首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interferon-alpha (IFN-alpha) is currently used for the therapy of multiple myeloma (MM) though it is only effective in some patients. IFN-alpha induces apoptosis in some MM cell lines and it has been proposed to occur through an autocrine loop involving Apo2L/TRAIL. We have analysed the sensitivity to IFN-alpha and Apo2L/TRAIL of five MM cell lines and found no correlation between the apoptosis inducing ability of both cytokines. IFN-alpha-induced apoptosis in MM cells was not prevented by a caspase-8 selective inhibitor (Z-IETD-fmk) or blocking Apo2L/TRAIL. However, human monocytes treated with IFN-alpha release bioactive Apo2L/TRAIL to culture media which was cytotoxic for MM cells resistant to IFN-alpha. We propose that Apo2L/TRAIL released from IFN-alpha-stimulated blood monocytes would be a major mediator of the anti-myeloma effect of IFN-alpha in vivo.  相似文献   

2.
Synthesis of the antimicrobial protein neutrophil gelatinase-associated lipocalin (NGAL) increases dramatically in bronchial epithelial cells and alveolear type II pneumocytes during lung inflammation. IL-1beta induces a >10-fold up-regulation of NGAL expression in the type II pneumocyte-derived cell line A549 cells, whereas TNF-alpha, IL-6, and LPS had no effect. Similar IL-1beta selectivity was demonstrated in primary bronchial epithelial cells and epidermal keratinocytes and for an NGAL promoter fragment transfected into A549 cells. By deletion and substitution analysis of the NGAL promoter, a 40-bp region containing an NF-kappaB consensus site was found to control the IL-1beta-specific up-regulation. Involvement of the NF-kappaB site was demonstrated by site-directed mutagenesis, by transfection with a dominant-negative inhibitor of the NF-kappaB pathway, and by EMSA. TNF-alpha activation of NF-kappaB, in contrast, did not increase NGAL synthesis, even though induced binding of NF-kappaB to the NGAL promoter was observed in vitro. IL-1beta specificity was not contained within the NF-kappaB site of the NGAL promoter, as determined by exchanging the NGAL promoter's NF-kappaB-binding sequence with that of the IL-8 promoter or with the NF-kappaB consensus sequence and by testing the NF-kappaB-binding sequence of the NGAL promoter against the heterologous SV40 promoter. Selectivity for the IL-1 pathway was substantiated by demonstrating that NGAL promoter activity could be induced by LPS stimulation of A549 cells transiently expressing Toll-like receptor 4, which use the same intracellular signaling pathway as the IL-1R. Together, this demonstrates a selective up-regulation of NGAL by the IL-1 pathway.  相似文献   

3.
In this study, we investigated the relationship between reovirus-induced apoptosis and viral growth. Madin-Darby canine kidney (MDCK) epithelial cells infected with prototype reovirus strains type 1 Lang (T1L) or type 3 Dearing (T3D) were found to undergo apoptosis, and T3D induced apoptosis of MDCK cells to a substantially greater extent than T1L. By using T1L x T3D reassortant viruses, we found that differences in the capacities of these strains to induce apoptosis are determined by the viral S1 and M2 gene segments. These genes encode viral outer-capsid proteins that play important roles in viral entry into cells. T1L grew significantly better in MDCK cells than T3D, and these differences in growth segregated with the viral L1 and M1 gene segments. The L1 and M1 genes encode viral core proteins involved in viral RNA synthesis. Bcl-2 overexpression in MDCK cells inhibited reovirus-induced apoptosis but did not substantially affect reovirus growth. These findings indicate that differences in the capacities of reovirus strains to induce apoptosis and grow in MDCK cells are determined by different viral genes and that premature cell death by apoptosis does not limit reovirus growth in MDCK cells.  相似文献   

4.
Yu J  Sauter S  Parlesak A 《Biological chemistry》2006,387(12):1619-1627
Endotoxin-induced cytokine production is an important mechanism in the development of several types of liver damage. Methionine, some of its precursors and metabolites were reported to have protective effects against such injury. The aim of this study was to investigate whether methionine, its precursors or metabolites [phosphatidylcholine, choline, betaine, S-adenosylmethionine (SAM)] have a modulating effect on tumor necrosis factor alpha (TNF-alpha) production by endotoxin-stimulated human mononuclear leukocytes and whether SAM-dependent polyamines (spermidine, spermine) are mediators of SAM-induced inhibition of TNF-alpha synthesis. Methionine and betaine had a moderate stimulatory effect on TNF-alpha production, whereas phosphatidylcholine (ID(50) 5.4 mM), SAM (ID(50) 131 microM), spermidine (ID(50) 4.5 microM) and spermine (ID(50) 3.9 microM) had a predominantly inhibitory effect. Putrescine did not alter TNF-alpha release. Inhibitors of polyamine synthesis that blocked either putrescine (difluoromethylornithine) or spermine (CGP48664A) production did not affect TNF-alpha synthesis. Endotoxin stimulation of leukocytes did not alter the intracellular levels of polyamines. In addition, supplementation with SAM did not change the intracellular concentration of either polyamine measured. We conclude that phosphatidylcholine-induced immunosuppression is not caused by methionine and polyamines are not involved in SAM-induced inhibition of TNF-alpha production. The limitation of TNF-alpha release by spermidine is specific and is not due to its conversion into spermine.  相似文献   

5.
Multiple myeloma (MM) is a malignant disorder of differentiated B cells. Clonal expansion of the tumor results in the excessive production of monoclonal immunoglobulin (Ig) which is a diagnostic feature of this disease. Previous investigations have demonstrated the alteration of the ERK, jun kinase, STAT, and AKT kinase signaling cascades in MM cells, suggesting that deregulated phosphorylation may contribute to MM pathogenesis. However, systematic analysis of the phosphoproteome in MM cells has not been reported. Here, we described a large-scale phosphorylation analysis of primary MM cells. Using a separation strategy involving immunomagnetic bead-positive selection of MM cells, preparative SDS-PAGE for prefractionation, in-gel digestion with trypsin, and titanium dioxide enrichment of phosphopeptides, followed by LC-MS/MS analysis employing a hybrid LTQ-Orbitrap mass spectrometer, we were able to catalog a substantial portion of the phosphoproteins present in primary MM cells. This analysis led to the identification of 530 phosphorylation sites from 325 unique phosphopeptides corresponding to 260 proteins at false positive rate (FPR) of 1.3%. This dataset provides an important resource for future studies on phosphorylation and carcinogenesis analysis of multiple myeloma.  相似文献   

6.
Vgamma2 Vdelta2 T cells in human peripheral blood recognize phosphoantigen and play important roles in host defense and immunoregulation. The TCR is required for Vgamma2 Vdelta2 T cell responses to phosphoantigen, but less is known about soluble or cell-associated costimulatory molecules. In this study, we show that human Vgamma2 Vdelta2 T cell responses to phosphoantigen, including activation, proliferation, cytokine production, and tumor cell cytotoxicity, require TNF-alpha binding to its receptor, with a preference for TNFR2. Because stimulated Vgamma2 Vdelta2 cells also produce TNF-alpha, this may be a positive control mechanism to sustain the response. Impaired proliferation in the presence of TNF-alpha or TNFR blocking agents was partially rescued by a TLR2 agonist, Pam(3)Cys. Our studies demonstrate that TNF-alpha plays a critical role in regulating human Vgamma2 Vdelta2 T cell immune responses.  相似文献   

7.
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine and a selective inducer of apoptosis in a range of tumour cells, but not in normal, untransformed cells. A large number of chemotherapeutics as well as biological agents are being tested for their potential to sensitise resistant tumour cells to TRAIL as a means to broaden the range of tumours treatable with TRAIL. However, because of the incomplete understanding of the mechanism(s) underlying TRAIL resistance in non-malignant cells, it is unpredictable whether the effect of these sensitisers will be restricted to tumour cells or they would also sensitise non-transformed cells causing unwanted toxicity. In this study, we carried out a systematic analysis of the mechanisms driving TRAIL resistance in non-transformed cells. We found that cellular FLICE-like inhibitory protein, anti-apoptotic B-cell lymphoma 2 proteins, and X-linked inhibitor of apoptosis protein were independently able to provide resistance to TRAIL. Deficiency of only one of these proteins was not sufficient to elicit TRAIL sensitivity, demonstrating that in non-transformed cells multiple pathways control TRAIL resistance and they act in a redundant manner. This is contrary to the resistance mechanisms found in tumour cell types, many of them tend to rely on a single mechanism of resistance. Supporting this notion we found that 76% of TRAIL-resistant cell lines (13 out of 17) expressed only one of the above-identified anti-apoptotic proteins at a high level (≥1.2-fold higher than the mean expression across all cell lines). Furthermore, inhibition or knockdown of the single overexpressed protein in these tumour cells was sufficient to trigger TRAIL sensitivity. Therefore, the redundancy in resistance pathways in non-transformed cells may offer a safe therapeutic window for TRAIL-based combination therapies where selective sensitisation of the tumour to TRAIL can be achieved by targeting the single non-redundant resistance pathway.  相似文献   

8.

Background

Multiple myeloma (MM) is a hematologic cancer caused by the abnormal expansion of plasma cells, but the exact mechanism underlying MM development is not completely known. Recently, multiple long noncoding RNAs (lncRNAs) were implicated in the regulation of MM development.

Methods

Samples from patients with MM were collected and detected for LINC00461 expression using real-time polymerase chain reaction (PCR). LINC00461 was knocked down in MM cell lines by short hairpin RNAs (shRNAs) to measure its effect on MM cell proliferation and apoptosis. The function of mesenchymal stromal cell (MSC)–derived exosomes was analyzed using chamber assays.

Results

LINC00461 was highly expressed in MM. Knockdown of LINC00461 dramatically reduced MM cell proliferation and induced cell apoptosis. Further study showed that LINC00461 relieved the inhibitory effect of microRNA (miR)-15a/miR-16 on BCL-2. In addition, we observed that MSC-derived exosomes promoted MM cell proliferation through LINC00461.

Conclusion

Our findings demonstrate that LINC00461, a sponge for miR-15a/16, is highly expressed in MSC-derived exosomes, and enhances MM cell proliferation, which may become an excellent candidate for therapeutic applications.  相似文献   

9.
Apo2 ligand (Apo2L)/TRAIL induces apoptosis of cancer cells that express the specific receptors while sparing normal cells. Because the tumor microenvironment protects myeloma from chemotherapy, we investigated whether hemopoietic stroma induces resistance to Apo2L/TRAIL apoptosis in this disease. Apo2L/TRAIL-induced death was diminished in myeloma cell lines (RPMI 8226, U266, and MM1s) directly adhered to a human immortalized HS5 stroma cell line but not adhered to fibronectin. In a Transwell assay, with myeloma in the upper well and HS5 cells in the lower well, Apo2L/TRAIL apoptosis was reduced when compared with cells exposed to medium in the lower well. Using HS5 and myeloma patients' stroma-conditioned medium, we determined that soluble factor(s) produced by stroma-myeloma interactions are responsible for a reversible Apo2/TRAIL apoptosis resistance. Soluble factor(s) attenuated procaspase-8, procaspase-3, and poly(ADP-ribose) polymerase cleavage and diminished mitochondrial membrane potential changes without affecting Bcl-2 family proteins and/or Apo2L/TRAIL receptors. Soluble factor(s) increased the baseline levels of the anti-apoptotic protein c-FLIP in all cell lines tested. Inhibition of c-FLIP by means of RNA interference increased Apo2/TRAIL sensitivity in RPMI 8226 cells. Unlike direct adhesion to fibronectin, soluble factor(s) have no impact on c-FLIP redistribution within cellular compartments. Cyclohexamide restored Apo2L/TRAIL sensitivity in association with down-regulation of c-FLIP, suggesting that c-FLIP synthesis, not intracellular traffic, is essential for soluble factor(s) to regulate c-FLIP. Additionally, IL-6 conferred resistance to Apo2L/TRAIL-mediated apoptosis in association with increased c-FLIP levels. In conclusion, the immune cytotoxic effect of Apo2L/TRAIL can be restored at least in part by c-FLIP pathway inhibitors.  相似文献   

10.
Plateletactivating factor (PAF) is a key mediator in pathogenesis of inflammatory bowel diseases (IBDs) but mechanisms of PAF-induced mucosal injury are poorly understood. To determine whether apoptosis and the Bcl-2-family of apoptosis regulatory gene products play a role in PAF-induced mucosal injury, we stably and conditionally overexpressed bcl-2 in rat small intestinal epithelial cells-6 under the control of a lactose-inducible promoter. Western blot analysis and immuno-histochemistry were used to verify inducible Bcl-2 and to analyze Bcl-2 and a proapoptotic member of the Bcl-2 family, Bax, subcellular distribution. DNA fragmentation was quantified by ELISA, caspase activity was measured by using fluorogenic peptide substrates, and mitochondrial membrane potential was assayed by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and fluorescence digital imaging. Bcl-2 expression was highly inducible by lactose analog isopropyl-beta-(d)-thiogalactoside (IPTG) and was localized predominantly to mitochondria. In the absence of bcl-2 overexpression and after treatment with PAF, Bax translocated to mitochondria, and mitochondrial membrane potential collapsed within 1 h, followed by caspase-3 activation, which peaked at 6 h with an ensuing DNA fragmentation maximizing at 18 h. After IPTG-induction of bcl-2 expression, PAF failed to induce DNA fragmentation, caspase-3 activation, Bax translocation, or a collapse of mitochondrial membrane potential. These data are the first to show that PAF can activate apoptotic machinery in enterocytes via a mechanism involving Bax translocation and collapse of mitochondrial membrane potential and that both of these events are under control by bcl-2 expression levels. A better understanding of the role of PAF and Bcl-2 family of apoptosis regulators in epithelial cell death might aid design of better therapeutic or preventive strategies for IBDs.  相似文献   

11.
12.
Natural killer cells (NK) are important effectors of anti-tumor immunity, activated either by the downregulation of HLA-I molecules on tumor cells and/or the interaction of NK-activating receptors with ligands that are overexpressed on target cells upon tumor transformation (including NKG2D and NKP30). NK kill target cells by the vesicular delivery of cytolytic molecules such as Granzyme-B and Granulysin activating different cell death pathways, which can be Caspase-3 dependent or Caspase-3 independent. Multiple myeloma (MM) remains an incurable neoplastic plasma-cell disorder. However, we previously reported the encouraging observation that cord blood-derived NK (CB-NK), a new source of NK, showed anti-tumor activity in an in vivo murine model of MM and confirmed a correlation between high levels of NKG2D expression by MM cells and increased efficacy of CB-NK in reducing tumor burden. We aimed to characterize the mechanism of CB-NK-mediated cytotoxicity against MM cells. We show a Caspase-3- and Granzyme-B-independent cell death, and we reveal a mechanism of transmissible cell death between cells, which involves lipid–protein vesicle transfer from CB-NK to MM cells. These vesicles are secondarily transferred from recipient MM cells to neighboring MM cells amplifying the initial CB-NK cytotoxicity achieved. This indirect cytotoxicity involves the transfer of NKG2D and NKP30 and leads to lysosomal cell death and decreased levels of reactive oxygen species in MM cells. These findings suggest a novel and unique mechanism of CB-NK cytotoxicity against MM cells and highlight the importance of lipids and lipid transfer in this process. Further, these data provide a rationale for the development of CB-NK-based cellular therapies in the treatment of MM.Natural killer cells (NK) are important effectors of anti-tumor immunity of the immune system. They can be activated by inhibition of killer cell immunoglobulin (Ig)-like receptor (KIR) receptors on NK due to downregulation of HLA-I on tumor cells or by the interaction of NK-activating receptors with ligands that are overexpressed on target cells. These receptors include NKG2D and the family of NK cytotoxicity receptors (NKP30, NKP44, NKP46),1 which can be on the cell surface and in the endocytic compartment2 from where they traffic to tumor cells in exosomes to exert cytotoxicity.3NK deliver cytolytic molecules such as Granzyme-B (GrB) and Granulysin to target cells. GrB induces Caspase-3-dependent apoptotic cell death with reactive oxygen species (ROS) generation.4 Alternatively, Granulysin activates Caspase-3-dependent cell death through ROS generation5, 6 and Caspase-3-independent cell death via endoplasmic reticulum (ER) stress7 or lysosomal cell death through release of cathepsins.8Multiple myeloma (MM) is a plasma-cell disorder characterized by clonal proliferation of malignant plasma-cells in the bone marrow (BM) and monoclonal protein in the blood or urine.9, 10 Plasma cells synthesize large quantities of Igs, which are folded in the ER. An excess of Ig synthesis causes a failure in this folding process leading to the release of unfolded/misfolded Igs.11 These Igs are degraded by intracellular protein degradation pathways, including the ubiquitin–proteasome system and autophagy. Proteasome inhibitors (PIs) are potent anti-MM agents,12 which block the protein degradation process in MM cells leading to ER stress-mediated cell death.13, 14 An excess of PI-induced ER stress can increase autophagy15, 16 leading to eventual refractory disease in some patients.17, 18, 19 Therefore new anti-MM strategies are needed.Previously, we have demonstrated that cord blood-derived NK (CB-NK) show anti-tumor activity in an in vivo MM murine model20 and observed that the expression of NKG2D by MM tumor cells correlated with lower tumor burden following CB-NK cellular therapy. Here we characterize the CB-NK-mediated cytotoxicity against MM cells and observe a Caspase-3- and Gr-B-independent cell death and reveal a mechanism of transmissible cell death between cells that involves lipid–protein vesicle transfer from CB-NK to MM cells. These vesicles are secondarily transferred from recipient MM cells to neighboring MM cells, thereby amplifying the initial CB-NK cytotoxicity achieved. This indirect cytotoxicity involves the transfer of NKG2D and NKP30 and leads to lysosomal cell death and reduced ROS levels in MM cells.  相似文献   

13.
These studies explore the molecular effect of arsenicals on MM cells. Freshly isolated cells derived from patients with advanced, chemo-refractory myeloma as well as human myeloma cell lines, ARP-1, RPMI-8226 and H929 were exposed to the organic arsenical melarsoprol and to the inorganic compound AT. Both agents potently induced apoptosis in myeloma cells. Exposure to 1-5 microM AT or melarsoprol for 6 hours suppressed NF-kappa B DNA binding and enhanced of c-Jun kinase (JNK) activity. Arsenic also activated caspase-3 resulting in the cleavage of poly (ADP-ribose) polymerase (PARP) and Fas/TNF alpha related receptor interacting protein (RIP). In contrast to reported observations in acute promyelocytic leukemia, myeloma cell apoptosis was not associated with either the downregulation of Bcl-2 protein or with alterations in the expression of other Bcl-2 family members, Bax, Bak, Bag, and Bcl-xl. This study first shows that arsenic induces apoptotic signaling in MM through the cleavage of TNF alpha related receptor interacting protein (RIP). RIP is a key downstream protein in FasL/ TNF alpha /TRAIL induced apoptosis and a major antiapoptotic adaptor of pathways through NF-kappa B and JNK. RIP has not been previously characterized in myeloma. This study supports the hypothesis that arsenicals share common mediators (RIP, NF-kappa B, PARP, caspase-3) with death receptor induced apoptosis. These studies provide an important insight into the molecular mechanism of AT induced apoptosis and can be used in the development of adjuvant therapy for MM, presently an incurable disease.  相似文献   

14.
Restriction endonuclease NciI is not blocked by CpG methylation.   总被引:1,自引:1,他引:0       下载免费PDF全文
R R Meehan  E Ulrich    A P Bird 《Nucleic acids research》1993,21(23):5517-5518
  相似文献   

15.
Fibroblast growth factor 1 (FGF1) is a multipotent factor in the development and differentiation of the central nervous system. Recent studies in PC12 cells attribute these effects to high endogenous FGF1 expression. To examine the differentiation mechanisms induced by FGF1, we performed studies in SH-SY5Y human neuroblastoma cells. We monitored the impact of FGF1 overexpression in SH-SY5Y either after addition of exogenous FGF1 and heparin or after stable transfection with the FGF1 eukaryotic expression vector. Under both conditions, the FGF1 endogenous rise caused SH-SY5Y cell differentiation with morphological changes (appearance of neuritic extensions), increased GAP-43 gene expression, decreased of N-myc gene expression, and prolonged long-term survival in serum-free media. These modifications were correlated with Bcl-2 upregulation. These results suggest that there is a link between the endogenous FGF1 signaling pathway and Bcl-2 in neuronal survival modulation.  相似文献   

16.
Angiotensin II (ANG II) has been etiologically linked to vascular disease; however, its role in the alterations of endothelial function that occur in vascular disorders is not completely understood. Matrix metalloproteinases (MMPs) and proinflammatory cytokines are involved in the pathological remodeling of blood vessels that occurs in vascular disease. In this study we evaluated the effects of ANG II on tumor necrosis factor (TNF)- and MMP-2 production in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with ANG II (0.1–10 µM) for 24 h, in the presence or absence of antagonists of ANG II type 1 (AT1R) and type 2 (AT2R) receptors, and the production and release of TNF- and MMP-2 were assessed. ANG II increased TNF- mRNA and protein expression and the release of bioactive TNF-. Moreover, ANG II induced MMP-2 release and reduced the secretion of tissue inhibitor of MMP (TIMP)-2 from endothelial cells. To elucidate whether endogenous TNF- could mediate the effects of ANG II on MMP-2 release, cells were pretreated with anti-TNF- neutralizing antibodies or pentoxifylline (an inhibitor of TNF- synthesis). TNF- inhibition prevented the secretion of MMP-2 induced by ANG II. Furthermore, AT1R antagonism with candesartan prevented the formation of MMP-2 and TNF- and the reduction of TIMP-2 induced by ANG II. These results indicate that ANG II, via AT1R, modulates the secretion of TNF- and MMP-2 from endothelial cells and that TNF- mediates the effects of ANG II on MMP-2 release. remodeling; vasoactive mediators; inflammation  相似文献   

17.
Malignant progression in gliomas is correlated with increased migratory capacity which involves metalloproteolytic activity. Here, we report that ectopic expression of BCL-2 in two malignant glioma sublines markedly promoted glioma cell migration from spheroids and invasion into Matrigel-coated membranes. Invasion of fetal rat-brain aggregates was enhanced by BCL-2. Zymography revealed activation of matrix metalloproteinase-2 (MMP-2) in BCL-2-expressing cells. BCL-2 expressing cells showed an increase in MMP-2/-3/-12 (LN-18), and MMP-9/-12 and cell surface urokinase-type plasminogen activator (u-PA) (LN-229) mRNA and a reduction in tissue inhibitors of metalloproteinases (TIMP)-2 mRNA (LN-229). Taken together, we propose a novel function for BCL-2 in the malignant phenotype of glioma cells, that is, to enhance migration and invasion by altering the expression of a set of metalloproteinases and their inhibitors.  相似文献   

18.
The life span of dendritic cells (DCs) is determined by the balance of pro- and antiapoptotic proteins. In this study, we report that serum-free cultured human monocyte-derived DCs after TLR stimulation with polyinosinic acid-polycytidylic acid or LPS underwent apoptosis, which was correlated with low TNF production. Apoptosis was prevented by the addition of exogenous TNF or by concomitant stimulation with R-848, which strongly amplified endogenous TNF production. Neutralization of TNF confirmed that DC survival was mediated by autocrine TNF induced either by stimulation with R-848 or by ligation of CD40. DCs stimulated by polyinosinic acid-polycytidylic acid or IFN-β, another known inducer of DC apoptosis, were characterized by high levels and activation of the proapoptotic protein BAK. The ratio of antiapoptotic BCL-2 to BAK correlated best with the survival of activated DCs. Addition of TNF increased this ratio but had little effect on BAX and XIAP. Knockdown experiments using small interfering RNAs confirmed that the survival of activated and also of immature DCs was regulated by BAK and showed that TNF was protective only in the presence of FLIP(L). Together, our data demonstrate that the survival of DCs during differentiation and activation depends on autocrine TNF and that the inhibition of BAK plays an important role in this process.  相似文献   

19.
BACKGROUND: Human multiple myeloma (MM) remains an incurable hematological malignancy. We have reported that beta-lapachone, a pure compound derived from a plant, can induce cell death in a variety of human carcinoma cells, including ovary, colon, lung, prostate, pancreas, and breast, suggesting a wide spectrum of anticancer activity. MATERIALS AND METHODS: We first studied antisurvival effects of beta-lapachone in human MM cells by colony formation assay. To determine whether the differential inhibition of colony formation occurs through antiproliferative activity, we performed MTT assays. The cytotoxicity of beta-lapachone on human peripheral blood mononuclear cells was also measured by MTT assay. To determine whether the cell death induced by beta-lapachone occurs through necrosis or apoptosis, we used the propidium iodide staining procedure to determine the sub-GI fraction, Annexin-V staining for externalization of phosphatidylserine, and fragmentation of cellular genomic DNA subjected to gel electrophoresis. To investigate the mechanism of anti-MM activity, we examined Bcl-2 expression, cytochrome C release, and poly (ADP ribose) polymerase cleavage by Western blot assay. RESULTS: We found that beta-lapachone (less than 4 microM) inhibits cell survival and proliferation by triggering cell death with characteristics of apoptosis in ARH-77, HS Sultan, and MM.1S cell lines, in freshly derived patient MM cells (MM.As), MM cell lines resistant to dexamethasone (MM.1R), doxorubicin (DOX.40), mitoxantrone (MR.20), and mephalan (LR5). Importantly, after treatment with beta-lapachone, we observed no apoptosis in peripheral blood mononuclear cells in either quiescent or proliferative states, freshly isolated from healthy donors. In beta-lapachone treated ARH-77, cytochrome C was released from mitochondria to cytosol, and poly (ADP ribose) polymerase was cleaved, signature events of apoptosis. Finally, the apoptosis induced by beta-lapachone in MM cells was not blocked by either interleukin-6 or Bcl-2, which confer multidrug resistance in MM. CONCLUSIONS: Our results suggest potential therapeutic application of beta-lapachone against MM, particularly to overcome drug resistance in relapsed patients.  相似文献   

20.
BCL-2 modifying factor (BMF) is a sentinel considered to register damage at the cytoskeleton and to convey a death signal to B-cell lymphoma 2. B-cell lymphoma 2 is neutralized by BMF and thereby facilitates cytochrome C release from mitochondria. We investigated the role of BMF for intestinal epithelial cell (IEC) homeostasis. Acute colitis was induced in Bmf-deficient mice (Bmf(-/-)) with dextran sulfate sodium. Colonic crypt length in Bmf(-/-) mice was significantly increased as compared with WT mice. Dextran sulfate sodium induced less signs of colitis in Bmf(-/-) mice, as weight loss was reduced compared with the WT. Primary human IEC exhibited increased BMF in the extrusion zone. Quantitative PCR showed a significant up-regulation of BMF expression after initiation of anoikis in primary human IEC. BMF was found on mitochondria during anoikis, as demonstrated by Western blot analysis. RNAi mediated knockdown of BMF reduced the number of apoptotic cells and led to reduced caspase 3 activity. A significant increase in phospho-AKT was determined after RNAi treatment. BMF knockdown supports survival of IEC. BMF is induced in human IEC by the loss of cell attachment and is likely to play an important role in the regulation of IEC survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号