首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SnoaL belongs to a family of small polyketide cyclases, which catalyse ring closure steps in the biosynthesis of polyketide antibiotics produced in Streptomyces. Several of these antibiotics are among the most used anti-cancer drugs currently in use. The crystal structure of SnoaL, involved in nogalamycin biosynthesis, with a bound product, has been determined to 1.35 A resolution. The fold of the subunit can be described as a distorted alpha+beta barrel, and the ligand is bound in the hydrophobic interior of the barrel. The 3D structure and site-directed mutagenesis experiments reveal that the mechanism of the intramolecular aldol condensation catalysed by SnoaL is different from that of the classical aldolases, which employ covalent Schiff base formation or a metal ion cofactor. The invariant residue Asp121 acts as an acid/base catalyst during the reaction. Stabilisation of the enol(ate) intermediate is mainly achieved by the delocalisation of the electron pair over the extended pi system of the substrate. These polyketide cyclases thus form of family of enzymes with a unique catalytic strategy for aldol condensation.  相似文献   

2.
AknH is a small polyketide cyclase that catalyses the closure of the fourth carbon ring in aclacinomycin biosynthesis in Streptomyces galilaeus, converting aklanonic acid methyl ester to aklaviketone. The crystal structure analysis of this enzyme, in complex with substrate and product analogue, showed that it is closely related in fold and mechanism to the polyketide cyclase SnoaL that catalyses the corresponding reaction in the biosynthesis of nogalamycin. Similarity is also apparent at a functional level as AknH can convert nogalonic acid methyl ester, the natural substrate of SnoaL, to auraviketone in vitro and in constructs in vivo. Despite the conserved structural and mechanistic features between these enzymes, the reaction products of AknH and SnoaL are stereochemically distinct. Supplied with the same substrate, AknH yields a C9-R product, like most members of this family of polyketide cyclases, whereas the product of SnoaL has the opposite C9-S stereochemistry. A comparison of high-resolution crystal structures of the two enzymes combined with in vitro mutagenesis studies revealed two critical amino acid substitutions in the active sites, which contribute to product stereoselectivity in AknH. Replacement of residues Tyr15 and Asn51 of AknH, located in the vicinity of the main catalytic residue Asp121, by their SnoaL counter-parts phenylalanine and leucine, respectively, results in a complete loss of product stereoselectivity.  相似文献   

3.
Tetracenomycin F2 cyclase (tcmI gene product), catalyzes an aromatic rearrangement in the biosynthetic pathway for tetracenomycin C in Streptomyces glaucescens. The x-ray structure of this small enzyme has been determined to 1.9-A resolution together with an analysis of site-directed mutants of potential catalytic residues. The protein exhibits a dimeric betaalphabeta ferredoxin-like fold that utilizes strand swapping between subunits in its assembly. The fold is dominated by four strands of antiparallel sheet and a layer of alpha-helices, which creates a cavity that is proposed to be the active site. This type of secondary structural arrangement has been previously observed in polyketide monooxygenases and suggests an evolutionary relationship between enzymes that catalyze adjacent steps in these biosynthetic pathways. Mutational analysis of all of the obvious catalytic bases within the active site suggests that the enzyme functions to steer the chemical outcome of the cyclization rather than providing a specific catalytic group. Together, the structure and functional analysis provide insight into the structural framework necessary to perform the complex rearrangements catalyzed by this class of polyketide cyclases.  相似文献   

4.
Anthracyclines are aromatic polyketide antibiotics, and several of these compounds are widely used as anti-tumor drugs in chemotherapy. Aclacinomycin-10-hydroxylase (RdmB) is one of the tailoring enzymes that modify the polyketide backbone in the biosynthesis of these metabolites. RdmB, a S-adenosyl-L-methionine-dependent methyltransferase homolog, catalyses the hydroxylation of 15-demethoxy-epsilon-rhodomycin to beta-rhodomycin, one step in rhodomycin biosynthesis in Streptomyces purpurascens. The crystal structure of RdmB, determined by multiwavelength anomalous diffraction to 2.1A resolution, reveals that the enzyme subunit has a fold similar to methyltransferases and binds S-adenosyl-L-methionine. The N-terminal domain, which consists almost exclusively of alpha-helices, is involved in dimerization. The C-terminal domain contains a typical alpha/beta nucleotide-binding fold, which binds S-adenosyl-L-methionine, and several of the residues interacting with the cofactor are conserved in O-methyltransferases. Adjacent to the S-adenosyl-L-methionine molecule there is a large cleft extending to the enzyme surface of sufficient size to bind the substrate. Analysis of the putative substrate-binding pocket suggests that there is no enzymatic group in proximity of the substrate 15-demethoxy-epsilon-rhodomycin, which could assist in proton abstraction and thus facilitate methyl transfer. The lack of a suitably positioned catalytic base might thus be one of the features responsible for the inability of the enzyme to act as a methyltransferase.  相似文献   

5.
Laura Silvennoinen 《FEBS letters》2009,583(17):2917-2921
RemF is a polyketide cyclase involved in the biosynthesis of the aromatic pentacyclic metabolite resistomycin in Streptomyces resistomycificus. The enzyme is a member of a structurally hitherto uncharacterized class of polyketide cyclases. The crystal structure of RemF was determined by SAD and refined to 1.2 Å resolution. The enzyme subunit shows a β-sandwich structure with a topology characteristic for the cupin fold. RemF contains a metal binding site located at the bottom of the predominantly hydrophobic active site cavity. A zinc ion is coordinated to four histidine side chains, and two water molecules in octahedral ligand sphere geometry, highly unusual for zinc binding sites in proteins.  相似文献   

6.
The three-dimensional structure of Aspergillus aculeatus beta-1,4-galactanase (AAGAL), an enzyme involved in pectin degradation, has been determined by multiple isomorphous replacement to 2.3 and 1.8 A resolution at 293 and 100 K, respectively. It represents the first known structure for a polysaccharidase with this specificity and for a member of glycoside hydrolase family 53 (GH-53). The enzyme folds into a (beta/alpha)(8) barrel with the active site cleft located at the C-terminal side of the barrel consistent with the classification of GH-53 in clan GH-A, a superfamily of enzymes with common fold and catalytic machinery but diverse specificities. Putative substrate-enzyme interactions were elucidated by modeling of beta-1,4-linked galactobioses into the possible substrate binding subsites. The structure and modeling studies identified five potential subsites for the binding of galactans, of which one is a pocket suited for accommodating the arabinan side chain in arabinogalactan, one of the natural substrates. A comparison with the substrate binding grooves of other Clan GH-A enzymes suggests that shape complementarity is crucial in determining the specificity of polysaccharidases.  相似文献   

7.
Ketopantoate hydroxymethyltransferase (KPHMT) catalyzes the first committed step in the biosynthesis of pantothenate, which is a precursor to coenzyme A and is required for penicillin biosynthesis. The crystal structure of KPHMT from Mycobacterium tuberculosis was determined by the single anomalous substitution (SAS) method at 2.8 A resolution. KPHMT adopts a structure that is a variation on the (beta/alpha) barrel fold, with a metal binding site proximal to the presumed catalytic site. The protein forms a decameric complex, with subunits in opposing pentameric rings held together by a swapping of their C-terminal alpha helices. The structure reveals KPHMT's membership in a small, recently discovered group of (beta/alpha) barrel enzymes that employ domain swapping to form a variety of oligomeric assemblies. The apparent conservation of certain detailed structural characteristics suggests that KPHMT is distantly related by divergent evolution to enzymes in unrelated pathways, including isocitrate lyase and phosphoenolpyruvate mutase.  相似文献   

8.
Fructose-6-phosphate aldolase from Escherichia coli is a member of a small enzyme subfamily (MipB/TalC family) that belongs to the class I aldolases. The three-dimensional structure of this enzyme has been determined at 1.93 A resolution by single isomorphous replacement and tenfold non-crystallographic symmetry averaging and refined to an R-factor of 19.9% (R(free) 21.3%). The subunit folds into an alpha/beta barrel, with the catalytic lysine residue on barrel strand beta 4. It is very similar in overall structure to that of bacterial and mammalian transaldolases, although more compact due to extensive deletions of additional secondary structural elements. The enzyme forms a decamer of identical subunits with point group symmetry 52. Five subunits are arranged as a pentamer, and two ring-like pentamers pack like a doughnut to form the decamer. A major interaction within the pentamer is through the C-terminal helix from one monomer, which runs across the active site of the neighbouring subunit. In classical transaldolases, this helix folds back and covers the active site of the same subunit and is involved in dimer formation. The inter-subunit helix swapping appears to be a major determinant for the formation of pentamers rather than dimers while at the same time preserving importing interactions of this helix with the active site of the enzyme. The active site lysine residue is covalently modified, by forming a carbinolamine with glyceraldehyde from the crystallisation mixture. The catalytic machinery is very similar to that of transaldolase, which together with the overall structural similarity suggests that enzymes of the MipB/TALC subfamily are evolutionary related to the transaldolase family.  相似文献   

9.
We have determined the 2.5 angstroms crystal structure of an active, tetrameric Streptomyces coelicolor type II polyketide ketoreductase (actIII) with its bound cofactor, NADP+. This structure shows a Rossman dinucleotide binding fold characteristic of SDR enzymes. Of two subunits in the crystallographic asymmetric unit, one is closed around the active site. Formate is observed in the open subunit, indicating possible carbonyl binding sites of the polyketide intermediate. Unlike previous models we observe crystal contacts that may mimic the KR-ACP interactions that may drive active site opening. Based on these observations, we have constructed a model for ACP and polyketide binding. We propose that binding of ACP triggers a conformational change from the closed to the open, active form of the enzyme. The polyketide chain enters the active site and reduction occurs. The model also suggests a general mechanism for ACP recognition which is applicable to a range of protein families.  相似文献   

10.
The three-dimensional structure of the alpha 2 beta 2 complex of tryptophan synthase from Salmonella typhimurium has been determined by x-ray crystallography at 2.5 A resolution. The four polypeptide chains are arranged nearly linearly in an alpha beta beta alpha order forming a complex 150 A long. The overall polypeptide fold of the smaller alpha subunit, which cleaves indole glycerol phosphate, is that of an 8-fold alpha/beta barrel. The alpha subunit active site has been located by difference Fourier analysis of the binding of indole propanol phosphate, a competitive inhibitor of the alpha subunit and a close structural analog of the natural substrate. The larger pyridoxal phosphate-dependent beta subunit contains two domains of nearly equal size, folded into similar helix/sheet/helix structures. The binding site for the coenzyme pyridoxal phosphate lies deep within the interface between the two beta subunit domains. The active sites of neighboring alpha and beta subunits are separated by a distance of about 25 A. A tunnel with a diameter matching that of the intermediate substrate indole connects these active sites. The tunnel is believed to facilitate the diffusion of indole from its point of production in the alpha subunit active site to the site of tryptophan synthesis in the beta active site and thereby prevent its escape to the solvent during catalysis.  相似文献   

11.
Family 1 of glycosyl hydrolases is a large and biologically important group of enzymes. A new three-dimensional structure of this family, beta-glucosidase from Bacillus circulans sp. alkalophilus is reported here. This is the first structure of beta-glucosidase from an alkaliphilic organism. The model was determined by the molecular replacement method and refined to a resolution of 2.7 A. The quaternary structure of B. circulans sp. alkalophilus beta-glucosidase is an octamer and subunits of the octamer show a similar (beta/alpha)(8) barrel fold to that previously reported for other family 1 enzymes. The crystal structure suggested that Cys169 in the active site is substituted. The Cys169 is located near the putative acid/base catalyst Glu166 and it may contribute to the high pH optimum of the enzyme. The crystal structure also revealed that the asymmetric unit contains two octamers which have a clear binding interaction with each other. The ability of the octamers to link with each other suggested that beta-glucosidase from Bacillus circulans sp. alkalophilus is able to form long polymeric assemblies, at least in the crystalline state.  相似文献   

12.
D Koesling  E B?hme  G Schultz 《FASEB journal》1991,5(13):2785-2791
Guanylyl cyclases, which catalyze the formation of the intracellular signal molecule cyclic GMP from GTP, display structural features similar to other signal-transducing enzymes such as protein tyrosine-kinases and protein tyrosine-phosphatases. So far, three isoforms of mammalian membrane-bound guanylyl cyclases (GC-A, GC-B, GC-C), which are stimulated by either natriuretic peptides (GC-A, GC-B) or by the enterotoxin of Escherichia coli (GC-C), have been identified. These proteins belong to the group of receptor-linked enzymes, with different NH2-terminal extracellular receptor domains coupled to a common intracellular catalytic domain. In contrast to the membrane-bound enzymes, the heme-containing soluble guanylyl cyclase is stimulated by NO and NO-containing compounds and consists of two subunits (alpha 1 and beta 1). Both subunits contain the putative catalytic domain, which is conserved in the membrane-bound guanylyl cyclases and is found twice in adenylyl cyclases. Coexpression of the alpha 1- and beta 1-subunit is required to yield a catalytically active enzyme. Recently, another subunit of soluble guanylyl cyclase was identified and designated beta 2, revealing heterogeneity among the subunits of soluble guanylyl cyclase. Thus, different enzyme subunits may be expressed in a tissue-specific manner, leading to the assembly of various heterodimeric enzyme forms. The implications concerning the physiological regulation of soluble guanylyl cyclase are not known, but different mechanisms of soluble enzyme activation may be due to heterogeneity among the subunits of soluble guanylyl cyclase.  相似文献   

13.
Sun L  Warncke K 《Proteins》2006,64(2):308-319
The structure of the EutB protein from Salmonella typhimurium, which contains the active site of the coenzyme B12 (adenosylcobalamin)-dependent enzyme, ethanolamine ammonia-lyase, has been predicted by using structural proteomics techniques of comparative modelling. The 453-residue EutB protein displays no significant sequence identity with proteins of known structure. Therefore, secondary structure prediction and fold recognition algorithms were used to identify templates. Multiple three-dimensional template matching (threading) servers identified predominantly beta8alpha8, TIM-barrel proteins, and in particular, the large subunits of diol dehydratase (PDB: 1eex:A, 1dio:A) and glycerol dehydratase (PDB: 1mmf:A), as templates. Consistent with this identification, the dehydratases are, like ethanolamine ammonia-lyase, Class II coenzyme B12-dependent enzymes. Model building was performed by using MODELLER. Models were evaluated by using different programs, including PROCHECK and VERIFY3D. The results identify a beta8alpha8, TIM-barrel fold for EutB. The beta8alpha8, TIM-barrel fold is consistent with a central role of the alpha/beta-barrel structures in radical catalysis conducted by the coenzyme B12- and S-adenosylmethionine-dependent (radical SAM) enzyme superfamilies. The EutB model and multiple sequence alignment among ethanolamine ammonia-lyase, diol dehydratase, and glycerol dehydratase from different species reveal the following protein structural features: (1) a "cap" loop segment that closes the N-terminal region of the barrel, (2) a common cobalamin cofactor binding topography at the C-terminal region of the barrel, and (3) a beta-barrel-internal guanidinium group from EutB R160 that overlaps the position of the active-site potassium ion found in the dehydratases. R160 is proposed to have a role in substrate binding and radical catalysis.  相似文献   

14.
BACKGROUND: Dihydroneopterin triphosphate (H2NTP) is the central substrate in the biosynthesis of folate and tetrahydrobiopterin. Folate serves as a cofactor in amino acid and purine biosynthesis and tetrahydrobiopterin is used as a cofactor in amino acid hydroxylation and nitric oxide synthesis. In bacteria, H2NTP enters the folate biosynthetic pathway after nonenzymatic dephosphorylation; in vertebrates, H2NTP is used to synthesize tetrahydrobiopterin. The dihydroneopterin triphosphate epimerase of Escherichia coli catalyzes the inversion of carbon 2' of H2NTP. RESULTS: The crystal structure of the homo-octameric protein has been solved by a combination of multiple isomorphous replacement, Patterson search techniques and cyclic averaging and has been refined to a crystallographic R factor of 18.8% at 2.9 A resolution. The enzyme is a torus-shaped, D4 symmetric homo-octamer with approximate dimensions of 65 x 65 A. Four epimerase monomers form an unusual 16-stranded antiparallel beta barrel by tight association between the N- and C-terminal beta strands of two adjacent subunits. Two tetramers associate in a head-to-head fashion to form the active enzyme complex. CONCLUSIONS: The folding topology, quaternary structure and amino acid sequence of epimerase is similar to that of the dihydroneopterin aldolase involved in the biosynthesis of the vitamin folic acid. The monomer fold of epimerase is also topologically similar to that of GTP cyclohydrolase I (GTP CH-1), 6-pyrovoyl tetrahydropterin synthase (PTPS) and uroate oxidase (UO). Despite a lack of significant sequence homology these proteins share a common subunit fold and oligomerize to form central beta barrel structures employing different cyclic symmetry elements, D4, D5, D3 and D2, respectively. Moreover, these enzymes have a topologically equivalent acceptor site for the 2-amino-4-oxo pyrimidine (2-oxo-4-oxo pyrimidine in uroate oxidase) moiety of their respective substrates.  相似文献   

15.
The three-dimensional structure of yeast enolase has been determined by the multiple isomorphous replacement method followed by the solvent flattening technique. A polypeptide model, corresponding with the known amino acid sequence, has been fitted to the electron density map. Crystallographic restrained least-squares refinement of the model without solvent gave R = 20.0% for 6-2.25-A resolution with good geometry. A model with 182 water molecules and 1 sulfate which is still being refined has presently R = 17.0%. The molecule is a dimer with subunits related by 2-fold crystallographic symmetry. The subunit has dimensions 60 X 55 X 45 A and is built from two domains. The smaller N-terminal domain has an alpha + beta structure based on a three-stranded antiparallel meander and four helices. The main domain is an 8-fold beta + alpha-barrel. The enolase barrel is, however, different from the triose phosphate isomerase barrel; its topology is beta beta alpha alpha (beta alpha)6 rather than (beta alpha)8 as found in triose phosphate isomerase. The inner beta-barrel is not entirely parallel, the second strand is antiparallel to the other strands, and the direction of the first helix is also reversed with respect to the other helices. This supports the hypothesis that some enzymes evolved independently producing the stable structure of beta alpha barrels with either enolase or triose phosphate isomerase topology. The active site of enolase is located at the carboxylic end of the barrel. A fragment of the N-terminal domain and two long loops protruding from the barrel domain form a wide crevice leading to the active site region. Asp246, Glu295, and Asp320 are the ligands of the conformational cation. Other residues in the active site region are Glu168, Asp321, Lys345, and Lys396.  相似文献   

16.
The crystal structure of (3R)-hydroxyacyl-CoA dehydrogenase of rat peroxisomal multifunctional enzyme type 2 (MFE-2) was solved at 2.38 A resolution. The catalytic entity reveals an alpha/beta short chain alcohol dehydrogenase/reductase (SDR) fold and the conformation of the bound nicotinamide adenine dinucleotide (NAD(+)) found in other SDR enzymes. Of great interest is the separate COOH-terminal domain, which is not seen in other SDR structures. This domain completes the active site cavity of the neighboring monomer and extends dimeric interactions. Peroxisomal diseases that arise because of point mutations in the dehydrogenase-coding region of the MFE-2 gene can be mapped to changes in amino acids involved in NAD(+) binding and protein dimerization.  相似文献   

17.
Luciferase, as isolated from Vibrio harveyi, is an alpha beta heterodimer. When allowed to fold in the absence of the alpha subunit, either in vitro or in vivo, the beta subunit of enzyme will form a kinetically stable homodimer that does not unfold even after prolonged incubation in 5 M urea at pH 7.0 and 18 degrees C. This form of the beta subunit, arising via kinetic partitioning on the folding pathway, appears to constitute a kinetically trapped alternative to the heterodimeric enzyme (Sinclair JF, Ziegler MM, Baldwin TO. 1994. Kinetic partitioning during protein folding yields multiple native states. Nature Struct Biol 1: 320-326). Here we describe the X-ray crystal structure of the beta 2 homodimer of luciferase from V. harveyi determined and refined at 1.95 A resolution. Crystals employed in the investigational belonged to the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions of a = 58.8 A, b = 62.0 A, and c = 218.2 A and contained one dimer per asymmetric unit. Like that observed in the functional luciferase alpha beta heterodimer, the major tertiary structural motif of each beta subunit consists of an (alpha/beta)8 barrel (Fisher AJ, Raushel FM, Baldwin TO, Rayment I. 1995. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution. Biochemistry 34: 6581-6586). The root-mean-square deviation of the alpha-carbon coordinates between the beta subunits of the hetero- and homodimers is 0.7 A. This high resolution X-ray analysis demonstrated that "domain" or "loop" swapping has not occurred upon formation of the beta 2 homodimer and thus the stability of the beta 2 species to denaturation cannot be explained in such simple terms. In fact, the subunit:subunit interfaces observed in both the beta 2 homodimer and alpha beta heterodimer are remarkably similar in hydrogen-bonding patterns and buried surface areas.  相似文献   

18.
Recombinant glycerol dehydratase of Klebsiella pneumoniae was purified to homogeneity. The subunit composition of the enzyme was most probably alpha 2 beta 2 gamma 2. When (R)- and (S)-propane-1,2-diols were used independently as substrates, the rate with the (R)-enantiomer was 2.5 times faster than that with the (S)-isomer. In contrast to diol dehydratase, an isofunctional enzyme, the affinity of the enzyme for the (S)-isomer was essentially the same or only slightly higher than that for the (R)-isomer (Km(R)/Km(S) = 1.5). The crystal structure of glycerol dehydratase in complex with cyanocobalamin and propane-1,2-diol was determined at 2.1 A resolution. The enzyme exists as a dimer of the alpha beta gamma heterotrimer. Cobalamin is bound at the interface between the alpha and beta subunits in the so-called 'base-on' mode with 5,6-dimethylbenzimidazole of the nucleotide moiety coordinating to the cobalt atom. The electron density of the cyano group was almost unobservable, suggesting that the cyanocobalamin was reduced to cob(II)alamin by X-ray irradiation. The active site is in a (beta/alpha)8 barrel that was formed by a central region of the alpha subunit. The substrate propane-1,2-diol and essential cofactor K+ are bound inside the (beta/alpha)8 barrel above the corrin ring of cobalamin. K+ is hepta-coordinated by the two hydroxyls of the substrate and five oxygen atoms from the active-site residues. These structural features are quite similar to those of diol dehydratase. A closer contact between the alpha and beta subunits in glycerol dehydratase may be reminiscent of the higher affinity of the enzyme for adenosylcobalamin than that of diol dehydratase. Although racemic propane-1,2-diol was used for crystallization, the substrate bound to glycerol dehydratase was assigned to the (R)-isomer. This is in clear contrast to diol dehydratase and accounts for the difference between the two enzymes in the susceptibility of suicide inactivation by glycerol.  相似文献   

19.
X-ray structure of nucleoside diphosphate kinase.   总被引:8,自引:0,他引:8  
The X-ray structure of a point mutant of nucleoside diphosphate kinase (NDP kinase) from Dictyostelium discoideum has been determined to 2.2 A resolution. The enzyme is a hexamer made of identical subunits with a novel mononucleotide binding fold. Each subunit contains an alpha/beta domain with a four stranded, antiparallel beta-sheet. The topology is different from adenylate kinase, but identical to the allosteric domain of Escherichia coli ATCase regulatory subunits, which bind mononucleotides at an equivalent position. Dimer contacts between NDP kinase subunits within the hexamer are similar to those in ATCase. Trimer contacts involve a large loop of polypeptide chain that bears the site of the Pro----Ser substitution in Killer of prune (K-pn) mutants of the highly homologous Drosophila enzyme. Properties of Drosophila NDP kinase, the product of the awd developmental gene, and of the human enzyme, the product of the nm23 genes in tumorigenesis, are discussed in view of the three-dimensional structure and of possible interactions of NDP kinase with other nucleotide binding proteins.  相似文献   

20.
The amino acid sequence identity and potential structural similarity between the subunits of bacterial luciferase and the recently determined structure of the luxF molecule are examined. The unique beta/alpha barrel fold found in luxF appears to be conserved in part in the luciferase subunits. From secondary structural predictions of both luciferase subunits, and from structural comparisons between the protein product of the luxF gene, NFP, and glycolate oxidase, we propose that it is feasible for both luciferase subunits to adopt a (beta alpha)8 barrel fold with at least 2 excursions from the (beta alpha)8 topology. Amino acids conserved between NFP and the luciferase subunits cluster together in 3 distinct "pockets" of NFP, which are located at hydrophobic interfaces between the beta-strands and alpha-helices. Several tight turns joining the C-termini of beta-strands and the N-termini of alpha-helices are found as key components of these conserved regions. Helix start and end points are easily demarcated in the luciferase subunit protein sequences; the N-cap residues are the most strongly conserved structural features. A partial model of the luciferase beta subunit from Photobacterium leiognathi has been built based on our crystallographically determined structure of luxF at 1.6 A resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号