a landlocked population in Russian Karelia, and in Oslo fjord and Sognefjord in Norway. Four geographically vicariant sister clades were observed on graylings: Clade III in the Baltic Sea Basin; Clade IV in Karelian rivers draining to the White Sea; Clade V in Norwegian river draining to Swedish lake V?nern; and Clade VI in rivers draining to Oslo fjord. The pattern fitted perfectly with the postglacial history of grayling distribution. Widely sampled clades from salmon and Baltic grayling had basal haplotypes in populations, which were isolated early during the postglacial recolonisation. The divergence between the six clades was clear and linked with their hosts, but not wide enough to support a species status for them. Parasites from the Slovakian type population of G. thymalli were not available, so this result does not mean that G. salaris and G. thymalli are synonyms. It is suggested that the plesiomorphic host of the parasite cluster was grayling, and the switch to salmon occurred at least once when the continental ice isolated Baltic salmon in an eastern freshwater refugium, 130,000 years ago. At the same time, parasites on grayling were split geographically and isolated into several allopatric refugia. The divergence among the parasite clades allowed a tentative calibration of the evolutionary rate, leading to an estimate of the divergence of 13.7-20.3% per million years for COI coding mtDNA. The results supported the hypothesis that parallel to the allopatric mode, host switch and instant isolation by host specificity can be operated as a speciation mechanism.  相似文献   

4.
A comparative investigation of tissue carotenoid distribution between rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, was undertaken to identify the relative efficiency of utilization of astaxanthin and canthaxanthin. Higher apparent digestibility coefficients (ADCs) (96% in trout vs. 28-31% in salmon; P<0.05), and pigment retention efficiencies (11.5-12.5% in trout vs. 5.5% in salmon; P<0.05), for both astaxanthin and canthaxanthin, were observed for rainbow trout. Astaxanthin deposition was higher than canthaxanthin in rainbow trout, while the reverse was true for Atlantic salmon, suggesting species-specificity in carotenoid utilization. The white muscle (95% in trout vs. 93% in salmon) and kidneys (0.5% in trout vs. 0.2% in salmon) represented higher proportions of the total body carotenoid pool in rainbow trout than in Atlantic salmon (P<0.05), whereas the liver was a more important storage organ in Atlantic salmon (2-6% in salmon vs. 0.2% in trout; P<0.05). The liver and kidney appeared to be important sites of carotenoid catabolism based on the relative proportion of the peak chromatogram of the fed carotenoid in both species, with the pyloric caecae and hind gut being more important in Atlantic salmon than in the rainbow trout. Liver catabolism is suspected to be a critical determinant in carotenoid clearance, with higher catabolism expected in Atlantic salmon than in rainbow trout.  相似文献   

5.
In the present study the pathogenesis of experimental infectious salmon anaemia virus (ISAV) infection in rainbow trout Oncorhynchus mykiss (Walbaum, 1972) and Atlantic salmon Salmo salar was compared. The virus infection in the 2 species demonstrated different mortality patterns and pathology characteristics. Atlantic salmon showed a typical acute mortality pattern peaking at 8 to 16 d post-infection (dpi) depending on virus dose, whereas in rainbow trout, only the highest virus dose (10(7.13-7.8) TCID50/200 microl) showed a similar pattern. The middle (10(4.13) TCID50/200 microl) and lowest virus doses (10(2.13) TCID50/200 microl) in rainbow trout induced only sporadic protracted mortality, lasting up to 46 dpi. Infected rainbow trout that were live-sampled and those that died demonstrated increased erythrophagia, clusters of cellular degeneration in the haematopoietic portion of the kidney, and occasionally epicarditis, endocarditis and myocarditis. These lesions are very different from the typical necrosis in liver and kidney that occur in infected Atlantic salmon, and some of them may be indicative of an antiviral response by a resistant host to the ISAV infection. Virus was detected in the endothelium of the rainbow trout tissues using in situ hybridization, supporting our conclusions of the ISAV-induced lesions in this report.  相似文献   

6.
Brown trout ( Salmo trutta ) from anadromous River Lierelva, resident Lake Tunhovd, and resident Nordmarka stocks were exposed to Gyrodactylus salaris -infected salmon parr. The brown trout were fed pellets before the experiments, except for one group of the Nordmarka stock which was starved for 19 days before the experiments. The mean number of parasites declined directly and rapidly post infection for all groups of trout. There were no pronounced differences in resistance between the anadromous and the resident stocks. G. salaris infections tended to persist longer on starved than on fed trout of the Nordmarka stock. The maximum parasite persistence on trout was 50 days, and as parasite numbers increased on some fish parasite reproduction must have occurred on those trout. However, the limited susceptibility and marked innate resistance of trout to G. salaris establishment, development and reproduction, suggest parasite metapopulations will not survive on this species. Nevertheless, trout may still play a role in the dispersal of G. salaris within and between rivers.  相似文献   

7.
The pathogenic monogenean Gyrodactylus salaris infecting Atlantic salmon (Salmo salar) is found to attach and reproduce under laboratory conditions on several species in the subfamily Salmoninae other than the Atlantic salmon. The gyrodactylid species Gyrodactylus thymalli infecting grayling (Thymallus thymallus) in another subfamily, Thymallinae, is previously said to be very similar to G. salaris based on morphometry and genetical analysis which prompted the present laboratory experiments to test the susceptibility and resistance of grayling to G. salaris. All 0+ and 1+ grayling became infected with G. salaris during the experimental infection procedure. However, both innate resistant and susceptible grayling were found. In susceptible individually isolated fish, parasite reproduction lasted for more than 35 days. Parasite reproduction also occurred among grouped grayling as judged from the duration of infection of more than 50 days. However, grayling susceptibility as judged from G. salaris reproduction, was very limited. Hence, the results indicate significant biological differences between the function of Atlantic salmon and grayling as host for G. salaris. The grayling is interpreted as unable to sustain G. salaris in nature which implies that G. thymalli is not conspecific with G. salaris. However, G. salaris dispersal by grayling cannot be excluded.  相似文献   

8.
The congeners Gyrodactylus salaris and G. derjavini are specific ectoparasites of Atlantic salmon Salmo salar and brown trout S. trutta, respectively. To elucidate the involvement of lectin-carbohydrate interactions in this host specificity, carbohydrates on the tegument of the two species and the corresponding lectin activity of their hosts have been studied. Carbohydrate composition on the tegument differed significantly between the two gyrodactylids. Three of four commercially available peroxidase-labelled lectins with primary affinity towards D-mannoside, D-GalNAc and L-fucose bound more strongly to G. derjavini than to G. salaris. Lectins with an affinity towards D-mannoside and D-GalNAc bound significantly stronger to the cephalic lobes on G. derjavini compared to the tegument and sheaths of the hamuli. One brown trout strain and three different salmon strains were tested for lectin activity in skin and plasma. Two Baltic salmon strains and one strain from the Atlantic region were included. Brown trout differed significantly from the salmon strains when skin samples were tested for D-GalNAc activity. Lectins binding to other carbohydrates showed trends for similar host differences. The implications of carbohydrate-lectin interactions for host specificity in gyrodactylids are discussed.  相似文献   

9.
The susceptibility of a Baltic salmon stock Salmo salar (Indals?lv, central Sweden) to Norwegian Gyrodactylus salaris (Figga strain, central Norway) was experimentally tested and compared with previously obtained results on East Atlantic salmon (Lierelva, SE Norway). Contrary to expectation, the Baltic salmon, which had no prior exposure to this parasite strain, appeared almost as susceptible as the Norwegian salmon parr that naturally experience G. salaris-induced mortality. Individually isolated salmon of both stocks sustained G. salaris infections with little evidence of innate resistance. A few individuals of the Indals?lv stock controlled their infection from the beginning, but overall there was considerable heterogeneity in the course of infection in both stocks. On individual hosts, G. salaris growth rates declined steadily throughout the infection, a trend which was particularly marked amongst the Lierelva stock. On shoaling Lierelva fish, there was some evidence of reduced parasite population growth towards the end of the infection; this was not apparent in Indals?lv fishes. These results reflect a growing awareness that not all Baltic salmon may be resistant to Norwegian G. salaris, and that Norwegian and Baltic G. salaris strains may differ in virulence. Consequently, management decisions concerning this parasite-host system should be based upon the actual, and tested, susceptibility of stocks under consideration and not upon identification of stocks as either Atlantic or Baltic.  相似文献   

10.
The duration of the Mx mRNA response to an intramuscular injection of the viral haemorrhagic septicaemia virus (VHSV) glycoprotein (G) gene DNA vaccine as well as to the control plasmid was determined in rainbow trout at 14 degrees C over a period of 11 weeks. The Mx response was detectable on day 7, peaked on day 14 and returned to pretreatment levels on day 21 and thereafter. No increase in Mx expression was detectable to the control plasmid. In further experiments, the kinetics of the Mx response were compared in rainbow trout and Atlantic salmon parr kept at 10 degrees C and injected with the DNA vaccine or the synthetic double-stranded RNA, poly I:C. In both species there was a rapid response to poly I:C detectable from day 1, reaching maximum from days 3 to 9 and decreasing to background level by day 12. The peak level and return to background was reached slightly later in salmon. In both species the response to the VHS/DNA vaccine was slower to begin, not being detectable on days 1 and 3, but elevated levels were found on day 6. However, in the salmon parr, the peak level was on day 6 and the signal disappeared by day 12, while in the rainbow trout, the response peaked at day 12 and lasted until day 21. The kinetics of the Mx response to the VHS/DNA vaccine in rainbow trout correlate with the early non-specific protection against VHS in this species following vaccination. It is speculated that the more transient Mx response in Atlantic salmon parr to the DNA vaccine may be related to the innate resistance of salmon to VHS.  相似文献   

11.
Distribution of radioiron to various tissues after intraperitoneal injections was examined in Atlantic salmon and rainbow trout. Liver and spleen were found to be the major iron storage tissues. Injections of 1 or 5 mg iron as ferric ammonium citrate led to a fall in hemoglobin levels in both species after 2 d. Hemoglobin levels returned to normal levels in rainbow trout after 8 d, but Atlantic salmon had not recovered, and Hb levels fell below 3 g/100 mL. In both species, the fall in Hb was associated with a raise in iron levels in spleen and liver, suggesting damage to erythrocytes. Atlantic salmon liver ferritin showed a two- to threefold increase, while rainbow trout showed a sixfold increase, and a more rapid response. The toxic effect of iron in fish appears to be different from the effect in other vertebrates.  相似文献   

12.
Gyrodacrylus salaris was most probably introduced to the River Lakselva in 1975 through stocking of Atlantic salmon from an infected hatchery. The parasite population grew rapidly, and the parasite spread throughout the entire watercourse during the summer of 1976. This epidemic situation led to mortality among the young Atlantic salmon, and the density of salmon parr was heavily reduced from 1976 to 1977. The density of salmon parr has remained close to zero since then, while there are no apparent trends toward decrease or increase in the density of brown trout. In spite of the reduced density of young salmon, a new epidemic has developed each year among the few young 0+ and 1+ Atlantic salmon present in the river. Results from successive sampling during the summer of 1987, 1988 and 1989 indicate that most of the presmolt salmon are attacked during their first summer or autumn of life. The infection develops into an epidemic during the first autumn, winter or the next summer. The build-up of the parasite burden on the fish leads in turn to mortality. Norwegian Atlantic salmon probably have no resistance against G. salaris, since the parasite has recently been introduced to Norwegian rivers.  相似文献   

13.
Physiological, immunological and biochemical parameters of blood and mucus, as well as skin histology, were compared in 3 salmonid species (rainbow trout Oncorhynchus mykiss, Atlantic salmon Salmo salar and coho salmon O. kisutch) following experimental infection with sea lice Lepeophtheirus salmonis. The 3 salmonid species were cohabited in order to standardize initial infection conditions. Lice density was significantly reduced on coho salmon within 7 to 14 d, while lice persisted in higher numbers on rainbow trout and Atlantic salmon. Lice matured more slowly on coho salmon than on the other 2 species, and maturation was slightly slower on rainbow trout than on Atlantic salmon. Head kidney macrophages from infected Atlantic salmon had diminished respiratory burst and phagocytic capacity at 14 and 21 d post-infection (dpi), while infected rainbow trout macrophages had reduced respiratory burst and phagocytic capacities at 21 dpi, compared to controls. The slower development of lice, coupled with delayed suppression of immune parameters, suggests that rainbow trout are slightly more resistant to lice than Atlantic salmon. Infected rainbow trout and Atlantic salmon showed increases in mucus lysozyme activities at 1 dpi, which decreased over the rest of the study. Mucus lysozyme activities of infected rainbow trout, however, remained higher than controls over the entire period. Coho salmon lysozyme activities did not increase in infected fish until 21 dpi. Mucus alkaline phosphatase levels were also higher in infected Atlantic salmon compared to controls at 3 and 21 dpi. Low molecular weight (LMW) proteases increased in infected rainbow trout and Atlantic salmon between 14 and 21 dpi. Histological analysis of the outer epithelium revealed mucus cell hypertrophy in rainbow trout and Atlantic salmon following infection. Plasma cortisol, glucose, electrolyte and protein concentrations and hematocrit all remained within physiological limits for each species, with no differences occurring between infected and control fish. Our results demonstrate that significant differences in mucus biochemistry and numbers of L. salmonis occur between these species.  相似文献   

14.
The effects of aquaculture related stressors on circulating levels of GH, IGF-I and for the first time, IGF-II in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) were investigated. Specifically, circulating growth factor levels were measured in four different experiments. Two 24 h confinement stressor procedures, (one with Atlantic salmon, the other with rainbow trout); following a hypo-osmotic stressor (freshwater bath) in salt water acclimated, adult, Atlantic salmon; and during a 22 day starvation and re-feeding protocol with juvenile Atlantic salmon. Handling and confinement resulted in significant decreases in circulating levels of all three growth factors in Atlantic salmon, and IGF-I and IGF-II (but not GH) in rainbow trout. A 2-3 h freshwater bath to remove gill parasites on a commercial Atlantic salmon aquaculture operation caused a significant decrease in circulating GH and IGF-I concentrations, but no significant change in IGF-II concentration, 2 days post bathing. Starvation for a period of 15 days in Atlantic salmon resulted in a significant increase in circulating GH levels and a significant decrease in circulating IGF-I and IGF-II. Re-feeding of starved fish for 7 days resulted in a significant decrease in GH to the concentration measured in continually fed fish, however re-feeding did not change plasma levels of IGF-I and IGF-II relative to continually starved fish. The results presented here confirm previously observed handling and confinement stressor induced effects on GH and IGF-I and, for the first time, on IGF-II in salmonids. Furthermore this study confirms the nutritional regulation of GH, IGF-I and IGF-II in juvenile Atlantic salmon.  相似文献   

15.
16.
ABSTRACT: BACKGROUND: Quantitative trait locus (QTL) studies show that variation in salinity tolerance in Arctic charr and rainbow trout has a genetic basis, even though both these species have low to moderate salinity tolerance capacities. QTL were observed to localize to homologous linkage group segments within putative chromosomal regions possessing multiple candidate genes. We compared salinity tolerance QTL in rainbow trout and Arctic charr to those detected in a higher salinity tolerant species, Atlantic salmon. The highly derived karyotype of Atlantic salmon allows for the assessment of whether disparity in salinity tolerance in salmonids is associated with differences in genetic architecture. To facilitate these comparisons, we examined the genomic synteny patterns of key candidate genes in the other model teleost fishes that have experienced three whole-genome duplication (3R) events which preceded a fourth (4R) whole genome duplication event common to all salmonid species. RESULTS: Nine linkage groups contained chromosome-wide significant QTL (AS-2, -4p, -4q, -5, -9, -12p, -12q, -14q -17q, -22, and [MINUS SIGN]23), while a single genome-wide significant QTL was located on AS-4q. Salmonid genomes shared the greatest marker homology with the genome of three-spined stickleback. All linkage group arms in Atlantic salmon were syntenic with at least one stickleback chromosome, while 18 arms had multiple affinities. Arm fusions in Atlantic salmon were often between multiple regions bearing salinity tolerance QTL. Nine linkage groups in Arctic charr and six linkage group arms in rainbow trout currently have no synteny alignments with stickleback chromosomes, while eight rainbow trout linkage group arms were syntenic with multiple stickleback chromosomes. Rearrangements in the stickleback lineage involving fusions of ancestral arm segments could account for the 21 chromosome pairs observed in the stickleback karyotype. CONCLUSIONS: Salinity tolerance in salmonids from three genera is to some extent controlled by the same loci. Synteny between QTL in salmonids and candidate genes in stickleback suggests genetic variation at candidate gene loci could affect salinity tolerance in all three salmonids investigated. Candidate genes often occur in pairs on chromosomes, and synteny patterns indicate these pairs are generally conserved in 2R, 3R, and 4R genomes. Synteny maps also suggest that the Atlantic salmon genome contains three larger syntenic combinations of candidate genes that are not evident in any of the other 2R, 3R, or 4R genomes examined. These larger synteny tracts appear to have resulted from ancestral arm fusions that occurred in the Atlantic salmon ancestor. We hypothesize that the superior hypo-osmoregulatory efficiency that is characteristic of Atlantic salmon may be related to these clusters.  相似文献   

17.
The susceptibility of various races of salmonids towards infections with the skin parasitic monogenean Gyrodactylus salaris Malmberg, 1957, differs markedly. Norwegian and Scottish salmon strains are known as extremely susceptible to infection, whereas Baltic salmon races such as the Neva strain (Russian origin) and the Indals river (Swedish origin) salmon have been characterized as relatively resistant. However, the status of the many other Baltic strains has remained unknown. The present study reports on the susceptibility of the Baltic salmon from the Swedish river Lule. It was shown that this strain is susceptible to infection but to a lesser extent than the Scottish salmon. Further studies showed that injection of immuno-suppressants (dexamethasone) greatly increased population growth of G. salaris on Scottish salmon but not on the Baltic salmon. Mucous cell density on fins differed between strains, and a general trend to decreased cell density on infected fish 8 wk post-infection, compared to uninfected fish, was observed. The largest decrease in mucous cell density following infection was seen in the most resistant fish. After administration of immuno-suppressants, this decrease in mucous cell density was inhibited in the Scottish salmon but not in the Baltic salmon. Thus, there seems to be a relationship between the fishes' ability to discard mucous cells and the ability to resist infections with Gyrodactylus salaris. Although the Lule salmon seems more susceptible to infection compared to previous reports on the Neva salmon, the results support the notion that Baltic salmon strains are generally more resistant than East Atlantic salmon.  相似文献   

18.
Approximately 800 bp of the mitochondrial cytochrome oxidase I (COI) gene were sequenced from 76 Gyrodactylus specimens of 32 salmonid host populations, i.e. from Salmo salar, Thymallus thymallus, and Oncorhynchus mykiss in Norway, Sweden and Latvia. The COI sequences indicated a substantial intraspecific differentiation of Gyrodactylus salaris and Gyrodactylus thymalli. In total, 12 haplotypes were identified which group into five well supported clades, three clades with parasites from Atlantic salmon and two clades with parasites from grayling. The basal nodes linking the five clades together are only weakly supported. Thus, there is no support for the monophyly of all G. salaris haplotypes and the monophyly of all G. thymalli haplotypes. The lack of monophyly of the mitochondrial haplotypes of G. salaris and G. thymalli may indicate that G. salaris and G. thymalli represent (i). two polytypic species or (ii). one polytypic species, or (iii). refer to a complex of more than two sibling species. The mtDNA data indicate multiple introductions of G. salaris and G. thymalli into Norway. A minimum of three independent introductions of G. salaris and two independent introductions of G. thymalli are supported. This is congruent with earlier hypotheses on the introduction of G. salaris and G. thymalli into Norway.  相似文献   

19.
Salmon Salmo salar L. and brown trout S. trutta L. juveniles were examined for the presence of accidental monogenean ectoparasitic species of Gyrodactylus Nordmann, 1832 in the Baltic and White Sea basins of Russian Karelia in order to estimate the frequency of host-switching attempts on an ecological timescale. To collect phylogeographical information and for exact species identification, the parasites were characterised by nuclear internal transcribed spacer sequences of rDNA (ITS) and, for some species, also by their mitochondrial DNA (CO1 gene) sequences. Four accidental Gyrodactylus species were observed on salmon and brown trout. A few specimens of G. aphyae Malmberg, 1957, the normal host of which is the Eurasian minnow Phoxinus phoxinus (L.), were observed on lake salmon from the Rivers Kurzhma (Lake Kuito, White Sea basin) and Vidlitsa (Lake Ladoga, Baltic basin). G. lucii Kulakovskaya, 1952, a parasite of the northern pike Esox lucius L., was observed on salmon in the Kurzhma. In the River Vidlitsa, two specimens of G. papernai Ergens & Bychowsky, 1967, normally on stone loach Barbatula barbatula (L.), were found on salmon. On anadromous White Sea salmon in the River Pulonga in Chupa Bay, a few salmon parr carried small colonies of G. arcuatus Bychowsky, 1933, which were shown to have originated from the local three-spined stickleback Gasterosteus aculeatus L. consumed as prey. No specimens of Gyrodactylus salaris Malmberg, 1957 were observed, although the Pulonga is the nearest salmon spawning river to the River Keret', which is heavily infected with introduced G. salaris. In the River Satulinoja, Lake Ladoga, three specimens of G. lotae Gusev, 1953, from burbot Lota lota (L.), were collected from a single brown trout S. trutta. All nonspecific gyrodactylid infections on salmonids were judged to be temporary, because only a few specimens were observed on each of the small number of infected fishes. The prevalence of endemic G. salaris was also low, only 1% (Nfish = 296) in Lake Onega and 0.7% (Nfish = 255) in Lake Ladoga, while brown trout specific Gyrodactylus species were not observed on any of the 429 trout examined from the Ladoga basin. The host-specific and unspecific burden of Gyrodactylus spp. on these 'glacial relict' populations of salmon and brown trout was very low, suggesting a generalised resistance against the co-evolved freshwater parasite community, or some kind of 'vaccination' effect. These hypotheses deserve further testing.  相似文献   

20.
We describe an unusually high infection rate of Gyrodactylus salaris Malmberg in juvenile Atlantic salmon Salmo salar L. of Baltic Sea origin, which are generally believed to be more resistant to G. salaris than East Atlantic salmon populations. Based on analyses of mitochondrial (complete cytochrome oxidase 1 [CO1] gene, 1548 bp) and nuclear (ADNAM1, 435 bp; internal transcribed spacer [ITS] rDNA region, 1232 bp) DNA fragments, the closest relatives of the characterized Estonian G. salaris strain were parasites found off the Swedish west coast and in Raasakka hatchery, Iijoki (Baltic Sea, Finland). Analyses of 14 microsatellite loci of the host S. salarrevealed that approximately 40% of studied fish were triploids. We subsequently identified triploid Atlantic salmon of Baltic origin as more susceptible to G. salaris infection than their diploid counterparts, possibly due to compromised complement-dependent immune pathways in triploid salmon. This is in accordance with earlier studies that have shown elevated susceptibility of triploids to various viral or bacterial pathogens, and represents one of the first reports of increased susceptibility of triploid salmonid fish to an ectoparasite. However, further experimental work is needed to determine whether triploid Atlantic salmon is generally more susceptible to G. salaris compared to their diploid counterparts, irrespective of the particular triploidization method and population of origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号