首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The established mechanism for infection of most cells with adenovirus serotype 5 (Ad5) involves fiber capsid protein binding to coxsackievirus-adenovirus receptor (CAR) at the cell surface, followed by penton base capsid protein binding to alpha(v) integrins, which triggers clathrin-mediated endocytosis of the virus. Here we determined the identity of the capsid proteins responsible for mediating Ad5 entry into the acinar epithelial cells of the lacrimal gland. Ad5 transduction of primary rabbit lacrimal acinar cells was inhibited by excess Ad5 fiber or knob (terminal region of the fiber) but not excess penton base. Investigation of the interactions of recombinant Ad5 penton base, fiber, and knob with lacrimal acini revealed that the penton base capsid protein remained surface associated, while the knob domain of the fiber capsid protein was rapidly internalized. Introduction of rabbit CAR-specific small interfering RNA (siRNA) into lacrimal acini under conditions that reduced intracellular CAR mRNA significantly inhibited Ad5 transduction, in contrast to a control (nonspecific) siRNA. Preincubation of Ad5 with excess heparin or pretreatment of acini with a heparinase cocktail each inhibited Ad5 transduction by a separate and apparently additive mechanism. Functional and imaging studies revealed that Ad5, fiber, and knob, but not penton base, stimulated macropinocytosis in acini and that inhibition of macropinocytosis significantly reduced Ad5 transduction of acini. However, inhibition of macropinocytosis did not reduce Ad5 uptake. We propose that internalization of Ad5 into lacrimal acini is through a novel fiber-dependent mechanism that includes CAR and heparan sulfate glycosaminoglycans and that the subsequent intracellular trafficking of Ad5 is enhanced by fiber-induced macropinocytosis.  相似文献   

2.
R Neumann  J Chroboczek  B Jacrot 《Gene》1988,69(1):153-157
The major structural proteins of adenovirus (Ad), which form the external capsid, are hexon, penton base and fiber. The primary structure of the Ad5 penton base has been deduced from the nucleotide sequence of the corresponding gene. It has 98.6% homology with the sequence of the analogous protein from Ad2. This result is in contrast with the significantly lower homology found for the two other major structural proteins, the hexon and the fiber.  相似文献   

3.
M Bai  L Campisi    P Freimuth 《Journal of virology》1994,68(9):5925-5932
The penton base gene from adenovirus type 12 (Ad12) was sequenced and encodes a 497-residue polypeptide, 74 residues shorter than the penton base from Ad2. The Ad2 and Ad12 proteins are highly conserved at the amino- and carboxy-terminal ends but diverge radically in the central region, where 63 residues are missing from the Ad12 sequence. Conserved within this variable region is the sequence Arg-Gly-Asp (RGD), which, in the Ad2 penton base, binds to integrins in the target cell membrane, enhancing the rate or the efficiency of infection. The Ad12 penton base was expressed in Escherichia coli, and the purified refolded protein assembled in vitro with Ad2 fibers. In contrast to the Ad2 penton base, the Ad12 protein failed to cause the rounding of adherent cells or to promote attachment of HeLa S3 suspension cells; however, A549 cells did attach to surfaces coated with either protein and pretreatment of the cells with an integrin alpha v beta 5 monoclonal antibody reduced attachment to background levels. Treatment of HeLa and A549 cells with integrin alpha v beta 3 or alpha v beta 5 monoclonal antibodies or with an RGD-containing fragment of the Ad2 penton base protein inhibited infection by Ad12 but had no effect on and in some cases enhanced infection by Ad2. Purified Ad2 fiber protein reduced the binding of radiolabeled Ad2 and Ad12 virions to HeLa and A549 cells nearly to background levels, but the concentrations of fiber that strongly inhibited infection by Ad2 only weakly inhibited Ad12 infection. These data suggest that alpha v-containing integrins alone may be sufficient to support infection by Ad12 and that this pathway is not efficiently used by Ad2.  相似文献   

4.
The primary receptor, the coxsackievirus and adenovirus receptor (CAR), and the secondary receptor, αv integrins, are the tropism determinants of adenovirus (Ad) type 5. Inhibition of the interaction of both the fiber with CAR and the penton base with the αv integrin appears to be crucial to the development of targeted Ad vectors, which specifically transduce a given cell population. In this study, we developed Ad vectors with ablation of both CAR and αv integrin binding by mutating the fiber knob and the RGD motif of the penton base. We also replaced the fiber shaft domain with that derived from Ad type 35. High transduction efficiency in the mouse liver was suppressed approximately 130- to 270-fold by intravenous administration of the double-mutant Ad vectors, which mutated two domains each of the fiber knob and shaft and the RGD motif of the penton base compared with those of conventional Ad vectors (type 5). Most significantly, the triple-mutant Ad vector containing the fiber knob with ablation of CAR binding ability, the fiber shaft of Ad type 35, and the penton base with a deletion of the RGD motif mediated a >30,000-fold lower level of mouse liver transduction than the conventional Ad vectors. This triple-mutant Ad vector also mediated reduced transduction in other organs (the spleen, kidney, heart, and lung). Viral DNA analysis showed that systemically delivered triple-mutant Ad vector was primarily taken up by liver nonparenchymal cells and that most viral DNAs were easily degraded, resulting in little gene expression in the liver. These results suggest that the fiber knob, fiber shaft, and RGD motif of the penton base each plays an important role in Ad vector-mediated transduction to the mouse liver and that the triple-mutant Ad vector exhibits little tropism to any organs and appears to be a fundamental vector for targeted Ad vectors.  相似文献   

5.
The utility of the present generation of adenovirus (Ad) vectors for gene therapy applications could be improved by restricting native viral tropism to selected cell types. In order to achieve modification of Ad tropism, we proposed to exploit a minor component of viral capsid, protein IX (pIX), for genetic incorporation of targeting ligands. Based on the proposed structure of pIX, we hypothesized that its C terminus could be used as a site for incorporation of heterologous peptide sequences. We engineered recombinant Ad vectors containing modified pIX carrying a carboxy-terminal Flag epitope along with a heparan sulfate binding motif consisting of either eight consecutive lysines or a polylysine sequence. Using an anti-Flag antibody, we have shown that modified pIXs are incorporated into virions and display Flag-containing C-terminal sequences on the capsid surface. In addition, both lysine octapeptide and polylysine ligands were accessible for binding to heparin-coated beads. In contrast to virus bearing lysine octapeptide, Ad vector displaying a polylysine was capable of recognizing cellular heparan sulfate receptors. We have demonstrated that incorporation of a polylysine motif into the pIX ectodomain results in a significant augmentation of Ad fiber knob-independent infection of CAR-deficient cell types. Our data suggest that the pIX ectodomain can serve as an alternative to the fiber knob, penton base, and hexon proteins for incorporation of targeting ligands for the purpose of Ad tropism modification.  相似文献   

6.
We investigated the mechanism of adenovirus serotype 5 (Ad5)-mediated maturation of bone marrow-derived murine dendritic cells (DC) using (i) Ad5 vectors with wild-type capsid (AdE1 degrees, AdGFP); (ii) Ad5 vector mutant deleted of the fiber C-terminal knob domain (AdGFPDeltaknob); and (iii) capsid components isolated from Ad5-infected cells or expressed as recombinant proteins, hexon, penton, penton base, full-length fiber, fiber knob, and fiber mutants. We found that penton capsomer (penton base linked to its fiber projection), full-length fiber protein, and its isolated knob domain were all capable of inducing DC maturation, whereas no significant DC maturation was observed for hexon or penton base alone. This capacity was severely reduced for AdGFPDeltaknob and for fiber protein deletion mutants lacking the beta-stranded region F of the knob (residues Leu-485-Thr-486). The DC maturation effect was fully retained in a recombinant fiber protein deleted of the HI loop (FiDeltaHI), a fiber (Fi) deletion mutant that failed to trimerize, suggesting that the fiber knob-mediated DC activation did not depend on the integrity of the HI loop and on the trimeric status of the fiber. Interestingly, peptide-pulsed DC that had been stimulated with Ad5 knob protein induced a potent CD8+ T cell response in vivo.  相似文献   

7.
Cell infection by adenovirus serotypes 2 and 5 (Ad2/5) initiates with the attachment of Ad fiber to the coxsackievirus and Ad receptor (CAR) followed by alpha(v) integrin-mediated entry. We recently demonstrated that heparan sulfate glycosaminoglycans (HS GAGs) expressed on cell surfaces are involved in the binding and infection of Ad2/5 (M. C. Dechecchi, A. Tamanini, A. Bonizzato, and G. Cabrini, Virology 268:382-390, 2000). The role of HS GAGs was investigated using extracellular soluble domain 1 of CAR (sCAR-D1) and heparin as soluble receptor analogues of CAR and HS GAGs in A549 and recombinant CHO cell lines with differential levels of expression of the two receptors and cultured to various densities. Complete inhibition of binding and infection was obtained by preincubating Ad2/5 with both heparin (10 microg/ml) and sCAR-D1 (200 microg/ml) in A549 cells. Partial inhibition was observed when heparin and sCAR-D1 were preincubated separately with Ad. The level of heparin-sensitive [(3)H]Ad2/5 binding doubled in sparse A549 cells (50 to 70,000 cells/cm(2)) with respect to that of cells grown to confluence (200 to 300,000 cells/cm(2)), in parallel with increased expression of HS GAGs. [(3)H]Ad2 bound to sparse CAR-negative CHO cells expressing HS GAGs (CHO K1). No [(3)H]Ad2 binding was observed in CHO K1 cells upon competitive inhibition with heparin and in HS GAG-defective CHO A745, D677, and E606 clones. HS-sensitive Ad2 infection was obtained in CAR-negative sparse CHO K1 cells but not in CHO A745 cells, which were permissive to infection only upon transfection with CAR. These results demonstrate that HS GAGs are sufficient to mediate the initial binding of Ad2/5.  相似文献   

8.
We report a sub-nanometer resolution cryo-electron microscopy (cryoEM) structural analysis of an adenoviral vector, Ad35F, comprised of an adenovirus type 5 (Ad5) capsid pseudo-typed with an Ad35 fiber. This vector transduces human hematopoietic cells via association of its fiber protein with CD46, a member of the complement regulatory protein family. Major advances in data acquisition and image processing allowed a significant improvement in resolution compared to earlier structures. Analysis of the cryoEM density was enhanced by docking the crystal structures of both the hexon and penton base capsid proteins. CryoEM density was observed for hexon residues missing from the crystal structure that include hypervariable regions and the epitope of a neutralizing monoclonal antibody. Within the penton base, density was observed for the integrin-binding RGD loop missing from the crystal structure and for the flexible beta ribbon of the variable loop on the side of the penton base. The Ad35 fiber is flexible, consistent with the sequence insert in the third beta-spiral repeat. On the inner capsid surface density is revealed at the base of the hexons and below the penton base. A revised model is presented for protein IX within the virion. Well-defined density was assigned to a conserved domain in the N terminus of protein IX required for incorporation into the virion. For the C-terminal domain of protein IX two alternate conformations are proposed, either binding on the capsid surface or extending away from the capsid. This model is consistent with the tolerance of the C terminus for inserted ligands and its potential use in vector retargeting. This structural study increases our knowledge of Ad capsid assembly, antibody neutralization mechanisms, and may aid further improvements in gene delivery to important human cell types.  相似文献   

9.
We have analyzed the binding of adenovirus (Ad) serotypes from subgroups B, C, and D through fiber-virus and fiber-fiber cross-competition experiments. Since viruses in these distinct subgroups display markedly different tropisms, it was unexpected that the subgroup C viruses Ad2 and 5 and the subgroup D virus Ad9 cross-competed for the same cellular fiber receptor. The subgroup B serotype Ad3 recognized a receptor distinct from the Ad2, 5, and 9 fiber receptor. However, despite sharing the same fiber receptor, Ad2 and Ad9 displayed markedly different binding characteristics that appeared to result from direct Ad9 binding to cells via alpha(v)-integrins. Unlike Ad2, Ad9 binding to many cell lines was not abrogated by competition with the fiber 9 knob (F9K). Ad9 binding to fiber receptor-deficient cells was blocked by a monoclonal antibody to alpha(v)-integrins. In contrast, Ad9 binding to alpha(v)-deficient cells that express fiber receptor was blocked by F9K. Transfection of an alpha(v)-integrin-deficient cell line with a plasmid that expresses alpha(v)beta5 resulted in Ad9 binding that was not significantly blocked by F9K but was blocked with a combination of F9K and penton base. These results imply that the shorter length of fiber 9 (11 nm) relative to fiber 2 (37 nm) permits fiber-independent binding of Ad9 penton base to alpha(v)-integrins. The difference in fiber length may explain the different binding characteristics and tissue tropisms of each virus despite both utilizing the same fiber and penton base receptors.  相似文献   

10.
Human adenoviruses from multiple species bind to coagulation factor X (FX), yet the importance of this interaction in adenovirus dissemination is unknown. Upon contact with blood, vectors based on adenovirus serotype 5 (Ad5) binds to FX via the hexon protein with nanomolar affinity, leading to selective uptake of the complex into the liver and spleen. The Ad5:FX complex putatively targets heparan sulfate proteoglycans (HSPGs). The aim of this study was to elucidate the specific requirements for Ad5:FX-mediated cellular uptake in this high-affinity pathway, specifically the HSPG receptor requirements as well as the role of penton base-mediated integrin engagement in subsequent internalisation. Removal of HS sidechains by enzymatic digestion or competition with highly-sulfated heparins/heparan sulfates significantly decreased FX-mediated Ad5 cell binding in vitro and ex vivo. Removal of N-linked and, in particular, O-linked sulfate groups significantly attenuated the inhibitory capabilities of heparin, while the chemical inhibition of endogenous HSPG sulfation dose-dependently reduced FX-mediated Ad5 cellular uptake. Unlike native heparin, modified heparins lacking O- or N-linked sulfate groups were unable to inhibit Ad5 accumulation in the liver 1h after intravascular administration of adenovirus. Similar results were observed in vitro using Ad5 vectors possessing mutations ablating CAR- and/or α(v) integrin binding, demonstrating that attachment of the Ad5:FX complex to the cell surface involves HSPG sulfation. Interestingly, Ad5 vectors ablated for α(v) integrin binding showed markedly delayed cell entry, highlighting the need for an efficient post-attachment internalisation signal for optimal Ad5 uptake and transport following surface binding mediated through FX. This study therefore integrates the established model of α(v) integrin-dependent adenoviral infection with the high-affinity FX-mediated pathway. This has important implications for mechanisms that define organ targeting following contact of human adenoviruses with blood.  相似文献   

11.
Adenoviruses are common pathogens. The localization of their receptors coxsackievirus and adenovirus receptor, and desmoglein-2 in cell-cell junction complexes between polarized epithelial cells represents a major challenge for adenovirus infection from the apical surface. Structural proteins including hexon, penton base and fiber are excessively produced in serotype 5 adenovirus (Ad5)-infected cells. We have characterized the composition of structural protein complexes released from Ad5 infected cells and their capacity in remodeling cell-cell junction complexes. Using T84 cells as a model for polarized epithelium, we have studied the effect of Ad5 structural protein complexes in remodeling cell-cell junctions in polarized epithelium. The initial Ad5 infection in T84 cell culture was inefficient. However, progressive distortion of cell-cell junction in association with fiber release was evident during progression of Ad5 infection. Incubation of T84 cell cultures with virion-free supernatant from Ad5 infected culture resulted in distortion of cell-cell junctions and decreased infectivity of Ad5-GFP vector. We used gel filtration chromatography to fractionate fiber containing virion–free supernatant from Ad5 infected culture supernatant. Fiber containing fractions were further characterized for their capacity to inhibit the infection of Ad5-GFP vector, their composition in adenovirus structural proteins using western blot and LC-MS/MS and their capacity in remolding cell-cell junctions. Fiber molecules in complexes containing penton base and hexon, or mainly hexon were identified. Only the fiber complexes with relatively high content of penton base, but not the fiber-hexon complexes with low penton base, were able to penetrate into T84 cells and cause distortion of cell-cell junctions. Our findings suggest that these two types of fiber complexes may play different roles in adenoviral infection.  相似文献   

12.
Many adenovirus serotypes enter cells by high-affinity binding to the coxsackievirus-adenovirus receptor (CAR) and integrin-mediated internalization. In the present study, we analyzed the possible receptor function of α3β1 for adenovirus serotype 5 (Ad5). We found that penton base and integrin α3β1 could interact in vitro. In vivo, both Ad5-cell binding and virus-mediated transduction were inhibited in the presence of anti-α3 and anti-β1 function-blocking antibodies, and this occurred in both CAR-positive and CAR-negative cell lines. Peptide library screenings and data from binding experiments with wild-type and mutant penton base proteins suggest that the Arg-Gly-Asp (RGD) in the penton base protein, the best known integrin binding motif, is only part of the binding interface with α3β1, which involved multiple additional contact sites.  相似文献   

13.
The best-characterized receptors for adenoviruses (Ads) are the coxsackievirus-Ad receptor (CAR) and integrins alpha(v)beta(5) and alpha(v)beta(3), which facilitate entry. The alpha(v) integrins recognize an Arg-Gly-Asp (RGD) motif found in some extracellular matrix proteins and in the penton base in most human Ads. Using a canine adenovirus type 2 (CAV-2) vector, we found that CHO cells that express CAR but not wild-type CHO cells are susceptible to CAV-2 transduction. Cells expressing alpha(M)beta(2) integrins or major histocompatibility complex class I (MHC-I) molecules but which do not express CAR were not transduced. Binding assays showed that CAV-2 attaches to a recombinant soluble form of CAR and that Ad type 5 (Ad5) fiber, penton base, and an anti-CAR antibody partially blocked attachment. Using fluorescently labeled CAV-2 particles, we found that in some cells nonpermissive for transduction, inhibition was at the point of internalization and not attachment. The transduction efficiency of CAV-2, which lacks an RGD motif, surprisingly mimicked that of Ad5 when tested in cells selectively expressing alpha(v)beta(5) and alpha(v)beta(3) integrins. Our results demonstrate that CAV-2 transduction is augmented by CAR and possibly by alpha(v)beta(5), though transduction can be CAR and alpha(v)beta(3/5) independent but is alpha(M)beta(2), MHC-I, and RGD independent, demonstrating a transduction mechanism which is distinct from that of Ad2/5.  相似文献   

14.
Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon:FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors.  相似文献   

15.
The major adenovirus (Ad) capsid proteins hexon, penton, and fiber influence the efficiency and tropism of gene transduction by Ad vectors. Fiber is the high-affinity receptor binding protein that serves to mediate cell attachment in vitro when using coxsackie-adenovirus receptor (CAR)-containing cell lines. This contrasts with transduction efficiency in macrophages or dendritic cells that lack high concentrations of CAR. To determine how fiber influences gene transduction and immune activation in a murine model, we have characterized Ad type 5 (Ad5) vectors with two classes of chimeric fiber, CAR binding and non-CAR binding. In a systemic infection, Ad5 fiber contributes to DNA localization and vector transduction in hepatic tissue. However, the majority of vector localization is due to Ad5 fiber-specific functions distinct from CAR binding. CAR-directed transduction occurs but at a modest level. In contrast to CAR binding vectors, the F7 and F7F41S non-CAR-binding vectors demonstrate a 2-log decrease in hepatic transduction, with a 10-fold decrease in the amount of vector DNA localizing to the hepatic tissue. To characterize the innate response to early infection using fiber chimeric vectors, intrahepatic cytokine and chemokine mRNAs were quantified 5 hours postinfection. Tumor necrosis factor alpha mRNA levels resulting from Ad5 fiber infections were elevated compared to viruses expressing serotype 7 or 41 fiber. Levels of chemokine mRNA (gamma interferon-inducible protein 10, T-cell activation gene 3, and macrophage inflammatory protein 1beta) were 10- to 20-fold higher with CAR binding vectors (Ad5 and F41T) than with non-CAR-binding vectors (F7 and F7F41S). In spite of quantitative differences in vector localization and innate activation, fiber pseudotyping did not significantly change the outcome of anti-Ad adaptive immunity. All vectors were cleared with the same kinetics as wild-type Ad5 vectors, and each induced neutralizing antibody. Although non-CAR-binding vectors were impaired in transduction by nearly 2 orders of magnitude, the level of antitransgene immunity was the same for each of the vectors. Using primary bone marrow-derived macrophages and dendritic cells, we demonstrate that transduction, induction of cytokine/chemokine, and phenotypic maturation of these antigen-presenting cells are independent of fiber content. Our data support a model where fiber-mediated hepatic localization enhances innate responses to virus infection but minimally impacts on adaptive immunity.  相似文献   

16.
Fiber and penton base capsid proteins of adenovirus type 5 (Ad5) mediate a well-characterized two-step entry pathway in permissive tissue culture cell lines. Fiber binds with high affinity to the cell surface coxsackievirus-and-adenovirus receptor (CAR), and penton base facilitates viral internalization by binding alphav integrins through an RGD motif. In vivo, the entry pathway is complicated by interactions of capsid proteins with additional cell surface molecules and blood factors. When administered systemically in mice, adenovirus vectors (Adv) localize primarily to hepatic tissue, resulting in efficient gene transduction and potent activation of the host antiviral immune response. The goal of the present study was to detarget Adv uptake through fiber and penton base capsid protein manipulations and determine how detargeted vectors influence transduction efficiency, inflammatory activation, and activation of the adaptive arm of the immune system. By manipulating fiber and the penton base, we have generated highly detargeted vectors (up to 1,200-fold reduction in transgene expression in vivo) with reduced macrophage stimulatory activity in vitro and in vivo. In spite of the diminished transduction and macrophage activation, the detargeted vectors induce strong neutralizing immunity as well as efficient antitransgene antibody. Three of the modified vectors produce antitransgene humoral immunity at levels that exceed or are equal to that seen with an unmodified Ad5-based vector. The fiber-pseudotyped and penton base constructs with RGD deleted have attributes that could be important enhancements in a number of vaccine applications.  相似文献   

17.
35S-Labeled adenovirus type 2 (Ad2) (10 ng/ml) was incubated with 1% Triton X-114 at various pH values varying from 3.0 to 8.0. The detergent phase was separated from the aqueous phase by centrifugation, and the amounts of Ad2 were determined in the two phases. At pH 7.0-8.0, less than 5% of Ad2 was associated with the detergent phase; at pH 5.0 or below, about 60% of Ad2 was associated with the detergent phase. When a mixture of 35S-labeled capsid proteins was used at pH 7.0, 60-70% of the total proteins were associated with the detergent at pH 5.0, but less than 5% of the proteins interacted with detergent at pH 7.0. Among the three major external proteins (hexon, penton base, and fiber), penton base had the highest association with Triton X-114 at pH 5.0. Both intact virus and the capsid proteins that were associated with Triton X-114 at pH 5.0 were released into the aqueous phase on subsequent incubation at pH 7.0. On the basis of these results, it is suggested that mildly acidic pH induces amphiphilic properties in adenovirus capsid proteins and may help Ad2 escape from acidic endocytic vesicles.  相似文献   

18.
To explore gene therapy strategies for amelogenesis imperfecta (AI), a human ameloblast-like cell population was established from third molars of an AI-affected patient. These cells were characterized by expression of cytokeratin 14, major enamel proteins and alkaline phosphatase staining. Suboptimal transduction of the ameloblast-like cells by an adenovirus type 5 (Ad5) vector was consistent with lower levels of the coxsackie-and-adenovirus receptor (CAR) on those cells relative to CAR-positive A549 cells. To overcome CAR -deficiency, we evaluated capsid-modified Ad5 vectors with various genetic capsid modifications including "pK7" and/or "RGD" motif-containing short peptides incorporated in the capsid protein fiber as well as fiber chimera with the Ad serotype 3 (Ad3) fiber "knob" domain. All fiber modifications provided an augmented transduction of AI-ameloblasts, revealed following vector dose normalization in A549 cells with a superior effect (up to 404-fold) of pK7/RGD double modification. This robust infectivity enhancement occurred through vector binding to both α(v)β3/α(v)β5 integrins and heparan sulfate proteoglycans (HSPGs) highly expressed by AI-ameloblasts as revealed by gene transfer blocking experiments. This work thus not only pioneers establishment of human AI ameloblast-like cell population as a model for in vitro studies but also reveals an optimal infectivity-enhancement strategy for a potential Ad5 vector-mediated gene therapy for AI.  相似文献   

19.
The adenovirus penton, a noncovalent complex of the pentameric penton base and trimeric fiber proteins, comprises the vertices of the adenovirus capsid and contains all necessary components for viral attachment and internalization. The 3.3 A resolution crystal structure of human adenovirus 2 (hAd2) penton base shows that the monomer has a basal jellyroll domain and a distal irregular domain formed by two long insertions, a similar topology to the adenovirus hexon. The Arg-Gly-Asp (RGD) motif, required for interactions with cellular integrins, occurs on a flexible surface loop. The complex of penton base with bound N-terminal fiber peptide, determined at 3.5 A resolution, shows that the universal fiber motif FNPVYPY binds at the interface of adjacent penton base monomers and results in a localized structural rearrangement in the insertion domain of the penton base. These results give insight into the structure and assembly of the adenovirus capsid and will be of use for gene-therapy applications.  相似文献   

20.
During human adenovirus type 3 (Ad3) infection, an excess of penton base and fiber proteins are produced which form dodecahedral particles composed of 12 pentamers of penton base and 12 trimers of fiber protein. No biological functions have yet been ascribed to Ad3 dodecahedra. Here, we show that dodecahedra compete with Ad3 virions for binding to the cell surface and trigger cell remodeling, giving new insights into possible biological functions of dodecahedra in the Ad3 infectious cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号