首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several lines of investigation have suggested an interplay between bioluminescence (BL) and oxyradical metabolism, mainly in bacteria and beetles. Although not yet confirmed, luminescent beetles seem to be challenged daily by oxidative conditions imposed by higher oxygen absorption necessary to enhance light emission for courtship (adult lampyrids and elaterids) and prey attraction (e.g. Pyrearinus termitilluminans larvae). This work reports the activities of luciferase, superoxide dismutase (SOD), catalase and dehydroascorbate reductase (DHAR) and total glutathione content at different times of the day in the bright prothorax and dim abdomen of larval Pyrearinus termitilluminans (Coleoptera: Elateridae), investigating a possible adjuvant role for luciferase in oxygen detoxification. Luciferase activity in the prothorax was shown to peak at 7 p.m., which is the time when P. termitilluminans larvae light up for prey attraction. In their habitat, P. termitilluminans larvae emit light until 8.30 p.m. However, at 8 p.m., prothorax luciferase activity achieved basal levels and total glutathione content declined to the daily lowest value, possibly resulting from hyperoxidative conditions during this time. Significant increases in the activities of total SOD (28%) and catalase (37%) were observed in the prothorax at 9 p.m., which should minimize the extent of damage from this potentially hazardous period. Prothorax total SOD (42% higher than daily average) and abdomen CuZnSOD (41%) and catalase (95%) activities showed extra peaks at 7-10 a.m., and abdomen DHAR activity was maximal (37%) earlier (4-7 a.m.). These morning increases in antioxidant enzyme activities may be associated with biological events other than bioluminescence, e.g. intense physical activity for digging tunnels and/or digestion of captured preys. These data suggest that oxyradical pathway and bioluminescence are coordinated, especially in the prothorax, to minimize the oxidative stress imposed by higher irrigation of the photocytes with O(2) when P. termitilluminans larvae emit light.  相似文献   

2.
A complete cDNA encoding cholesterol 7 alpha-monooxygenase (EC 1.14.13.17) which had been isolated from rat liver cDNA libraries by using specific antibodies to the enzyme (Noshiro, M., Nishimoto, M., and Okuda, K. (1989) FEBS Lett. 257, 97-100) was totally sequenced. The cDNA contained a 1,509-base pair open reading frame encoding 503 amino acid residues (Mr = 56,880) and an unusually long 3'-untranslated region rich in AT sequence in the total length of 3,545 base pairs. The predicted amino acid sequence displays less than 30% similarity to other sequenced cytochrome P-450s indicating that the 7 alpha-hydroxylase constitutes a novel family of cytochrome P-450. The AT-rich region often contained ATTTA motifs, 5'-AAT-3' or 5'-TAA-3' trinucleotides which were reported to be involved in rapidly degrading mRNA. Employing the specific antibodies and the cDNA as probes, a diurnal variation of the levels of the three factors, i.e. enzyme protein, mRNA, and enzyme activity, was studied on rat livers prepared at various times of the day. In normal animals, all three factors exhibited maximum level at 10:00 p.m. and minimum at 10:00 a.m. No significant sexual difference was observed. Cholestyramine feeding increased all three factors at 10:00 a.m. close to the maximum levels of the normal rats, but did not show a significant increase at 10:00 p.m. On the contrary, starvation markedly decreased all three factors either at 10:00 a.m. or at 10:00 p.m., while maintaining still the diurnal variation. A good correlation of the levels of mRNA to the enzyme activities and the protein levels demonstrates that pretranslational regulation is most likely a mechanism for the circadian rhythm of 7 alpha-hydroxylase. The marked diurnal fluctuation of the amount of protein and the level of mRNA also indicates their rapid turnover. The short half-life of mRNA could be correlated with the structure of the 3'-untranslated region of the mRNA characteristic of rapidly degrading mRNA, i.e. abundance of motif, AUUUA, and existence of 5'-AAU-3' or 5'-UAA-3' trinucleotides in single-stranded regions of the secondary structure.  相似文献   

3.
Little information is available on circadian organization in diurnal mammals. In the present study, the daily patterns of wheel-running activity were described in a diurnal rodent, Arvicanthis ansorgei Thomas 1910, as assessed by karyological analysis. Among 108 animals born in the colony and studied under a 12:12 light-dark cycle (lights on at 7:00 a.m.), the authors determined the timing of daily activity (i.e., mean onsets and offsets of pattern of locomotor activity) and the level of wheel-running activity performed during daytime versus nighttime. The activity pattern was essentially diurnal in 84% of individuals, 46% being active only during the light period +/- 1 h (activity onsets and offsets at 6:20 a.m. and 7:40 p.m., respectively) and 38% being diurnal with a period of nocturnal activity longer than 1 h (activity onsets and offsets at 5:40 a.m. and 9:30 p.m., respectively). Of the 108 animals, 16% expressed a nocturnal activity with diurnal overlaps no longer than 1 h. In 6 diurnal individuals first exposed to constant light and then to constant dim red light, the endogenous period was shortened from 24.6 +/- 0.1 to 24.0 +/- 0.1 h, respectively. The numbers of wheel revolutions per day and during the active period remained unchanged between the two lighting conditions. In response to different photoperiodic changes from 16:08 to 08:16 light-dark cycles, the phase angle of photic synchronization, estimated by the daily onset of wheel-running activity in 6 diurnal animals, showed marked changes, its timing occurring 2 h before and 0.5 h after the onset of light under short and long photoperiods, respectively. The numbers of wheel revolutions per 24 h and during the active period were modified similarly according to photoperiodic changes. Finally, in 5 diurnal animals exposed to a 12:12 light-dark cycle, the daily pattern of general locomotor activity, determined by telemetry, was not modified by wheel availability. The data indicate that A. ansorgei is an interesting experimental model to understand the regulation of the circadian timing system in day-active species.  相似文献   

4.
Circadian rhythms of important enzymes involved in the conversion of cholesterol to bile acids [sterol 12alpha-hydroxylase (12alpha-hydroxylase) and cholesterol 7alpha-hydroxylase (7alpha-hydroxylase)] and an albumin site D-binding protein (DBP) were examined in rats. When the animals were fed freely, they usually ate in the dark and the circadian rhythms of activities of 12alpha-hydroxylase and 7alpha-hydroxylase showed the same peaks (at 10 p.m.) and lows (at 2 p.m.). Their mRNA levels were determined at four timepoints: 3 a.m., 10 a.m., 3 p.m. and 10 p.m. A maximum of the rhythm of 12alpha-hydroxylase was observed at 3 p.m. and the minimum at 3 a.m. These results are distinct from those of 7alpha-hydroxylase, whose maximum point was at 10 p.m. and minimum at 3 p.m. When the rats were fed only in the day-time (from 9 a.m. to 5 p.m.), a marked shift of the activity and mRNA rhythms was observed with both enzymes. The circadian rhythms of the activities of both enzymes showed the same peaks (at 3 p.m.), but the mRNA levels of 12alpha-hydroxylase were distinct from those of 7alpha-hydroxylase, whose maximum point was at 3 a.m. and minimum at 10 p.m. Differences between the maximum and the minimum points of each enzyme mRNA level were statistically significant (P < 0.01 for 12alpha-hydroxylase and 0.05 for 7alpha-hydroxylase). Moreover, circadian rhythms of DBP were also markedly shifted with the change of feeding period. The maximum mRNA level was observed at 10 p.m. instead of 10 a.m. and the minimum was at 10 a.m. instead of 10 p.m.  相似文献   

5.
Seasonal (in January, April, July, October) changes of aspartate aminotransferase (AST), alanine aminotransferase (ALT), protein, bilirubin, glucose, cholesterol, creatinine, blood urea nitrogen, Cl-, K+, Na+ content were studied in the blood plasma of mice at different time of day (6 p. m., midnight, 6 a. m., midday). The analysis of the average daily indices has shown that the most expressed variations were the following: AST (spring maximum is 3.7 times higher than autumn minimum), ALT (winter maximum is 2.9 times higher than autumn minimum), creatinine (summer maximum is 2.5 times higher than winter minimum), blood urea nitrogen (summer maximum is 2.5 times higher than autumn minimum). Bilirubin and protein content in spring is insignificant, but it is significantly higher than in other seasons. Cholesterol content is lower in winter. No differences in glucose, Cl-, K+, Na+ content in different months have been revealed. The largest circadian synchronization was observed in winter in AST, glucose, cholesterol, protein, Cl-, K+, Na+ (the level observed at 6 p. m. and at midday is higher than that observed at midnight and 6 a. m.) and in autumn in AST, ALT, glucose, cholesterol, blood urea nitrogen, with the circadian curves inverse as compared to the winter period. In spring practically no circadian synchronization was observed.  相似文献   

6.
Summary Suspension cultures of Haplopappus gracilis accumulated anthocyanin when grown in defined media with 4.5×10-6M 2,4-D. Transfer of cells to media with 10-5M kinetin or benzyladenine and no auxin or 10-7M NAA for 6 days resulted in increased anthocyanin concentration of the cells but the total amount of pigment was unaffected due to differences in growth rates. The cultures yielded up to 35 mg pigment per gram dry weight.Cells grown in batch culture in media with 10-5M kinetin and with 10-7 M NAA or 5×10-5M NAA sampled and analyzed daily grew at the same rate. The concentration of anthocyanin differed, being lower in cells at 5×10-5M NAA. After 6 days there was a rapid increase in pigment formation, and by 14 days the concentration of anthocyanin in cells in the two media were the same.When the cells were cultured in 3.5-1 phytostats and 600 ml culture was replaced daily with 600 ml medium, anthocyanins accumulated when the NAA concentration was 10-7M but not at 10-6M. At 10-7M NAA the cultures remained pigmented and anthocyanin accumulation could be restored after a temporary loss of pigmentation due to an earlier, higher auxin concentration. The changes in concentration of phenylalanine ammonia-lyase did not correspond to changes in the rate of anthocyanin accumulation. The enzyme showed a maximum 4–8 h after inoculation of cells to fresh media. Cells grown on agar plates and rich in anthocyanin were observed to divide without loss of pigmentation, demonstrating that cells differentiated with respect to anthocyanin production undergo mitosis.Issued as NRCC No. 11388.Abbreviations used: 2,4-D=2,4-dichlorophenoxyacetic acid, NAA + -naphthaleneacetic acid.  相似文献   

7.
The biochemistry of the lead histochemical technique for demonstrating adenylate cyclase was studied. The enzyme activity of fat cell plasma membranes, using 5'-adenylyl-imidodiphosphate (AMP-PNP) as substrate, was completely inhibited at 1 times 10- minus 4 M Pb(NO3)2 and yet at 4 times 10- minus 3 M Pb(NO3)2 precipitate could be demonstrated by electron microscopy on both sides of plasma membrane vesicles. No lead-diphosphoimide or lead-phosphate precipitate could be visualized by electron microscopy when the lead was reduced to a level (2 times 10- minus 5 M) which caused only 50% inhibition of the enzyme. A solubility product coefficient of 1 times 10- minus 10 M was found necessary to allow precipitation of lead-phosphate complex in the adenylate cyclase medium. Varying the ratio of substrate or dextran relative to the lead failed to protect the inhibition of the enzyme. Increasing concentrations of beta-mercaptoethanol restored the basal and stimulated activity of adenylate cyclase but also prevented the precipitation reaction. Lead at 2 times 10- minus 3 M caused the nonenzymatic hydrolysis of AMP-PNP, resulting in the production of small but significant quantities of cyclic AMP and substantial amounts of AMP. This hydrolysis was inhibited by alloxan but unaffected by dextran of NaF. The adenylate cyclase activity of pancreatic islet homogenates and of fat pad capillaries was completely inhibited by lead concentrations equal to or less than those used in histochemical studies (Howell, S. L., and M. Whitfield. 1972. J. Histochem. Cytochem. 20:873-879. and Wagner, R. C., P. Kreiner, R. J. Barrnett, and M. W. Bitensky. 1972. Proc. Natl. Acad. Sci. U.S.A. 69:3175-3179.). The present study shows that the lead histochemical method cannot be used for localization of adenylate cyclase because of the inhibition of the enzyme and artifacts produced by high lead concentrations and the inability to produce a visible precipitate at low lead concentrations which only partially inhibit the enzyme.  相似文献   

8.
Purification and properties of malyl-coenzyme A lyase from Pseudomonas AM1   总被引:3,自引:0,他引:3  
1. Malyl-CoA lyase was purified 20-fold from extracts of methanol-grown Pseudomonas AM1. 2. Preparations of the enzyme were essentially homogeneous by electrophoretic and ultracentrifugal criteria. 3. Malyl-CoA lyase has a molecular weight of 190000 determined from sedimentation-equilibrium data. 4. Within the range of compounds tested, malyl-CoA lyase is specific for (2S)-4-malyl-CoA or glyoxylate and acetyl-CoA or propionyl-CoA. 5. A bivalent cation is essential for activity, Mg(2+) or Co(2+) being most effective. 6. Malyl-CoA lyase is inhibited by (2R)-4-malyl-CoA and by some buffers, but thiol-group inhibitors are without effect. 7. Optimal activity was recorded at pH7.8. 8. An equilibrium constant of 4.7x10(-4)m was determined for the malyl-CoA cleavage reaction. 9. The Michaelis constants for the enzyme are: 4-malyl-CoA, 6.6x10(-5)m; acetyl-CoA, 1.5x10(-5)m; glyoxylate, 1.7x10(-3)m; Mg(2+), 1.2x10(-3)m.  相似文献   

9.
To characterize daily variation of amino acids (AAs) and acylcarnitines (ACs) in response to feeding and activity, we measured serum metabolites at various times and after various activities during the day. Subjects were admitted overnight for serial serum sampling, collected in the evening (6?C8 p.m., n?=?40), before rising from bed or eating (8 a.m., n?=?40), 1?h after rising but before eating (9 a.m., n?=?20), 1?C2?h after rising and breakfast (9?C10 a.m., n?=?40), and at noon (12 p.m., n?=?20). Measurements of 15 AAs and 45 ACs were performed by quantitative tandem mass spectrometry using stable-isotope dilution. Coefficients of variation within and between patients were calculated for individual metabolite values and factors derived from principal components analysis. The change of state between timepoints was evaluated by nearest neighbor non-parametric analysis of values at one timepoint compared to the next subsequent value. Relative to baseline a.m. recumbent concentrations, AA concentrations rose after activity and feeding while AC concentrations rose after activity and decreased with feeding. Furthermore, for all AAs, ACs, and their factors, biological variation was quantifiably evident and distinct from daily variation. This study confirms the daily variation of AAs and provides the first report of daily variation for a large panel of ACs. Although standardization of sample collection is highly desirable to control for daily variation (within a subject due to activity or feeding), this study demonstrated measurable biological variability (across subjects) suggesting that non-standardized sample collections could potentially provide insights into specific AA and AC metabolic pathways and disease mechanisms.  相似文献   

10.
Induction of the accumulation of 2-(2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one)-beta-D-glucopyranose (HDMBOA-Glc) by jasmonic acid (JA) was investigated in wheat, Job's tears (Coix lacryma-jobi), and rye. An increase in HDMBOA-Glc and a corresponding decrease in 2-(2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one)-beta-D-glucopyranose (DIMBOA-Glc) were found in wheat and Job's tears, whereas no such changes were observed in rye. The activity of S-adenosyl-L-methionine:DIMBOA-Glc 4-O-methyltransferase which catalyzes the conversion of DIMBOA-Glc to HDMBOA-Glc was detected in wheat leaves treated with 50 micro M JA. The activity started to increase 3 h after treatment with JA, reached a maximum after 9 h, and then decreased gradually. This mode of induction was well correlated with that for the accumulation of HDMBOA-Glc, indicating the induction of enzyme activity was responsible for the accumulation of HDMBOA-Glc. The enzyme was purified from JA-treated wheat leaves by three steps of chromatography, resulting in 95-fold purification. The enzyme showed strict substrate specificity for DIMBOA-Glc with a K(m) value of 0.12 mM. DIBOA-Glc was also accepted as substrate, but the K(m) value was 10 times larger than that for DIMBOA-Glc. The aglycones, DIMBOA and DIBOA, were not methylated by the enzyme. The K(m) value for S-adenosyl-L-methionine was 0.06 mM. The optimum pH and temperature were 7.5 and 35 degrees C, respectively. The activity was slightly enhanced by the presence of 1 mM EDTA, while heavy metal ions at 5 mM completely inhibited the activity.  相似文献   

11.
This study assessed selected measures of cognitive function in trained cyclists who observed daylight fasting during Ramadan. Eleven cyclists volunteered to participate (age: 21.6±4.8 years, VO2max: 57.7±5.6 ml kg−1·min−1) and were followed for 2 months. Cognitive function (Cambridge Neuropsychological Test Automated Battery (CANTAB), Reaction Time index (RTI) and Rapid Visual Information Processing (RVP) tests) and sleep architecture (ambulatory EEG) were assessed: before Ramadan (BR), in the 1st week (RA1) and 4th week of Ramadan (RA4), and 2 weeks post-Ramadan (PR). Both cognitive tests were performed twice per day: before and after Ramadan at 8-10 a.m. and 4-6 p.m., and during Ramadan at 4-6 p.m. and 0-2 a.m., respectively. Training load (TL) by the rating of perceived exertion (RPE) method and wellness (Hooper index) were measured daily. If the TL increased over the study period, this variable was stable during Ramadan. The perceived fatigue and delayed onset muscle soreness (DOMS) increased at RA4. Sleep patterns and architecture showed clear disturbances, with significant increases in the number of awakenings and light sleep durations during Ramadan (RA1 and RA4), together with decreased durations of deep and REM sleep stages at PR. RTI (simple and multiple reaction index) reaction and movement times did not vary over the study period. The RVP test showed reduced false alarms during Ramadan, suggesting reduced impulsivity. Overall accuracy significantly increased at RA1, RA4 and PR compared to baseline. At RA4, the accuracy was higher at 0-2 a.m. compared to 4-6 p.m. Despite the observed disturbances in sleep architecture, Ramadan fasting did not negatively impact the cognitive performance of trained cyclists from the Middle East.  相似文献   

12.
Meat quality of pigs is dependent on biochemical and biophysical processes in the time course post mortem (p.m.) and is associated with the intracellular Ca2+ homeostasis. However, there is little known about changes in the Ca2+ transporting proteins controlling the Ca2+ uptake of sarcoplasmic reticulum (SR) in the time course p.m. In this study changes in the Ca2+ transporting proteins were investigated in homogenates of longissimus muscles of 4 malignant hyperthermia susceptible (MHS) and 6 malignant hyperthermia resistant (MHR) Pietrain pigs. Muscle samples were obtained at different time intervals: biopsy 2 h prior slaughtering and from the carcass immediately after exsanguination (0 h), 45 min, 4 h, and 22 h p.m. The SR Ca2+ uptake rate was measured immediately after homogenization with closed calcium release channel (CRC), with opened CRC and without manipulation of CRC. Additionally the SR Ca2+ ATPase activity was determined.The results show: (i) The ability of SR to sequester Ca2+ declined to about 60% in the first 45 min p.m. in MHS samples irrespective of CRC state, whereas in MHR samples this decline was about 5%; (ii) Ca2+ uptake and Ca2+ ATPase activity were not different between the biopsy and 0 h samples, i.e. the stress of slaughter was of no immediate influence; (iii) The Ca2+ ATPase activity of the SR declined at about the same rate as the Ca2+ uptake in both MHS and MHR pig samples in the course of time p.m.; (iv) In samples, taken immediately after exsanguination, the Ca2+ ATPase activity of MHS pigs was higher than that of MHR pigs. However, in samples taken 4 h p.m. Ca2+ ATPase activity of MHS pigs has declined to about 30% of the value at 0 h; (v) The CRC can be closed and opened in all samples up to 22 h p.m. and seems to be fully functional at all sampling times; (vi) The CRC of MHS pigs is almost fully open, whereas the CRC of MHR pigs is only partially open at all sampling times; (vii) The permeability of the SR membrane to Ca2+ (determined as the ratio of SR Ca2+ ATPase with and without ionophore A23187) is the same in both MHS and MHR and did not change with ongoing time; (viii) No uncoupling of uptake from ATP hydrolysis occurred up to 4 h p.m., but the coupling differed between MHS and MHR for all time intervals with lower values for MHS pigs. The results suggest that the decreasing Ca2+ uptake rate of homogenates, sampled at different times p.m., is essentially caused by changes in the Ca2+ pump and not by changes in the CRC or an increased phospholipid membrane permeability to Ca2+.  相似文献   

13.
As determined by equilibrium dialysis, bovine liver argininosuccinase of molecular weight 202,000 binds 4 mol of argininosuccinate or arginine/mol of enzyme. Negative homotropic interactions occur in the binding of both ligands at 0.15 ionic strength in the presence of phosphate. Argininosuccinate binds to two sites (Kdiss 1.6 times 10(-5) M) and four sites (Kdiss 2.9 times 10(-4) M) at low and high substrate concentration. Similarly, arginine binds to two sites (Kdiss 4.9 times 10(-4) M), and four sites (Kdiss 1.6 times 10(-3) M). At 0.05 ionic strength in Tris-HCl buffer, the four enzyme sites bind argininosuccinate independently and arginine binding remains negatively cooperative. Kinetic analysis gave double reciprocal plots that showed negative cooperatively also. The changes in Km were analogous to changes in Kdiss, thus indicating that the substrate binding sites correspond to catalytic sites. Since the catalytically active enzyme is a tetramer composed of four identical or closely similar subunits (Lusty, C.J., and Ratner, S. (1972) J. Biol. Chem. 247, 7010-7022), the present results show that each subunit contains one catalytic site. Ionic strength, phosphate ions, and GTP have each been found to influence negative cooperatively through a change in the affinity for argininosuccinate. The significance of the negative homotropic interactions and of the specific stimulation of activity by GTP is discussed with respect to different conformational forms of the enzyme and the in vivo regulation of argininosuccinase activity.  相似文献   

14.
A Mg(2+)+Na(+)+K(+)-stimulated adenosine triphosphatase (ATPase) preparation was isolated from rat ventral prostate by flotation of microsomal membranes in high-density sucrose solutions. The reaction medium for optimum Na(+)+K(+)-stimulated ATPase activity was found to be: Na(+), 115mm; K(+), 7-10mm; Mg(2+), 3mm; ATP, 3mm; tris buffer, pH7.4 at 38 degrees , 20mm. The average DeltaP(i) (Mg(2+)+Na(+)+K(+) minus Mg(2+)+Na(+)) was 9mumoles/mg. of protein/hr., representing a 30% increase over the Mg(2+)+Na(+)-stimulated ATPase activity. At high concentrations, K(+) was inhibitory to the enzyme activity. Half-maximal inhibition of Na(+)+K(+)-stimulated ATPase activity was elicited by ouabain at 0.1mm. The preparation exhibited phosphatase activity towards ribonucleoside triphosphates other than ATP. However, stimulation of P(i) release by Na(+)+K(+) was observed only with ATP as substrate. The apparent K(m) for ATP for Na(+)+K(+)-stimulated activity was about 0.3x10(-3)m. Ca(2+) inhibited only the Na(+)+K(+)-stimulated ATPase activity. Mg(2+) could be replaced by Ca(2+) but then no Na(+)+K(+) stimulation of ATPase activity was noticed. The addition of testosterone or dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) in vitro at 0.1-10mum under a variety of experimental conditions did not significantly increase the Na(+)+K(+)-stimulated ATPase activity. The enzyme preparations from prostates of orchidectomized rats, however, exhibited a drastic decrease in the specific activity of Na(+)+K(+)-stimulated ATPase; these changes were prevented in the orchidectomized rats by injection of testosterone propionate.  相似文献   

15.
Adenosine triphosphatase (ATPase) from Thiobacillus ferrooxidans was purified 55-fold. Polyacrylamide gel electrophoresis of the most purified fraction showed only one major band; histochemical analysis showed that the ATPase activity was associated with this band. The pH optimum is 9-10. The enzyme hydrolyzed ATP stoichiometrically to ADP and inorganic phosphate, the Km for this substrate being 7.75 times 10-3 M. GTP and ITP are alternate substrates, the Km values for these being 6.71 times 10-3 M and 3.12 times 10-3 M, respectively. ADP is slightly hydrolyzed. Magnesium, manganese, and calcium can serve as cofactors; Km values for these are 2.0 times 10-3 M, 9.4 times 10-4 M, and 8.0 times 10-4 M, respectively. The enzyme activity was not activated by either sodium or potassium, but a combination of the two ions were inhibitory. Azide and p-hydroxymercuribenzoate strongly inhibited the enzyme activity, whereas cyanide, dinitrophenol, and N,N'-dicyclohexylcarbodiimide (DCCD) were without effect. The enzyme was cold labile at 0 degrees-C, but was more stable at 18-24 degrees-C.  相似文献   

16.
Abstract— The possible existence of type C MAO, distinct from type A and type B, in circumventricular structures of rat brain was examined by histological studies on the inhibitory effects of clorgyline. a preferential type A MAO inhibitor and deprenyl, a preferential type B inhibitor, on enzyme. Brain slices were preincubated with the inhibitors and then incubated with 5-HT, the substrate for type A MAO, and stained for MAO activity. Deposits of the product formazan were detected in circumventricular structures of slices of brain preincubated with clorgyline and deprenyl at concentrations of 10-7–10-4m at room temperature for 5 min. When the slices were preincubated with either of these inhibitors at room temperature for 60 min, strong activity was observed in this region, whereas when they were preincubated with either 10-5m -clorgyline or 10-5m -deprenyl for 20 and 30 min at 37°C, no MAO activity was seen in any region of the brain. Thus, at the higher preincubation temperature, lower concentrations of each inhibitor and a shorter preincubation period were required for inhibition of the enzyme. Preincubation for 60 min at 37°C with a combination of 10-7m -clorgyline and 10-8m -deprenyl did not inhibit the enzyme in the circumventricular region completely, but at the same temperature, concentrations of 10-7m of both inhibitors inhibited the enzyme completely in 10min, Thus the effects of the inhibitors are synergistic. These results indicate that the inhibitory effects of the two inhibitors on the enzyme in circumventricular structures of the brain is time- and temperature-dependent. Moreover, the activity seems to be sensitive to deprenyl even when 5-HT is used as substrate. The results do not support the idea of the existence of type C MAO, distinct from type A and type B MAO.  相似文献   

17.
The role of acetylcholinesterase (AChE) in the termination of the cholinergic response through acetylcholine (ACh) hydrolysis and the involvement of plasma butyrylcholinesterase (BuChE), mainly of hepatic origin, in the metabolism of xenobiotics with ester bonds is well known. Besides, BuChE has a crucial role in ACh hydrolysis, especially when selective anticholinesterases inhibit AChE. Herein, we analyzed the gender-related differences and the circadian changes of rat plasma cholinesterases. Plasma and liver cholinesterase activities were evaluated in control or 2–30-day castrated adult male and female rats. Plasma and liver AChE activities did not differ between genders and were not influenced by sex hormone deprivation. BuChE plasma activity was 7 times greater in female, reflecting gender differences in liver enzyme expression. Castration increased liver and plasma BuChE activity in male, while reduced it in female, abolishing gender differences in enzyme activity. Interestingly, female AChE and BuChE plasma activities varied throughout the day, reaching values 27% and 42% lower, respectively, between 2 p.m. and 6 p.m. when compared to the morning peaks at 8 a.m. Castration attenuated daily female BuChE oscillation. On the other hand, male plasma enzymes remained constant throughout the day. In summary, our results show that liver and plasma BuChE, but not AChE, expression is influenced by sex hormones, leading to high levels of blood BuChE in females. The fluctuation of female plasma BuChE during the day should be taken into account to adjust the bioavailability and the therapeutic effects of cholinesterase inhibitors used in cholinergic-based conditions such Alzheimer's disease.  相似文献   

18.
D-Ribose isomerase, which catalyzes the conversion of D-ribose to D-ribulose, was purified from extracts of Mycobacterium smegmatis grown on D-ribose. The purified enzyme crystalized as hexagonal plates from a 44% solution of ammonium sulfate. The enzyme was homogenous by disc gel electrophoresis and ultracentrifugal analysis. The molecular weight of the enzyme was between 145,000 and 174,000 by sedimentation equilibrium analysis. Its sedimentation constant of 8.7 S indicates it is globular. On the basis of sodium dodecyl sulfate gel electrophoresis in the presence of Mn2+, the enzyme is probably composed of 4 identical subunits of molecular weight about 42,000 to 44,000. The enzyme was specific for sugars having the same configuration as D-ribose at carbon atoms 1 to 3. Thus, the enzyme could also utilize L-lyxose, D-allose, and L-rhamnose as substrates. The Km for D-ribose was 4 mM and for L-lyxose it was 5.3 mM. The enzyme required a divalent cation for activity with optimum activity being shown with Mn2+. the Km for the various cations was as follows: Mn2+, 1 times 10(-7) M, Co2+, 4 times 10(-7) M, and Mg2+, 1.8 times 10(-5) M. The pH optimum for the enzyme was 7.5 to 8.5. Polyols did not inhibit the enzyme to any great extent. The product of the reaction was identified as D-ribulose by thin layer chromatography and by preparation of the O-nitrophenylhydrazone derivative.  相似文献   

19.
Rainbow trout of different sizes (10 and 100g) were injected intramuscularly (i.m.) or intraperitoneally (i.p.) with different doses (range 10 ng-10 microg) of a viral haemorrhagic septicaemia (VHS)-DNA vaccine (pcDNA3vhsG). As controls, fish were injected with the pcDNA3 plasmid alone, or with inactivated VHS virus. Fish were challenged at different times post-vaccination (p.v.) to assess protection. At certain times p.v., serum samples were analysed for neutralising antibody and liver tissue was analysed for Mx mRNA expression. A DNA dose of 0.5 microg injected by the i.m. route induced protection in fish of all sizes in challenges performed either 1 or 4 weeks p.v. This dose also conferred effective protection up to 9 months p.v. in fish >100 g. With lower doses of DNA (0.1 and 0.01 microg) and challenge at 4 weeks p.v., 10 g fish were partially protected but protection was not observed in 100 g fish. Vaccination by the i.p. route induced no or lower levels of protection compared with the i.m. route. Fish vaccinated with 0.5 microg DNA i.m. had no detectable serum neutralising antibody (NAb) at 4 weeks p.v. (with the exception of a single 10 g fish) but antibody was detected at 8 weeks and 6 months p.v. but not at 9 months p.v. However, cohorts of these fish showed effective protection at all timepoints. Lack of detectable levels of NAb (at 9 weeks p.v.) despite partial protection in challenge at 4 weeks p.v. was also observed with 0.01 microg doses of DNA i.m. NAb was detected in sera of fish at 8 weeks after vaccination with 0.1 microg i.m. but not in fish vaccinated with doses of 0.01-0.5 microg i.p. Early protection (1 week p.v.) correlated with elevated Mx gene expression.  相似文献   

20.
Mitochondria isolated from sea urchin embryos in early development show almost the same activities of cytochrome c oxidase and flavin-linked complex enzymes, which are estimated by cytochrome c reductases as in those isolated from unfertilized eggs. The activities of these cytochrome c reductases are inhibited by Ca2+ at above 10-5 M more strongly than cytochrome c oxidase. To investigate the changes in intramitochondrial Ca2+ concentration at fertilization, the activity of pyruvate dehydrogenase, another mitochondrial enzyme, was measured. The activity of this enzyme was controlled by phosphorylation and Ca2+-dependent dephosphorylation of the catalytic unit. The enzyme activity increased for 30 min after fertilization, decreased and became close to zero within ~60 min. Then, the activity appreciably increased again after hatching. This seems to reflect changes in the intramitochondrial Ca2+ concentration. The enzyme activity was enhanced by pre-incubation with Ca2+ at concentrations up to 10-5 M but was made quite low at above 10-4 M Ca2+ and 10-3 M adenosine triphosphate. Although the changes in pyruvate dehydrogenase activity observed at fertilization will reflect the changes in the intramitochondrial calcium concentration, the intramitochondrial Ca2+ concentration of unfertilized eggs cannot be estimated from these results because high (> 10-4 M) or low (10-6 M) Ca2+ can inhibit the enzyme. Measurement of respiration of a single egg showed that injection of ethyleneglycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid released the mitochondrial electron transport in the unfertilized egg. The possibility that changes in intramitochondrial calcium concentration occur at fertilization is discussed in relation to activation of both mitochondrial respiration and pyruvate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号