首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown (Berrou et al., J. Cell. Phys., 137:430-438, 1988) that porcine endothelial cell-conditioned medium (ECCM) stimulates proteoglycan synthesis by smooth muscle cells from pig aorta. ECCM stimulation requires protein cores for glycosaminoglycan chain initiation and is accompanied by an increase in the hydrodynamic size of proteoglycans secreted into the medium. This work investigates the mechanisms involved in the ECCM effect. 1) Control and ECCM stimulated proteoglycan synthesis (measured by a 20 min [35S]-sulfate labeling assay) was not inhibited by cycloheximide, indicating that the proteoglycans were composed of preexisting protein cores and that ECCM stimulates glycosylation of these protein cores. 2) Whereas ECCM stimulation of [35S]-methionine incorporation into secreted proteins only occurred after a 6 h incubation, the increase in [35S] methionine-labeled proteoglycans was observed after 1 h, and the increase was stable for at least 16 h. 3) As analysed by electrophoresis in SDS, chondroitinase digestion generated from [14C] serine-labeled proteoglycans 7 protein cores of high apparent molecular mass (550-200 kDa) and one of 47 kDa. The two protein cores of highest apparent molecular masses (550 and 460 kDa), but not the 47 kDa protein cores, showed increased [14C]-serine incorporation in response to ECCM (51%, as measured by Sepharose CL-6B chromatography). 4) Finally, incorporation of [35S]-sulfate into chondroitinase-generated glycosaminoglycan linkage stubs on protein cores was determined by Sepharose CL-6B chromatography: ECCM did not modify the ratio [35S]/[14C] in stimulated protein cores, indicating that ECCM did not affect the number of glycosaminoglycan chains. The results of these studies reveal that 1) endothelial cells secrete factor(s) that preferentially stimulate synthesis of the largest smooth muscle cell proteoglycans without structural modifications and 2) the stimulation proceeds via increased glycosylation of protein core through enhancement of xylosylated protein core, followed by enhanced protein synthesis.  相似文献   

2.
In the mechanically active environment of the artery, cells sense mechanical stimuli and regulate extracellular matrix structure. In this study, we explored the changes in synthesis of proteoglycans by vascular smooth muscle cells in response to precisely controlled mechanical strains. Strain increased mRNA for versican (3.2-fold), biglycan (2.0-fold), and perlecan (2.0-fold), whereas decorin mRNA levels decreased to a third of control levels. Strain also increased versican, biglycan, and perlecan core proteins, with a concomitant decrease in decorin core protein. Deformation did not alter the hydrodynamic size of proteoglycans as evidenced by molecular sieve chromatography but increased sulfate incorporation in both chondroitin/dermatan sulfate proteoglycans and heparan sulfate proteoglycans (p < 0.05 for both). Using DNA microarrays, we also identified the gene for the hyaluronan-linking protein TSG6 as mechanically induced in smooth muscle cells. Northern analysis confirmed a 4.0-fold increase in steady state mRNA for TSG6 following deformation. Size exclusion chromatography under associative conditions showed that versican-hyaluronan aggregation was enhanced following deformation. These data demonstrate that mechanical deformation increases specific vascular smooth muscle cell proteoglycan synthesis and aggregation, indicating a highly coordinated extracellular matrix response to biomechanical stimulation.  相似文献   

3.
Effects of endothelin on DNA synthesis were investigated in two clones of vascular smooth muscle cells, 1YB4 and A7r5. The peptide stimulated DNA synthesis in both clones with apparent EC50 of less than 1 ng/ml. More than 17 h was required before initiating endothelin-stimulated DNA synthesis. The platelet-derived growth factor at a concentration which had no effects by itself on DNA synthesis enhanced the effect of low concentrations of endothelin. A calcium antagonist, nifedipine, inhibited endothelin-induced DNA synthesis. These data suggest that endothelin stimulates DNA synthesis in vascular smooth muscle cells through nifedipine-sensitive mechanisms that can be modulated by platelet-derived growth factor.  相似文献   

4.
Stimulation of cultured rabbit aortic vascular smooth muscle cells (VSMC) with serotonin (5HT) induced a rapid generation of inositol phosphates from receptor-mediated hydrolysis of inositol phospholipids. Pretreatment of these cells with 500ng/ml of pertussis toxin for 24h prior to addition of 5HT reduced 5HT-induced formation of inositol phosphates. Phorbol esters, such as 12-O-tetradecanoylphorbol-13-acetate (TPA) or phorbol-12,13-dibutyrate (PDBu), are known to activate protein kinase C (PKC), but their role on cultured VSMC stimulated by 5HT has not been defined. TPA exhibited a rapid inhibition of 5HT-stimulated phosphoinositide breakdown, although 4 alpha-phorbol-12,13-didecanoate (4 alpha PDD), an inactive phorbol ester, did not inhibit it. These data suggest that a guanine nucleotide inhibitory (Gi) protein couples 5HT receptor to phospholipase C and TPA modulates 5HT-stimulated hydrolysis of inositol phospholipids in cultured VSMC through activation of PKC.  相似文献   

5.
Retention of LDL in the artery intima is mediated by extracellular matrix proteoglycans and plays an important role in the initiation of atherosclerosis. Compared with quiescent cells, proliferating smooth muscle cells secrete proteoglycans with elongated glycosaminoglycan side chains, which have an increased binding affinity to LDL. Because 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors (statins) decrease smooth muscle cell proliferation, we hypothesized that statin exposure would decrease both the size and LDL binding affinity of vascular proteoglycans. Monkey aortic smooth muscle cells grown in culture were exposed to simvastatin (10 and 100 microM) and cerivastatin (0.1 and 1 microM), and newly secreted proteoglycans were quantified and characterized. Both simvastatin and cerivastatin caused a concentration-dependent reduction in cell growth and reduced 35SO4 incorporation into secreted proteoglycans, on both an absolute and a per cell basis. Interestingly, statin exposure increased the apparent molecular weight and hydrodynamic size of secreted proteoglycans. However, proteoglycans secreted from statin-exposed cells demonstrated a reduction in binding affinity to LDL. Thus, statins may induce atheroprotective changes in vascular proteoglycans and lower LDL retention in the vessel wall. These findings suggest a mechanism whereby statins may benefit atherosclerosis in a manner unrelated to serum LDL lowering.  相似文献   

6.
We have previously shown that treatment of rats with the nitric oxide (NO) synthase inhibitor N6-nitro-L-arginine methyl ester for 4 weeks resulted in the augmentation of blood pressure and enhanced levels of Gialpha proteins. The present studies were undertaken to investigate if NO can modulate the expression of Gi proteins and associated adenylyl cyclase signaling. A10 vascular smooth muscle cells (VSMC) and primary cultured cells from aorta of Sprague-Dawley rats were used for these studies. The cells were treated with S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP) for 24 h and the expression of Gialpha proteins was determined by immunobloting techniques. Adenylyl cyclase activity was determined by measuring [32P]cAMP formation for [alpha-32P]ATP. Treatment of cells with SNAP (100 microM) or SNP (0.5 mM) decreased the expression of Gialpha-2 and Gialpha-3 by about 25-40% without affecting the levels of Gsalpha proteins. The decreased expression of Gialpha proteins was reflected in decreased Gi functions (receptor-independent and -dependent) as demonstrated by decreased or attenuated forskolin-stimulated adenylyl cyclase activity by GTPgammaS and inhibition of adenylyl cyclase activity by angiotensin II and C-ANP4-23, a ring-deleted analog of atrial natriuretic peptide (ANP) that specifically interacts with natriuretic peptide receptor-C (NPR-C) in SNAP-treated cells. The SNAP-induced decreased expression of Gialpha-2 and Gialpha-3 proteins was not blocked by 1H[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylyl cyclase, or KT5823, an inhibitor of protein kinase G, but was restored toward control levels by uric acid, a scavenger of peroxynitrite and Mn(111)tetralis (benzoic acid porphyrin) MnTBAP, a peroxynitrite scavenger and a superoxide dismutase mimetic agent that inhibits the production of peroxynitrite, suggesting that NO-mediated decreased expression of Gialpha protein was cGMP-independent and may be attributed to increased levels of peroxynitrite. In addition, Gsalpha-mediated stimulation of adenylyl cyclase by GTPgammaS, isoproterenol, and forskolin was significantly augmented in SNAP-treated cells. These results indicate that NO decreased the expression of Gialpha protein and associated functions in VSMC by cGMP-independent mechanisms. From these studies, it can be suggested that NO-induced decreased levels of Gi proteins and resultant increased levels of cAMP may be an additional mechanism through which NO regulates blood pressure.  相似文献   

7.
Glucosamine via GlcNAc is a precursor for the synthesis of glycosaminoglycan (GAG) chains on proteoglycans. We previously found that proteoglycans synthesized and secreted by vascular smooth muscle cells (VSMC) in the presence of supplementary glucosamine had GAG of decreased not increased size. We investigated the possibility that the inhibition of GAG chains synthesis on proteoglycans might be related to cellular ATP depletion. Confluent primate VSMCs were exposed to glucosamine, azide, or 2-deoxyglucose (2-DG). Each of these agents depleted cell ATP content by 25-30%. All agents decreased (35)S-SO(4) incorporation and reduced the size of the proteoglycans, decorin and biglycan as assessed by SDS-PAGE. On withdrawal of the glucosamine, azide or 2-DG ATP levels and proteoglycan synthesis returned towards baseline values. Glucosamine decreased glucose uptake and consumption suggesting that ATP depletion was due preferential phosphorylation of glucosamine over glucose. Thus, glucosamine inhibition of proteoglycan synthesis is due, at least in part, to depletion of cellular ATP content.  相似文献   

8.
Heparin suppresses the proliferation of vascular smooth muscle cells both in vivo and in vitro. The mechanism of action of the antiproliferative activity of heparin is not known. We have detected differences in the synthesis of specific proteins when vascular smooth muscle cells are exposed to heparin and report here that many characteristics of these protein alterations parallel the properties of the antiproliferative activity. The induction into the culture medium of a pair of proteins of approximately 35,000 dalton mw in heparin-treated smooth muscle cell cultures and the antiproliferative effect of heparin share the following characteristics: 1) the effect is reversible, 2) the effect is specific for smooth muscle cells, 3) anticoagulant and non-anticoagulant heparin are equally effective, 4) the effect is lost with time in culture and, 5) heparin is the most potent glycosaminoglycan in producing the effect. Furthermore, heparin causes a transient suppression of a 48,000 dalton substrate-attached protein, whereas chondroitin sulfate A and C and dermatan sulfate had much less effect. Dextran sulfate was almost as effective as heparin in suppressing the synthesis of the substrate-attached protein. These proteins appear to be noncollagenous and the induced synthesis of the 35,000 dalton proteins is inhibited by actinomycin D. Although a direct relationship between these specific protein changes and the antiproliferative effect of heparin has not been proven, these protein alterations may play a crucial role in the effect of heparin on smooth muscle cell growth.  相似文献   

9.
PDGF-BB (Platelet-derived growth factor BB) and TGF-beta1(transforming growth factor beta1) are important growth factors in the modulation of vascular smooth muscle cell (VSMC) proliferation and PCNA (proliferating cell nuclear antigen) expression in VSMCs. PCNA expresses at a high level in proliferating cells. The present study aims to assess the effects of PDGF-BB-induced overexpression of TGF-beta1 on PCNA in VSMCs. The downstream proteins of the TGF-beta signalling system in VSMCs, including TGF-beta type I receptor (ALK-5 in VSMCs), Smurf2, Smad2, pSmad2/3, Smad4, and Smad7, were also investigated. Our results revealed that PDGF-BB significantly increased the expressions of TGF-beta1 and PCNA, and the increase in PCNA can be partially inhibited by neutralizing anti-TGF-beta1 antibody. Furthermore, PDGF-BB increased the expression of ALK-5, Smurf2, pSmad2/3, and Smad4, but lowered the levels of Smad2 and Smad7; these alterations were partially restored by neutralizing anti-TGF-beta1 antibody. These findings suggest that PDGF-BB promotes PCNA expression in VSMCs partially through TGF-beta1 overexpression, and that the TGF-beta signalling system involves the molecular mechanism of PDGF-BB in VSMCs.  相似文献   

10.
We have recently shown that the nitric oxide (NO) donor, SNAP, decreased the expression of Giα proteins and associated functions in vascular smooth muscle cells. Because NO stimulates soluble guanylyl cyclase and increases the levels of guanosine 3′,5′-cyclic monophosphate (cGMP), the present studies were undertaken to investigate whether cGMP can also modulate the expression of Gi proteins and associated adenylyl cyclase signaling. A10 vascular smooth muscle cells (VSMCs) and primary cultured cells from aorta of Sprague Dawley rats were used for these studies. The cells were treated with 8-bromoguanosine 3′,5′-cyclic monophosphate (8Br-cGMP) for 24 h and the expression of Giα proteins was determined by immunobloting techniques. Adenylyl cyclase activity was determined by measuring [32P]cAMP formation for [α-32P]ATP. Treatment of cells with 8-Br-cGMP (0.5 mM) decreased the expression of Giα-2 and Giα-3 by about 30–45%, which was restored towards control levels by KT5823, an inhibitor of protein kinase G. On the other and hand, the levels of Gsα protein were not altered by this treatment. The decreased expression of Giα proteins by 8Br-cGMP treatment was reflected in decreased Gi functions. For example, the inhibition of forskolin (FSK)-stimulated adenylyl cyclase activity by low concentrations of GTPγS (receptor-independent Gi functions) was significantly decreased by 8Br-cGMP treatment. In addition, exposure of the cells to 8Br-cGMP also resulted in the attenuation of angiotensin (Ang) II- and C-ANP4–23 (a ring-deleted analog of atrial natriuretic peptide [ANP]-mediated inhibition of adenylyl cyclase activity (receptor-dependent functions of Gi). On the other hand, Gsα-mediated stimulations of adenylyl cyclase by GTPγS, isoproterenol and FSK were significantly augmented in 8Br-cGMP-treated cells. These results indicated the 8Br-cGMP decreased the expression of Giα proteins and associated functions in VSMCs. From these studies, it can be suggested that 8Br-cGMP-induced decreased levels of Gi proteins and resultant increased levels of cAMP may be an additional mechanism through which cGMP regulates vascular tone and thereby blood pressure.  相似文献   

11.

Background  

Vascular smooth muscle cell (VSMC) hyperplasia plays an important role in both chronic and acute vascular pathologies including atherosclerosis and restenosis. Considerable work has focused on the mechanisms regulating VSMC proliferation and motility. Earlier work in our lab revealed a novel growth arrest-specific (gas) gene induced in VSMC exposed to the antiproliferative agent heparin. This gene is a member of the CCN family and has been given the name CCN5. The objective of the present study is to elucidate the function of CCN5 protein and to explore its mechanism of action in VSMC.  相似文献   

12.
Summary Cultured pig aortic smooth muscle cells maintain a viable, quiescent state in a chemically defined medium that contains 10−6 M insulin, 5μg/ml transferrin, and 0.2 mM ascorbate. DNA synthesis and DNA content were determined by measuring tritiated thymidine incorporation and DNA-binding to the fluorescent probe 4′,6-diamidino-2-phenylindole, respectively. The majority of the population of cells in defined medium cultures were diploid. Tritiated thymidine uptake in cells in defined medium was one-tenth that observed in cells in fetal bovine serum-containing medium. The study of cellular cyclic AMP level in response to extracellular adenosine stimulation in dividing cells and quiescent cells showed that cells in defined medium had a lower extent of response to adenosine compared to cells cultured in serum-containing medium. Both the cell growth index and the response to adenosine of cells cultured in defined medium were reversible after replacing the medium with 10% fetal bovine serum-containing medium, which suggests that the cells in defined medium were healthy and were capable of modulating cellular metabolism depending on culture conditions. This work was supported in part by National Institutes of Health grants HL31854, HL38130, and RR07048.  相似文献   

13.
The Notch signaling pathway plays vital roles in vascular development and homeostasis. However, the functional role of HRT1, a primary downstream effector of Notch signaling in VSMC, is poorly characterized. In the present study, we postulated that HRT1 plays fundamental roles in modulating VSMC fate. To test the hypothesis that HRT1 is coupled to growth regulation, we generated VSMC lines constitutively overexpressing HRT1 (HRT1SMC) and demonstrated an exaggerated growth behavior compared to its control cell line. The lack of cell cycle arrest at confluence in HRT1SMC was associated with an attenuated up-regulation of the cell cycle inhibitor, p21(WAF1/CIP1). We further established that both transient and constitutive HRT1 signaling promoted VSMC survival in response to serum deprivation and pro-apoptotic Fas ligand. Resistance to apoptosis was associated with the induction of Akt expression/activity, a well-described anti-apoptotic mediator. Overall, these findings provide initial evidence that HRT1 functions as a critical determinant of VSMC proliferation and survival.  相似文献   

14.
We isolated the cDNA of a gene, designated smooth muscle-associated protein 8 (smap8), during a search for new genes expressed in human aortic smooth muscle cells. The full-length smap8 cDNA is 3241 bp long and contains an open reading frame of 1113 bp encoding an approximately 45 kDa soluble protein identical to NDRG4 protein. Smap8 mRNA was expressed predominantly in the brain and heart, and moderately in vascular smooth muscle cells. Expression of smap8 mRNA was induced within 3-12 h by treatment with 10 mm homocysteine in rat aortic smooth muscle cells (A10 cells). Expression of exogenous smap8 markedly reduced both the proliferation and migration rates of rat A10 cells, however, PDGF-induced proliferation was significantly enhanced in smap8-expressed cells compared with mock-transfected cells. To ascertain the involvement of smap8 in mitogenesis, we tested the effects of stimulation of smap8, MEK1/2 or ERK1/2, which is known as a proliferation relating intermediate, by various growth factors and cytokines. PDGF was the most prominent in promoting phosphorylation of the smap8 protein. PDGF-dependent phosphorylation of smap8 was induced prior to ERK1/2 activation, and was repressed by staurosporine, a general inhibitor of serine/threonine kinases. Furthermore, activation of both MEK1/2 and ERK1/2 was markedly enhanced in these cells. Smap8 might therefore regulate the potentiation of ERK1/2 signalling induced by PDGF treatment. Our results imply that smap8 is involved in the regulation of mitogenic signalling in vascular smooth muscle cells, possibly in response to a homocysteine-induced injury.  相似文献   

15.
Previous work from our laboratory has shown that heparin specifically induces the release of a pair of proteins of approximately 35,000 and 37,000 Da into the culture medium of vascular smooth muscle cells (SMC). In this report, we demonstrate that the previously identified 37,000-Da smooth muscle protein is composed of two protein species with very similar molecular weights based on migration patterns in SDS-polyacrylamide gels. The larger molecular weight species in this doublet has a similar molecular weight and shares antigenic determinants with major excreted protein (MEP), a lysosomal proteinase previously shown to be secreted by normal and transformed fibroblasts and epidermal cells. Antisera to MEP precipitated the higher molecular weight band from the doublet; preimmune serum was not reactive with the smooth muscle protein. Exposure of smooth muscle cells to heparin resulted in decreased amounts of immunoprecipitable protein released into the medium. Thus, it now appears that three proteins in the 35,000-38,000 molecular weight range are modulated by heparin, and that the largest of the heparin-modulated vascular SMC proteins has a similar molecular weight and is immunologically related to MEP. The release of MEP-like protein from SMC is decreased by heparin, while the remaining two heparin-modulated proteins are increased in the presence of heparin.  相似文献   

16.
We have investigated the effects of extracellular and intracellular Ca deficits and of pharmacologic agents thought to inhibit Ca influx or intracellular Ca mobilization on vasopressin-evoked changes of cytosolic Ca2+ levels and PG synthesis in cultured rat mesenteric arterial vascular smooth muscle cells. Vasopressin rapidly increased cytosolic Ca2+ as well as PG synthesis. The increase of cytosolic Ca2+ and the rate of PG synthesis were both maximal within the first minute of incubation. An extracellular Ca deficit of short duration partially inhibited both vasopressin-evoked PG synthesis and the increase of cytosolic Ca2+ by 40 to 60%. Two procedures which deplete cells of some of their intracellular Ca, namely a 30 min incubation in EGTA-supplemented, Ca-lacking media, or a 1 min incubation with ionophore A23187 in Ca-deficient media, decreased PG synthesis by 65% to 100%. The addition of extracellular Ca to Ca-depleted cells restored the ability of vasopressin to stimulate PG synthesis. Two Ca channel antagonists, nifedipine or cinnarizine, had no effect on either vasopressin-evoked PG synthesis or increased cytosolic Ca2+, whereas TMB-8 (10 microM), a putative inhibitor of intracellular Ca mobilization, decreased PG synthesis by 75% by inhibiting acylhydrolase as well as cyclo-oxygenase activities, but had no effect on basal or vasopressin-evoked increase of cytosolic Ca2+, documenting that its inhibitory effect was not a consequence of decreased cytosolic Ca2+. These results demonstrate that decreased cellular Ca levels are associated with decreased cytosolic Ca2+ levels and PG synthesis, and support the hypothesis of a link between, on the one hand, cellular Ca and/or cytosolic Ca2+ and on the other hand, PG synthesis.  相似文献   

17.
Oxidation of low density lipoprotein increases its atherogenic potential. During oxidation there is an extensive conversion of lecithin to lysolecithin. In rat aortic smooth muscle cells, 2-25 micrograms/ml lysolecithin elevated cytosolic calcium concentration up to 560%. Lysolecithin (10-20 micrograms/ml) increased [3H]thymidine incorporation from 15 cpm/mg cell protein (controls) up to 189 cpm/mg cell protein. Lysolecithin (10 micrograms/ml) potentiated the PDGF-induced (50 ng/ml) [3H]thymidine incorporation up to 6.3 times. The results indicate that lysolecithin could induce mechanisms, by which oxidized low density lipoproteins could promote cell growth and thus contribute to atherosclerosis.  相似文献   

18.
The effect of glucocorticoids on collagen synthesis was examined in cultured bovine aortic smooth muscle (BASM) cells. BASM cells treated with 0.1 microM dexamethasone during their proliferative phase (11 d) were labeled with [3H]proline for 24 h, and the acid-precipitable material was incubated with bacterial collagenase. Dexamethasone produced an approximate twofold increase in the incorporation of proline into collagenase-digestible protein (CDP) and noncollagen protein (NCP) in the cell layer and medium. The stimulation was present in both primary mass cultures and cloned BASM. An increase in CDP and NCP was detected at 0.1 nM, while maximal stimulation occurred at 0.1 microM. Only cells exposed to dexamethasone during their log phase of growth (1-6 d after plating) showed the increase in CDP and NCP when labeled 11 d after plating. The stimulatory effect was observed in BASM cells treated with the natural bovine glucocorticoid, cortisol, dexamethasone, and testosterone, but was absent in cells treated with aldosterone, corticosterone, cholesterol, 17 beta-estradiol, and progesterone. The increase in CDP and NCP was absent in cells treated with the inactive glucocorticoid, epicortisol, and totally abolished by the antagonist, 17 alpha-hydroxyprogesterone, suggesting that the response was mediated by specific cytoplasmic glucocorticoid receptors. Dexamethasone-treated BASM cells showed a 4.5-fold increase in the specific activity of intracellular proline, which was the result of a twofold increase in the uptake of proline and depletion of the total proline pool. After normalizing for specific activity, dexamethasone produced a 2.4- and 2.8-fold increase in the rate of collagen and NCP synthesis, respectively. Cells treated with dexamethasone secreted 1.7- fold more collagen protein in 24 h compared to control cultures. The BASM cells secreted 70% Type I and 30% Type III collagen into the media as assessed by two-dimensional gel electrophoresis. The ratio of these two types was not altered by dexamethasone. The results of the present study demonstrate that glucocorticoids can act directly on vascular smooth muscle cells to increase the synthesis and secretion of collagen and NCP.  相似文献   

19.
20.
Previous reports have suggested that phorbol esters can decrease the affinity of epidermal growth factor (EGF) for its cellular receptors. Investigations of the consequences of the interaction between phorbol esters and EGF, however, have been limited to EGF-stimulated Na/H exchange in A431 cells (Whitely, B., D. Cassel, Y.-X. Zuang, and L. Glaser, 1984, J. Cell Biol., 99:1162-1166). In the present study, the effect of the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) on EGF-stimulated ion transport and DNA synthesis was determined in cultured vascular smooth muscle cells (A7r5). It was found that TPA stimulated Na/H exchange when added alone (half-maximal stimulatory concentration, 25 nM). However, when cells were pretreated with TPA and then challenged with EGF, TPA significantly inhibited EGF-stimulated Na/H exchange (78%; half-maximal inhibition [Ki] at 2.5 nM). Subsequently the effects of TPA on Na/K/Cl co-transport were measured. TPA was observed to inhibit Na/K/Cl co-transport (half-maximal inhibitory concentration, 50 nM) and also to inhibit EGF-stimulated Na/K/Cl co-transport (100%; Ki at 5 nM). Finally, the effects of TPA on DNA synthesis were assessed. TPA had a modest stimulatory effect on DNA synthesis (half-maximal stimulatory concentration, 6 nM), but had a significant inhibitory effect on EGF-stimulated DNA synthesis (56%; Ki at 5 nM). These findings suggest that the inhibitory effect of TPA on EGF-receptor functions goes beyond previously reported effects on Na/H exchange in A431 cells and extends to EGF-stimulation of Na/K/Cl co-transport and DNA synthesis in vascular smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号