首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stein C  Rissmann C  Hempel S  Renker C  Buscot F  Prati D  Auge H 《Oecologia》2009,159(1):191-205
Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15–24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Yamato M  Ikeda S  Iwase K 《Mycorrhiza》2008,18(5):241-249
Community of arbuscular mycorrhizal (AM) fungi in a coastal vegetation on Okinawa island in Japan was examined. A sampling plot was established in a colony of Ipomoea pes-caprae (Convolvulaceae) on the beach in Tamagusuku, Okinawa Pref, in which eight root samples of I. pes-caprae and three root samples each of Vigna marina (Leguminosae) and Paspalum distichum (Poaceae) were collected. Partial 18S rDNA of AM fungi was amplified from the root samples by polymerase chain reaction (PCR) with primers NS31 and AM1. Restriction fragment length polymorphism analysis with HinfI and RsaI for cloned PCR products revealed that two types of Glomus sp., type A and type B, were dominant in the colony. Among them, the fungi of type A were especially dominant near the edge of the colony facing the sea. A phylogenetic analysis showed that the AM fungi of type B are closely related to Glomus intraradices and those of type A are nearly related to type B. From the sequence data, it was also found that type A was further divided into two types, type A1 and A2. One representative strain each of the three types, type A1, A2, and B, propagated from single spore each, was examined for the growth of sorghum (Sorghum bicolor) at three different salinity levels, 0, 100, and 200 mM NaCl. At the non-salt-treated condition, the type B fungus was the most effective on shoot growth enhancement of the host plant, whereas at the salt-treated conditions, the type A2 fungus was the most effective. An efficient suppression of Na + translocation into the shoot by the examined AM fungi was found. These results suggested that the AM fungi dominant near the sea are adapted to salt-stressed environment to alleviate the salt stress of host plants.  相似文献   

3.
Chromium (Cr) is a heavy metal risk to human health, and a contaminant found in agricultural soils and industrial sites. Phytoremediation, which relies on phytoextraction of Cr with biological organisms, is an important alternative to costly physical and chemical methods of treating contaminated sites. The ability of the arbuscular mycorrhizal fungus (AM),Glomus intraradices, to enhance Cr uptake and plant tolerance was tested on the growth and gas exchange of sunflower (Helianthus annuus L.). Mycorrhizal-colonized (AM) and non-inoculated (Non-AM) sunflower plants were subjected to two Cr species [trivalent cation (Cr3+) Cr(III) , and divalent dichromate anion (Cr2O7) Cr(VI) ]. Both Cr species depressed plant growth, decreased net photosynthesis (A) and increased the vapor pressure difference; however, Cr(VI) was more toxic. Chromium accumulation was greatest in roots, intermediate in stems and leaves, and lowest in flowers. Greater Cr accumulation occurred with Cr(VI) than Cr(III). AM enhanced the ability of sunflower plants to tolerate and hyperaccumulate Cr. At higher Cr levels greater mycorrhizal dependency occurred, as indicated by proportionally greater growth, higherA and reduced visual symptoms of stress, compared to Non-AM plants. AM plants had greater Cr-accumulating ability than Non-AM plants at the highest concentrations of Cr(III) and Cr(VI), as indicated by the greater Cr phytoextraction coefficient. Mycorrhizal colonization (arbuscule, vesicle, and hyphae formation) was more adversely affected by Cr(VI) than Cr(III), however high levels of colonization still occurred at even the most toxic levels. Arbuscules, which play an important role in mineral ion exchange in root cortical cells, had the greatest sensitivity to Cr toxicity. Higher levels of both Cr species reduced leaf tissue phosphorus (P). While tissue P was higher in AM plants at the highest Cr(III) level, tissue P did not account for mycorrhizal benefits observed with Cr(VI) plants.  相似文献   

4.
The influence of two vesicular-arbuscular mycorrhizal fungi and phosphorus (P) nutrition on penetration, development, and reproduction by Meloidogyne incognita on Walter tomato was studied in the greenhouse. Inoculation with either Gigaspora margarita or Glomus mosseae 2 wk prior to nematode inoculation did not alter infection by M. incognita compared with nonmycorrhizal plants, regardless of soil P level (either 3 μg [low P] or 30 μg [high P] available P/g soil). At a given soil P level, nematode penetration and reproduction did not differ in mycorrhizal and nonmycorrhizal plants. However, plants grown in high P soil had greater root weights, increased nematode penetration and egg production per plant, and decreased colonization by mycorrhizal fungi, compared with plants grown in low P soil. The number of eggs per female nematode on mycorrhizal and nonmycorrhizal plants was not influenced by P treatment. Tomato plants with split root systems grown in double-compartment containers which had either low P soil in both sides or high P in one side and low P in the other, were inoculated at transplanting with G. margarita and 2 wk later one-half of the split root system of each plant was inoculated with M. incognita larvae. Although the mycoorhizal fungus increased the inorganic P content of the root to a level comparable to that in plants grown in high P soil, nematode penetration and reproduction were not altered. In a third series of experiments, the rate of nematode development was not influenced by either the presence of G. margarita or high soil P, compared with control plants grown in low P soil. These data indicate that supplemental P (30 μ/g soil) alters root-knot nematode infection of tomato more than G. mosseae and G. margarita.  相似文献   

5.
6.
Arbuscular mycorrhizal (AM) symbiosis can confer increased host resistance to drought stress, although the effect is unpredictable. Since AM symbiosis also frequently increases host resistance to salinity stress, and since drought and salinity stress are often linked in drying soils, we speculated that the AM influence on plant drought response may be partially the result of AM influence on salinity stress. We tested the hypothesis that AM-induced effects on drought responses would be more pronounced when plants of comparable size are exposed to drought in salinized soils. In two greenhouse experiments, several water relations characteristics were measured in sorghum plants colonized by Glomus intraradices (Gi), Gigaspora margarita (Gm) or a mixture of AM species, during a sustained drought following exposure to salinity treatments (NaCl stress, osmotic stress via concentrated macronutrients, or soil leaching). The presence of excess salt in soils widened the difference in drought responses between AM and nonAM plants in just two instances. Days required for plants to reach stomatal closure were similar for Gi and nonAM plants exposed to drought alone, but with exposure to combined NaCl and drought stress, stomates of Gi plants remained open 17-22% longer than in nonAM plants. Promotion of stomatal conductance by Gm occurred with exposure to NaCl/drought stress but not with drought alone or with soil leaching before drought. In other instances, however, the addition of salt tended to nullify an AM-induced change in drought response. Our findings confirm that AM fungi can alter host response to drought but do not lend much support to the idea that AM-induced salt resistance might help explain why AM plants can be more resilient to drought stress than their nonAM counterparts.  相似文献   

7.
In order to evaluate host plant performance relative to different soil arbuscular mycorrhizal fungal (AMF) communities, Andropogon gerardii seedlings were grown with nine different AMF communities. The communities consisted of 0, 10, or 20 spores of Glomus etunicatum and 0, 10, or 20 spores of Glomus intraradices in all possible combinations. Spores were produced by fungal cultures originating on A. gerardii in a serpentine plant community; seeds of A. gerardii were collected at the same site. The experiment was performed in the greenhouse using a mixture of sterilized serpentine soil and sand to which naturally occurring non-mycorrhizal microbes were added. There was no difference in root AMF colonization rates between single species communities of either G. etunicatum or G. intraradices, but G. intraradices enhanced plant growth and G. etunicatum did not. However, plants grew larger with some combinations of G.␣intraradices plus G. etunicatum than with the same quantity of G. intraradices alone. These results suggest the potential for niche complementarity in the mycorrhizal fungi. That G. etunicatum only increased plant growth in the presence of G. intraradices could be illustrative of why AMF that appear to be parasitic or benign when examined in isolation are maintained within multi-species mycorrhizal communities in nature.  相似文献   

8.
Summary This experiment investigated the effect of parental nutrient shortage on the allocation of five nutrients to seeds and rhizomes in Sorghum halepense, a perennial, noxious weed, and to seeds in Sorghum bicolor, an annual, cultivated species. Plants from both species were grown from seeds and supplied with fertilizer at three concentrations. The allocation of biomass and nutrients (N, P, K, Ca and Mg) to reproductive and vegetative parts was determined. Relative biomass allocation to reproduction (either sexual or vegetative) remained constant in S. halepense in spite of large differences in total plant weight. In S. bicolor, however, biomass allocation to sexual reproductive structures decreased significantly with decreasing nutrient supply. Individual seed weight was not modified by parental nutrient supply in S. halepense, but it increased with decreasing nutrient availability in S. bicolor. Important differences in mineral allocation to seeds were found between the two species. While S. bicolor seeds were largely buffered from the differences in parental nutrient status, concentration of nutrients in S. halepense seeds decreased significantly with decreasing supply for all the nutrients analyzed except Ca. However, mineral nutrient concentration in S. halepense rhizomes remained remarkably constant despite differences in the external supply, evincing the priority given to vegetative reproduction at the expense of sexual reproduction. Overall, the pattern of nutrient allocation in S. bicolor seeds under different nutrient supply resembled the pattern observed in S. halepense rhizomes, but it had little resemblance to the pattern of nutrient allocation in S. halepense seeds. The results are discussed in terms of differences and similarities in the reproductive strategy of these two species.  相似文献   

9.
Micropropagated rose plants (Rosa hybrida L., cv. New Dawn) were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus intraradices (Schenk and Smith) and subjected to different drought regimens. The dual objectives of these experiments were to investigate the mechanism and the extent to which AM can prevent drought damages and whether physiological analyses reveal enhanced drought tolerance of an economically important plant such as the rose. In a long-term drought experiment with four different water regimens, visual scoring of wilt symptoms affirmed that AM in a selected host–symbiont combination increased plant performance. This effect was mostly expressed if moderate drought stress was constantly applied over a long period. In a short-term experiment in which severe drought stress was implemented and plants were allowed to recover after 4 or 9 days, no visual differences between mycorrhizal and non-mycorrhizal roses were observed. Therefore, the early physiological steps conferring drought tolerance were prone to investigation. Proline content in leaves proved to be an unsuitable marker for AM-induced drought tolerance, whereas analysis of chlorophyll a fluorescence using the JIP test (collecting stress-induced changes of the polyphasic O-J-I-P fluorescence kinetics in a non-destructive tissue screening) was more explanatory. Parameters derived from this test could describe the extent of foliar stress response and help to differentiate physiological mechanisms of stress tolerance. AM led to a more intense electron flow and a higher productive photosynthetic activity at several sites of the photosynthetic electron transport chain. A K step, known as a stress indicator of general character, appeared in the fluorescence transient only in drought-stressed non-mycorrhizal plants; conversely, the data elucidate a stabilising effect of AM on the oxygen-evolving complex at the donor site of photosystem (PS) II and at the electron-transport chain between PS II and PS I. If drought stress intensity was reduced by a prolonged and milder drying phase, these significant tolerance features were less pronounced or missing, indicating a possible threshold level for mycorrhizal tolerance induction.  相似文献   

10.
On the basis of preliminary experiments, some Crotalaria species from Senegal were investigated to determine (1) their susceptibility to Meloidogyne javanica and M. incognita compared to a sensitive host (tomato), (2) their mycorrhizal and rhizobial responses, and (3) the effect of their cultivation on the mycorrhizal soil infectivity. The nematode invasion rates on Crotalaria spp. ranked from 0.17 to 7.17% and from 0.58 to 5.25%, respectively, for M. incognita and M. javanica, vs. 97% and 77% on tomato. Moreover, the inoculated J2 which invaded tomatoes developed into adult females, while those on Crotalaria spp. rarely developed beyond the third stage, confirming that all Crotalaria spp. evaluated are non hosts or poor hosts. In two other experiments, Crotalaria spp. were inoculated with an arbuscular mycorrhizal fungus (Glomus intraradices). Mycorrhization was generally well developed among Crotalaria species, and mycorrhizal colonization enhanced mainly phosphorus content of shoot tissues and always significant plant growth. Inoculation with both rhizobial isolates and Glomus intraradices enhanced growth and nodule formation on some Crotalaria species. The data recorded in both experiments showed, for the first time, that Crotalaria spp. are highly mycorrhiza dependent, some of them reaching more than 90% mycorrhizal dependency. Among Crotalaria species, twelve were used in two different experiments. A significant correlation was obtained between their mycorrhizal dependencies calculated on the shoot dry mass recorded in each experiment. Crotalaria spp. could be used as pre-crops for providing green manure while at the same time decreasing the level of detrimental nematodes and increasing the level of beneficial mycorrhizal fungi.  相似文献   

11.
为了解2种丛枝菌根真菌(AMF)摩西管柄囊霉(Funneliformis mosseae, FM)和地表球囊霉(Glomus versiforme, GV)对入侵植物南美蟛蜞菊(Wedelia trilobata)的生长和对难溶性磷酸盐利用的影响,采用沙培盆栽方式,研究了南美蟛蜞菊在接种AMF与添加难溶性磷酸盐的生长和磷含量的变化。结果表明,在磷限制环境下FM对南美蟛蜞菊的侵染率达55%~69%,GV的侵染率达到63%~80%。添加难溶性磷酸盐后,2种AMF均促进了南美蟛蜞菊茎的伸长(FM:+46%; GV:+65%)、总生物量的增加(FM:+27.2%; GV:+40%)和磷含量的增加(FM:+36.6%; GV:+40.7%)。对比FM,GV对植物利用难溶性磷有更显著的促进作用。因此,南美蟛蜞菊与2种AMF形成的共生体系可以促进植物生长和对营养资源的利用,提高对难溶性磷的吸收效率可能使得南美蟛蜞菊在营养贫乏的环境中更好地建立种群。  相似文献   

12.
Whole-canopy measurements of water flux were used to calculate stomatal conductance (g s ) and transpiration (E) for seedlings of western water birch (Betula occidentalis Hook.) under various soil-plant hydraulic conductances (k), evaporative driving forces (ΔN; difference in leaf-to-air molar fraction of water vapor), and soil water potentials (Ψs). As expected, g s dropped in response to decreased k or ΨS, or increased ΔN(> 0.025). Field data showed a decrease in mid-day g s with decreasing k from soil-to-petiole, with sapling and adult plants having lower values of both parameters than juveniles. Stomatal closure prevented E and Ψ from inducing xylem cavitation except during extreme soil drought when cavitation occurred in the main stem and probably roots as well. Although all decreases in g s were associated with approximately constant bulk leaf water potential (ψl), this does not logically exclude a feedback response between ΨL and g s . To test the influence of leaf versus root water status on g s , we manipulated water status of the leaf independently of the root by using a pressure chamber enclosing the seedling root system; pressurizing the chamber alters cell turgor and volume only in the shoot cells outside the chamber. Stomatal closure in response to increased ΔN, decreased k, and decreased ΨS was fully or partially reversed within 5 min of pressurizing the soil. Bulk ΨL remained constant before and after soil pressurizing because of the increase in E associated with stomatal opening. When ΔN was low (i.e., < 0.025), pressurizing the soil either had no effect on g s , or caused it to decline; and bulk ΨL increased. Increased Ψl may have caused stomatal closure via increased backpressure on the stomatal apparatus from elevated epidermal turgor. The stomatal response to soil pressurizing indicated a central role of leaf cells in sensing water stress caused by high ΔN, low k, and low ΨS. Invoking a prominent role for feedforward signalling in short-term stomatal control may be premature.  相似文献   

13.
31P nuclear magnetic resonance (NMR) spectroscopy was used to study phosphate (P) metabolism in mycorrhizal and nonmycorrhizal roots of cucumber (Cucumis sativus L) and in external mycelium of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith. The in vivo NMR method allows biological systems to be studied non-invasively and non-destructively. 31P NMR experiments provide information about cytoplasmic and vacuolar pH, based on the pH-dependent chemical shifts of the signals arising from the inorganic P (Pi) located in the two compartments. Similarly, the resonances arising from α, β and γ phosphates of nucleoside triphosphates (NTP) and nucleoside diphosphates (NDP) supply knowledge about the metabolic activity and the energetic status of the tissue. In addition, the kinetic behaviour of P uptake and storage can be determined with this method. The 31P NMR spectra of excised AM fungi and mycorrhizal roots contained signals from polyphosphate (PolyP), which were absent in the spectra of nonmycorrhizal roots. This demonstrated that the Pi taken up by the fungus was transformed into PolyP with a short chain length. The spectra of excised AM fungi revealed only a small signal from the cytoplasmic Pi, suggesting a low cytoplasmic volume in this AM fungus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by Pi fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with Pi or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of Pi concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher Pi levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
A sub-cellular proteomic approach was carried out to monitor membrane-associated protein modifications in response to the arbuscular mycorrhizal (AM) symbiosis. Membrane proteins were extracted from Medicago truncatula roots either inoculated or not with the AM fungus Glomus intraradices. Comparative two-dimensional electrophoresis revealed that 36 spots were differentially displayed in response to the fungal colonization including 15 proteins induced, 3 up-regulated and 18 down-regulated. Among them, seven proteins were found to be commonly down-regulated in AM-colonized and phosphate-fertilized roots. Twenty-five spots out of the 36 of interest could be identified by matrix assisted laser desorption/ionisation-time of flight and/or tandem mass spectrometry analyses. Excepting an acid phosphatase and a lectin, none of them was previously reported as being regulated during AM symbiosis. In addition, this proteomic approach allowed us for the first time to identify AM fungal proteins in planta.  相似文献   

16.
A wide range of methods are commonly used for preserving environmental samples prior to molecular analyses. However, the effect of these preservation methods on fungal DNA is not understood. The objective of this study was to test the effect of eight different preservation methods on the quality and yield of DNA extracted from Bromus inermis and Daucus carota roots colonized by the arbuscular mycorrhizal (AM) fungus, Glomus intraradices. The total DNA concentration in sample extracts was quantified using spectrophotometry. Samples that were frozen (− 80 ºC and − 20 ºC), stored in 95% ethanol, or silica gel dried yielded total (plant and fungal) DNA concentrations that were not significantly different from fresh samples. In contrast, samples stored in CTAB solution or freeze-dried resulted in significantly reduced DNA concentrations compared with fresh samples. The preservation methods had no effect on the purity of the sample extracts for both plant species. However, the DNA of the dried samples (silica gel dried, freeze-dried, heat dried) appeared to be slightly more degraded compared with samples that remained hydrated (frozen, stored in ethanol or CTAB solutions) during storage when visualized on a gel. The concentration of AM fungal DNA in sample extracts was quantified using TaqMan real time PCR. Methods that preserved samples in hydrated form had similar AM fungal DNA concentrations as fresh samples, except D. carota samples stored in ethanol. In contrast, preservation methods that involved drying the samples had very low concentrations of AM fungal DNA for B. inermis, and nearly undetectable for D. carota samples. The drying process appears to be a major factor in the degradation of AM fungal DNA while having less of an impact on plant DNA. Based on these results, samples that need to be preserved prior to molecular analysis of AM fungi should be kept frozen to minimize the degradation of plant and AM fungal DNA.  相似文献   

17.
A low-cost, low-maintenance system for soilless production of vesicular-arbuscular mycorrhizal (VAM) fungus spores and inoculum was developed and adapted for production of acidophilic and basophilic isolates. Corn (Zea mays) plants were grown with Glomus etunicatum, G. mosseae or Gigaspora margarita in sand automatically irrigated with modified Hoagland's solution. Sand particle size, irrigation frequency, P concentration, and buffer constituents were adjusted to maximize spore production. Modified half-strength Hoagland's solution buffered with 4-morpholine ethane-sulfonic acid (MES) automatically applied 5 times/day resulted in production of 235 G. etunicatum spores/g dry wt. of medium (341000 spores/pot) and 44 G. margarita spores/g dry wt. of medium (64800 spores/pot). For six basophilic isolates of G. mosseae, CaCO3 was incorporated into the sand and pots were supplied with the same nutrient solution as for acidophilic isolates. The increased pH from 6.1±0.2 to 7.2±0.2 resulted in spore production ranging from 70 to 145 spores/g dry wt. (102000–210000 spores/pot). Spore production by all isolates grown in the soilless sand system at Beltsville has exceeded that of traditional soil mixtures by 32–362% in 8–12 weeks.  相似文献   

18.
Previous studies have described that arbuscular mycorrhizal fungi (AMF) can reduce the deleterious effect of Verticillium dahliae Kleb. on pepper growth and yield. In mycorrhizal plants, the bioprotection against soil-borne pathogens can result from the preactivation of defence responses that include some structural modifications and the accumulation of Pathogenesis-Related (PR) proteins. Our first objective was to study if V. dahliae induced defence mechanisms in roots before infected pepper developed visible symptoms of disease. The second aim was to determine if AMF induced defence-related enzymatic activities in pepper roots before or after pathogen’s attack. Results showed that the colonization of pepper roots by Glomus deserticola (Trappe, Bloss and Menge) induced the appearance of new isoforms of acidic chitinases, superoxide dismutase (SOD) and, at early stages, peroxidases. In contrast, V. dahliae neither stimulated the phenylpropanoid pathway nor elicited hydrolytic activities in infected pepper roots. Only in mycorrhizal plants, the inoculation with V. dahliae slightly increased both phenylalanine ammonia-lyase (PAL) and peroxidase activities two weeks later. Mycorrhizal-specific induction of new isoforms of acidic chitinases and SOD together with enhanced peroxidase and PAL activities 2 weeks after pathogen inoculation could be involved in the biocontrol of Verticillium-induced wilt in pepper by AMF.  相似文献   

19.
This study examined the effect of mycorrhizal colonization with Glomus intraradices on physiological parameters and foliar nutrient concentrations in Olea europaea L. subsp. sylvestris and Rhamnus lycioides L. seedlings subjected to well-watered or drought-stressed conditions. Under drought stress, mycorrhizal O. europaea seedlings showed significantly higher photosynthetic and transpiration rates, stomatal conductance and foliar P concentration than its similarly-sized non-mycorrhizal counterpart. The intrinsic water use efficiency (photosynthetic rate to stomatal conductance ratio) was not change in O. europaea and decreased in R. lycioides seedlings due to mycorrhizal colonization under both well-watered and drought-stress conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A mycorrhizal fungus changes microtubule orientation in tobacco root cells   总被引:1,自引:0,他引:1  
A. Genre  P. Bonfante 《Protoplasma》1997,199(1-2):30-38
Summary Cortical cells of mycorrhizal roots undergo drastic morphological changes, such as vacuole fragmentation, nucleus migration, and deposition of cell wall components at the plant-fungus interface. We hypothesized that the cytoskeleton is involved in these mechanisms leading to cell reorganization. We subjected longitudinal, meristem to basal zone, sections of uninfectedNicotiana tabacum roots to immunofluorescence methods to identify the microtubular (MT) structures associated with root cells. Similar sections were obtained from tobacco roots grown in the presence ofGigaspora margarita, an arbuscular mycorrhizal fungus which penetrates the root via the epidermal cells, but mostly develops in the inner cortical cells. While the usual MT structures were found in uninfected roots (e.g., MTs involved in mitosis in the meristem and cortical hoops in differentiated parenchyma cells), an increase in complexity of MT structures was observed in infected tissues. At least three new systems were identified: (i) MTs running along large intracellular hyphae, (ii) MTs linking hyphae, (iii) MTs binding the hyphae to the host nucleus. The experiments show that mycorrhizal infection causes reorganization of root MTs, suggesting their involvement in the drastic morphological changes shown by the cortical cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号