首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turgeon R  Medville R 《Plant physiology》2004,136(3):3795-3803
The incidence of plasmodesmata in the minor vein phloem of leaves varies widely between species. On this basis, two pathways of phloem loading have been proposed: symplastic where frequencies are high, and apoplastic where they are low. However, putative symplastic-loading species fall into at least two categories. In one, the plants translocate raffinose-family oligosaccharides (RFOs). In the other, the primary sugar in the phloem sap is sucrose (Suc). While a thermodynamically feasible mechanism of symplastic loading has been postulated for species that transport RFOs, no such mechanism is known for Suc transporters. We used p-chloromercuribenzenesulfonic acid inhibition of apoplastic loading to distinguish between the two pathways in three species that have abundant minor vein plasmodesmata and are therefore putative symplastic loaders. Clethra barbinervis and Liquidambar styraciflua transport Suc, while Catalpa speciosa transports RFOs. The results indicate that, contrary to the hypothesis that all species with abundant minor vein plasmodesmata load symplastically, C. barbinervis and L. styraciflua load from the apoplast. C. speciosa, being an RFO transporter, loads from the symplast, as expected. Data from these three species, and from the literature, also indicate that plants with abundant plasmodesmata in the minor vein phloem have abundant plasmodesmata between mesophyll cells. Thus, plasmodesmatal frequencies in the minor veins may be a reflection of overall frequencies in the lamina and may have limited relevance to phloem loading. We suggest that symplastic loading is restricted to plants that translocate oligosaccharides larger than Suc, such as RFOs, and that other plants, no matter how many plasmodesmata they have in the minor vein phloem, load via the apoplast.  相似文献   

2.
Ecophysiology of phloem loading in source leaves   总被引:6,自引:2,他引:4  
The nature of phloem loading of photosynthesis products – either symplastic or apoplastic – has been a matter of debate over the last two decades. This controversy was reconciled by proposing a multiprogrammed loading mechanism. Different modes of phloem loading were distinguished on the basis of the variety of plasmodesmatal connectivity between the minor vein elements. Physiological evidence for at least two phloem loading mechanisms as well as recent support for coincidence between plasmodesmatal connectivity and the loading mechanism is shortly reviewed. The present paper attempts to correlate the plasmodesmatal connectivity between sieve element/companion cell complex and the adjacent cells (the minor vein configuration) – and implicitly the associate phloem loading mechanisms – with different types of climate. The minor vein configuration is a family characteristic. This enables one to relate vein configuration with ecosystem using the family distribution over the globe. The uneven distribution of vein types between terrestrial ecosystems indicates that apoplastic phloem loading predominates in cold and dry climate zones. Projection of the minor vein configuration on the Takhtajan system of flowering plants suggests evolution from apoplastic to symplastic phloem loading. Accordingly, the distribution of minor vein configurations suggests that drought and temperature stress have led to the transformation of the ancient symplastic mode into the more advanced apoplastic mode of loading.  相似文献   

3.
Low night temperatures seriously affect plant growth and fruit quality. To investigate the effect of low night temperatures on the expression of galactinol synthase genes (GOLS) and phloem loading of raffinose family oligosaccharides, particular stachyose and raffinose (RFO represents stachyose and raffinose in this paper) and to gain a better understanding of the relationship between the phloem loading of RFO and fruit development, melon (Cucumis melo L.) plants at the fruit development stage were treated with temperatures of 28/12°C or 28/9°C (day/night) with 28/15°C as the control. Both the CmGOLS1 and CmGOLS2 gene expression and the activity of galactinol synthase were clearly repressed after treatments with 9 and 12°C at night, and the effect of 9°C was more obvious. Furthermore, low night temperatures inhibited photosynthesis and caused the lower amounts of sucrose to supply the RFO synthesis. However, the total soluble sugar, RFO, and sucrose contents were increased in leaves subjected to low night temperatures. It is supposed that low night temperature blocked symplastic phloem loading, which led to the accumulation of RFO in the leaf cells. With increasing content of RFO in the leaves, the expression of GOLS genes was inhibited according to the principle of feedback, and therefore the decreased expression of GOLS limited RFO synthesis and was indirectly harmful to phloem loading, thereby affecting fruit development.  相似文献   

4.
Minor vein ultrastructure and phloem loading were studied in leaves of the tulip tree (Liriodendron tulipifera; Magnoliaceae). Plasmodesmatal frequencies leading into minor vein companion cells are higher than in species known to load via the apoplast. However, these companion cells are not specialized as "intermediary cells" as they are in species in which the best evidence for symplastic phloem loading has been documented. Mesophyll cells plasmolyzed in 600 mM sorbitol, whereas sieve elements and companion cells did not plasmolyze even in 1.2 M sorbitol, indicating that solute accumulates in the phloem against a steep concentration gradient. Both [(14)C]sucrose and (14)C-labeled photo-assimilate accumulated in the minor vein network, as demonstrated by autoradiography. [(14)C]sucrose accumulation was prevented by p-chloromercuribenzenesulfonic acid, an inhibitor of sucrose-proton cotransport from the apoplast. p-Chloromercuribenzenesulfonic acid largely, but not entirely, inhibited exudation of radiolabeled photoassimilate. The evidence is most consistent with the presence of an apoplastic component to phloem loading in this species, contrary to speculation that the more basal members of the angiosperms load by an entirely symplastic mechanism.  相似文献   

5.
6.
Summary Minor vein structure in various taxonomic groups was described in a previous paper (Gamalei 1989). Here, these results are used to correlate minor vein structure with plant evolutionary, ecological and growth form schemes. The following pattern emerges: reductive evolution from evergreen trees to annual herbs is accompanied by gradually increasing symplastic isolation of the mesophyll and the phloem. This evolutionary tendency is confirmed by the ecological spreading and life-form distribution of modern plants with different types of minor vein structure. The meaning of this phenomenon is discussed. Chilling sensitivity of plasmodesmal translocation is considered to be the main reason. It is suggested that phloem loading for assimilate transport is double-routed. The symplastic route is more ancient and more economical for loading. The apoplastic pathway becomes the main or the only route under unfavorable conditions. The existence of a symplast/apoplast regulatory loading mechanism is suggested. The two loading routes differ in their selectivity for products of photosynthesis which changes their symplast/apoplast ratio which, in turn, determines the composition of the sieve tube exudate. The latter will influence growth and morphogenesis. Correlated changes of structure and function related to photosynthesis, loading, translocation and growth, are analysed with respect to life-form evolution. The influence of the pathway of loading on other processes is discussed.  相似文献   

7.
Apoplastic phloem loaders have an apoplastic step in the movement of the translocated sugar, prototypically sucrose, from the mesophyll to the companion cell-sieve tube element complex. In these plants, leaf apoplastic sucrose becomes concentrated in the guard cell wall to nominally 150 mM by transpiration during the photoperiod. This concentration of external sucrose is sufficient to diminish stomatal aperture size in an isolated system and to regulate expression of certain genes. In contrast to apoplastic phloem loaders and at the other extreme, strict symplastic phloem loaders lack an apoplastic step in phloem loading and mostly transport raffinose family oligosaccharides (RFOs), which are at low concentrations in the leaf apoplast. Here, the effects of the phloem-loading mechanism and associated phenomena on the immediate environment of guard cells are reported. As a first step, carbohydrate analyses of phloem exudates confirmed basil (Ocimum basilicum L. cv. Minimum) as a symplastic phloem-loading species. Then, aspects of stomatal physiology of basil were characterized to establish this plant as a symplastic phloem-loading model species for guard cell research. [(14)C]Mannitol fed via the cut petiole accumulated around guard cells, indicating a continuous leaf apoplast. The (RFO+sucrose+hexoses) concentrations in the leaf apoplast were low, <0.3 mM. Neither RFOs (<10 mM), sucrose, nor hexoses (all, P >0.2) were detectable in the guard cell wall. Thus, differences in phloem-loading mechanisms predict differences in the in planta regulatory environment of guard cells.  相似文献   

8.
The evolution of minor vein phloem and phloem loading   总被引:1,自引:0,他引:1  
Phylogenetic analysis provides a rational basis for comparative studies of phloem structure and phloem loading. Although several types of minor vein companion cell have been identified, and progress has been made in correlating structural features of these cells with loading mechanisms, little is known about the phylogenetic relationships of the different types. To add to the available data on companion cells, we analyzed the ultrastructure of minor veins in Euonymus fortunei and Celastrus orbiculatis (Celastraceae) leaves and determined that in these species they are specialized as intermediary cells. This cell type has been implicated in symplastic phloem loading. The data were added to published data sets on minor vein phloem characteristics, which were then mapped to a well-supported molecular tree. The analysis indicates that extensive plasmodesmatal continuity between minor vein phloem and surrounding cells is ancestral in the angiosperms. Reduction in plasmodesmatal frequency at this interface is a general evolutionary trend, punctuated by instances of the reverse. This is especially true in the case of intermediary cells that have many plasmodesmata, but other distinguishing characteristics as well, and have arisen independently at least four, and probably six, times in derived lineages. The character of highly reduced plasmodesmatal frequency in minor vein phloem, common in crop plants, has several points of origin in the tree. Thus, caution should be exercised in generalizing results on apoplastic phloem loading obtained from model species. Transfer cells have many independent points of origin, not always from lineages with reduced plasmodesmatal frequency.  相似文献   

9.
Acclimation of leaf features to growth temperature was investigated in two biennials (whose life cycle spans summer and winter seasons) using different mechanisms of sugar loading into exporting conduits, Verbascum phoeniceum (employs sugar‐synthesizing enzymes driving symplastic loading through plasmodesmatal wall pores of phloem cells) and Malva neglecta (likely apoplastic loader transporting sugar via membrane transport proteins of phloem cells). In both species, acclimation to lower temperature involved greater maximal photosynthesis rates and vein density per leaf area in close correlation with modification of minor vein cellular features. While the symplastically loading biennial exhibited adjustments in the size of minor leaf vein cells (consistent with adjustment of the level of sugar‐synthesizing enzymes), the putative apoplastic biennial exhibited adjustments in the number of cells (consistent with adjustment of cell membrane area for transporter placement). This upregulation of morphological and anatomical features at lower growth temperature likely contributes to the success of both the species during the winter. Furthermore, while acclimation to low temperature involved greater leaf mass per area in both species, this resulted from greater leaf thickness in V. phoeniceum vs a greater number of mesophyll cells per leaf area in M. neglecta. Both types of adjustments presumably accommodate more chloroplasts per leaf area contributing to photosynthesis. Both biennials exhibited high foliar vein densities (particularly the solar‐tracking M. neglecta), which should aid both sugar export from and delivery of water to the leaves.  相似文献   

10.
To determine the driving forces for symplastic sugar flux between mesophyll and phloem, gradients of sugar concentrations and osmotic pressure were studied in leaf tissues of two Scrophulariaceae species, Alonsoa meridionalis and Asarina barclaiana. A. meridionalis has a typical symplastic configuration of minor-vein phloem, i.e. intermediary companion cells with highly developed plasmodesmal connections to bundle-sheath cells. In A. barclaiana, two types of companion cells, modified intermediary cells and transfer cells, were found in minor-vein phloem, giving this species the potential to have a complex phloem-loading mode. We identified all phloem-transported carbohydrates in both species and analyzed the levels of carbohydrates in chloroplasts, vacuoles, and cytoplasm of mesophyll cells by nonaqueous fractionation. Osmotic pressure was measured in single epidermal and mesophyll cells and in whole leaves and compared with calculated values for phloem sap. In A. meridionalis, a 2-fold concentration gradient for sucrose between mesophyll and phloem was found. In A. barclaiana, the major transported carbohydrates, sucrose and antirrhinoside, were present in the phloem in 22- and 6-fold higher concentrations, respectively, than in the cytoplasm of mesophyll cells. The data show that diffusion of sugars along their concentration gradients is unlikely to be the major mechanism for symplastic phloem loading if this were to occur in these species. We conclude that in both A. meridionalis and A. barclaiana, apoplastic phloem loading is an indispensable mechanism and that symplastic entrance of solutes into the phloem may occur by mass flow. The conditions favoring symplastic mass flow into the phloem are discussed.  相似文献   

11.
Structure and function of leaf minor veins in trees and herbs   总被引:18,自引:0,他引:18  
Summary The structure of leaf minor veins in 700 species from 140 families of dicotyledons, monocotyledons and conifers has been studied by light and electron microscopy. The presence of several structural types of minor veins has been shown. The main types are open and closed veins characteristic of trees and herbs, respectively. These vein types differ by the structure of intermediate cells, and by the mechanisms of phloem loading and sugar transport. Most woody plants have intermediate cells with numerous plasmodesmal fields, symplastic transport as the main phloem loading mechanism, as well as oligosaccharides and other complex sugars as the main phloem transport substances. By contrast, the majority of herbs have intermediate cells without plasmodesmal connections, and apoplastic loading of sucrose occurs only by membrane proton cotransport. The closed type is divided into three subtypes, differing in the degree of development of the structures used for sugar uptake from the apoplast. A list of the plants investigated with their vein types is given. The evolution of the minor vein structure and phloem loading mechanism are discussed in relation to the evolution of life forms of higher plants.  相似文献   

12.
Carbon export from leaf mesophyll to sugar-transporting phloem occurs via either an apoplastic (across the cell membrane) or symplastic (through plasmodesmatal cell wall openings) pathway. Herbaceous apoplastic loaders generally exhibit an up-regulation of photosynthetic capacity in response to growth at lower temperature. However, acclimation of photosynthesis to temperature by symplastically loading species, whose geographic distribution is particularly strong in tropical and subtropical areas, has not been characterized. Photosynthetic and leaf anatomical acclimation to lower temperature was explored in two symplastic (Verbascum phoeniceum, Cucurbita pepo) and two apoplastic (Helianthus annuus, Spinacia oleracea) loaders, representing summer- and winter-active life histories for each loading type. Regardless of phloem loading type, the two summer-active species, C. pepo and H. annuus, exhibited neither foliar anatomical nor photosynthetic acclimation when grown under low temperature compared to moderate temperature. In contrast, and again irrespective of phloem loading type, the two winter-active mesophytes, V. phoeniceum and S. oleracea, exhibited both a greater number of palisade cell layers (and thus thicker leaves) and significantly higher maximal capacities of photosynthetic electron transport, as well as, in the case of V. phoeniceum, a greater foliar vein density in response to cool temperatures compared to growth at moderate temperature. It is therefore noteworthy that symplastic phloem loading per se does not prevent acclimation of intrinsic photosynthetic capacity to cooler growth temperatures. Given the vagaries of weather and climate, understanding the basis of plant acclimation to, and tolerance of, low temperature is critical to maintaining and increasing plant productivity for food, fuel, and fiber to meet the growing demands of a burgeoning human population.  相似文献   

13.
Bachmann M  Matile P  Keller F 《Plant physiology》1994,105(4):1335-1345
Ajuga reptans is a frost-hardy, perennial labiate that is known for its high content of raffinose family oligosaccharide(s) (RFO). Seasonal variations in soluble nonstructural carbohydrate levels in above-ground parts of Ajuga showed that the RFO were by far the most predominant components throughout the whole year. RFO were lowest in summer (75 mg/g fresh weight) and highest in fall/winter (200 mg/g fresh weight), whereas sucrose and starch were only minor components. Cold treatment (14 d at 10/3[deg]C, day/night) of plants that were precultivated under warm conditions (25[deg]C) lowered the temperature optimum of net photosynthesis from 16[deg] to 8[deg]C, decreased the maximum rate, and increased the total nonstructural carbohydrate content of leaves by a factor of about 10, mainly because of an increase of RFO. The degree of polymerization of the RFO increased sequentially up to at least 15. A novel, galactinol-independent galactosyltransferase enzyme was found, forming from two molecules of RFO, the next higher and lower degree of polymerization of RFO. The enzyme had a pH optimum of 4.5 to 5.0 and may be responsible for RFO chain elongation. RFO were the main carbohydrates translocated in the phloem, with stachyose being by far the most dominant form. Studies of carbon balance during leaf development revealed a transition point between import and export at approximately 25% maximal leaf area. RFO synthesis could be detected even before the commencement of export, suggesting the existence of a nonphloem-linked RFO pool even in very young leaves. Taken together, it seems that Ajuga leaves contain two pools of RFO metabolism, a pronounced long-term storage pool in the mesophyll, possibly also involved in frost resistance, and a transport pool in the phloem.  相似文献   

14.
The mechanism of phloem loading in rice (Oryza sativa)   总被引:1,自引:0,他引:1  
Carbohydrates, mainly sucrose, that are synthesized in source organs are transported to sink organs to support growth and development. Phloem loading of sucrose is a crucial step that drives long-distance transport by elevating hydrostatic pressure in the phloem. Three phloem loading strategies have been identified, two active mechanisms, apoplastic loading via sucrose transporters and symplastic polymer trapping, and one passive mechanism. The first two active loading mechanisms require metabolic energy, carbohydrate is loaded into the phloem against a concentration gradient. The passive process, diffusion, involves equilibration of sucrose and other metabolites between cells through plasmodesmata. Many higher plant species including Arabidopsis utilize the active loading mechanisms to increase carbohydrate in the phloem to higher concentrations than that in mesophyll cells. In contrast, recent data revealed that a large number of plants, especially woody species, load sucrose passively by maintaining a high concentration in mesophyll cells. However, it still remains to be determined how the worldwide important cereal crop, rice, loads sucrose into the phloem in source organs. Based on the literature and our results, we propose a potential strategy of phloem loading in rice. Elucidation of the phloem loading mechanism should improve our understanding of rice development and facilitate its manipulation towards the increase of crop productivity.  相似文献   

15.
CO2 responsiveness of plants: a possible link to phloem loading   总被引:5,自引:3,他引:2  
Of the many responses of plants to elevated CO2, accumulation of total non-structural carbohydrates (TNC in % dry weight) in leaves is one of the most consistent. Insufficient sink activity or transport capacity may explain this obvious disparity between CO2 assimilation and carbohydrate dissipation and structural investment. If transport capacity contributes to the problem, phloem loading may be the crucial step. It has been hypothesized that symplastic phloem loading is less efficient than apoplastic phloem loading, and hence plant species using the symplastic pathway and growing under high light and good water supply should accumulate more TNC at any given CO2 level, but particularly under elevated CO2. We tested this hypothesis by carrying out CO2 enrichment experiments with 28 plant species known to belong to groups of contrasting phloem-loading type. Under current ambient CO2 symplastic loaders were found to accumulate 36% TNC compared with only 19% in apoplastic loaders (P=0.0016). CO2 enrichment to 600 μmol mol?1 increased TNC in both groups by the same absolute amount, bringing the mean TNC level to 41% in symplastic loaders (compared to 25% in apoplastic loaders), which may be close to TNC saturation (coupled with chlornplast malfunction). Eight tree species, ranked as symplastic loaders by their minor vein companion cell configuration, showed TNC responses more similar to those of apoplastic herbaceous loaders. Similar results are obtained when TNC is expressed on a unit leaf area basis, since mean specific leaf areas of groups were not significantly different. We conclude that phloem loading has a surprisingly strong effect on leaf tissue composition, and thus may translate into alterations of food webs and ecosystem functioning, particularly under high CO2.  相似文献   

16.
Raffinose family oligosaccharides (RFOs) are involved in the storage and transport of carbon and serve as compatible solutes for protection against abiotic stresses like drought or cold. RFOs are usually transported in plant species that load sugars symplastically into the phloem. Loading probably occurs by a polymer trapping mechanism which establishes a concentration gradient of assimilates between the mesophyll and the vasculature. Transgenic approaches have demonstrated phloem transport of small molecules produced in the companion cells of apoplastic loading species, but these molecules have been non-native transport substances to plants. In this study, transgenic potato plants with constitutive or companion cell specific overexpression of galactinol synthase (GS) or GS plus raffinose synthase (RS) are characterized, which together provide new insights into the metabolism and transport of RFOs in plants. It is demonstrated that raffinose and galactinol are both transported in the phloem and that, whilst the effect of GS overexpression is promoter-independent, that of RS is dependent on the promoter used. The presence of significant amounts of galactinol in the phloem is shown and also that transgenic potato is unable to transport large amounts of raffinose despite high RS expression and substrate concentrations. These data indicate that there may be additional features of intermediary cells, the specialized companion cells of RFO transporting plants, required for significant RFO synthesis and transport that are currently not well-understood.  相似文献   

17.
Turgeon R  Medville R 《Protoplasma》2011,248(1):173-180
Phloem loading is the process by which photoassimilates synthesized in the mesophyll cells of leaves enter the sieve elements and companion cells of minor veins in preparation for long distance transport to sink organs. Three loading strategies have been described: active loading from the apoplast, passive loading via the symplast, and passive symplastic transfer followed by polymer trapping of raffinose and stachyose. We studied phloem loading in Amborella trichopoda, a premontane shrub that may be sister to all other flowering plants. The minor veins of A. trichopoda contain intermediary cells, indicative of the polymer trap mechanism, forming an arc on the abaxial side and subtending a cluster of ordinary companion cells in the interior of the veins. Intermediary cells are linked to bundle sheath cells by highly abundant plasmodesmata whereas ordinary companion cells have few plasmodesmata, characteristic of phloem that loads from the apoplast. Intermediary cells, ordinary companion cells, and sieve elements form symplastically connected complexes. Leaves provided with 14CO2 translocate radiolabeled sucrose, raffinose, and stachyose. Therefore, structural and physiological evidence suggests that both apoplastic and polymer trapping mechanisms of phloem loading operate in A. trichopoda. The evolution of phloem loading strategies is complex and may be difficult to resolve.  相似文献   

18.
Transport of carbon-11 labelled photo-assimilate was monitoredin Phaseolus vulgaris. Beta vulgaris, Zea mays, and Cucwbitopepo. The region of leaf to be labelled was first abraded anda solution passed over it to gain access to its apoplast andmonitor changes in label therein. With PCMBS in the bathingsolution the rate of washout of label into the bathing solutionincreased, but the effect of phloem loading was very variablefor each species: on some occasions transport was hardly affected,on others it was halted. This was true even for Cucurbito pepo,where a symplastic pathway of loading has been widely acceptedand suggests that PCMBS affects symplastic transport or thatthere is an apoplastic step in Cucurbito pepo. Apoplastic pHhad little effect on transport or label washout unless a veryacid (pH 40) buffer was introduced, contrary to notions of hydrogenion co-transport for sugar uptake. Anoxia caused phloem loadingto decrease immediately and label washout to increase in allspecies. It is suggested that both symplastic and apoplasticpathways can operate in all species but that their proportionvaries according to species and ambient and/or growth conditions. Key words: Phloem loading, photo-assimilate transport  相似文献   

19.
Turgeon R  Gowan E 《Plant physiology》1990,94(3):1244-1249
Phloem loading in Coleus blumei Benth. leaves cannot be explained by carrier-mediated transport of export sugar from the apoplast into the sieve element-companion cell complex, the mechanism by which sucrose is thought to load in other species that have been studied in detail. Uptake profiles of the export sugars sucrose, raffinose, and stachyose into leaf discs were composed of two components, one saturable and the other not. Saturable (carrier-mediated) uptake of all three sugars was almost completely eliminated by the inhibitor p-chloromercuribenzenesulfonic acid (PCMBS). However, when PCMBS was introduced by transpiration into mature leaves it did not prevent accumulation of 14C-photosynthate in minor veins or translocation of labeled photosynthate from green to nonchlorophyllous regions of the leaf following exposure to 14CO2. The efficacy of introducing inhibitor solutions in the transpiration stream was proven by observing saffranin O and calcofluor white movement in the minor veins and leaf apoplast. PCMBS introduced by transpiration completely inhibited phloem loading in tobacco leaves. Phloem loading in C. blumei was also studied in plasmolysis experiments. The carbohydrate content of leaves was lowered by keeping plants in the dark and then increased by exposing them to light. The solute level of intermediary cells increased in the light (phloem loading) in both PCMBS-treated and control tissues. A mechanism of symplastic phloem loading is proposed for species that translocate the raffinose series of oligosaccharides.  相似文献   

20.
Minor veins and contiguous tissues of the Spinacia oleracea leaf were analyzed by electron microscopy to determine the characteristics of the component cells and the structure, distribution, and frequency of plasmodesmata between the various cell types of the leaf. Mesophyll and bundle-sheath cells contain components typical of photosynthetic cells although the latter cell type contains smaller chloroplasts and fewer mitochondria and microbodies than the mesophyll cells. In addition, the mesophyll cells contain numerous invaginations of the plasmalemma bordering the chloroplasts and evaginations of the outer membrane of the opposing chloroplast envelope. In places, these membranes appear continuous with each other. The minor veins consist of tracheary elements, xylem parenchyma cells, sieve-tube members, companion and phloem parenchyma cells, and other cells simply designated vascular parenchyma cells. The companion and phloem parenchyma cells are typically larger than the sieve-tube members with the companion cells containing a much denser cytoplasm that the phloem parenchyma. Cytoplasmic connections occur along all possible routes from the mesophyll to the sieve-tube members and consist of either simple or branched plasmodesmata between parenchymatic elements or pore-plasmodesmata between the sieve-tube members and parenchyma cells. The highest frequency of plasmodesmata occurs between the sieve-tube members and companion cells, although the value is essentially the same as between the various parenchymatic elements of the phloem. Compared to several previously studied species, the frequency of plasmodesmata between cell types of the spinach leaf is low. These results are discussed in relation to apoplastic vs. symplastic solute transport and sieve-tube loading in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号