首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee SC  Han JS  Seo JK  Cha YN 《Molecules and cells》2003,15(3):320-326
Lipopolysaccharide (LPS) enhances the expression of cyclooxygenase 2 (COX-2) in macrophages, and stimulates production of prostaglandins that cause endothelial dysfunction in septic shock. In an effort to identify strategies for reducing LPS-inducible expression of COX-2, inhibitors of the phospholipases involved in LPS dependent over-expression of COX-2 were studied. LPS enhances expression of COX-2 mRNA and protein by activating sequentially phosphatidylcholine-specific phospholipase C (PC-PLC), protein kinase C (PKC) and phosphatidylcholine-specific phospholipase D (PC-PLD). This stimulates production of phosphatidic acid (PA), which increases expression of COX-2 mRNA and protein. Inhibition of PC-PLC by D609 (tricyclodecanoyl xanthogenate), and of PC-PLD activity by 1-butanol, reduced LPS-dependent over-production of PA and suppressed the increase of COX-2 mRNA and protein. Activation of PKC, normally seen in LPS-treated cells, was mimicked with phorbol myristic acid (PMA), and this also increased PA production and enhanced COX-2 expression. Propranolol inhibition of phosphatidic acid phosphohydrolase (PPH) increased PA accumulation and enhanced LPS-dependent COX-2 protein synthesis. These results suggest that inhibitors of PC-PLC, PKC and PC-PLD, or activators of PPH could be useful in the management of LPS-induced overproduction of prostaglandins and of vascular dysfunction in septic shock.  相似文献   

2.
Cytosolic phospholipases A2 (cPLA2) and cyclooxygenases-1 and -2 (COX-1 and -2) play a pivotal role in the metabolism of arachidonic acid (AA) and in eicosanoid production. The coordinate regulation and expression of these enzymes is not well defined. In this study, the effect of phorbol 12-myristate 13-acetate (PMA), tumor necrosis factor (TNF), lipopolysaccharide (LPS) and macrophage-colony stimulating factor (M-CSF) on AA release and prostaglandin E2 (PGE2) production and the expression of cPLA2 and COX-1 and -2 were investigated in U937 human pre-monocytic cells and fully differentiated macrophages. Treatment of U937 cells with PMA or macrophages with LPS increased AA release and PGE2 production. Incubation of U937 cells or macrophages for 8 h with all stimuli elevated cPLA2 expression. In contrast, cPLA2 expression was reduced upon further incubation of U937 cells or macrophages for 24 h with all stimuli indicating a bi-phasic expression pattern of this enzyme. PMA induced COX-1 expression in U937 cells whereas LPS induced COX-2 expression in macrophages. Although TNF and M-CSF induced a significant amount of AA release in both cell models, they failed to induce a comparable production of PGE2 since they were unable to induce the coordinate expression of the downstream key enzymes, COX-1 or COX-2. The results suggest that the enhancement of AA release in both U937 cells and macrophages may be caused by both increased cPLA2 activity and elevated cPLA2 protein expression. In addition, PMA stimulates PGE2 production via up-regulation of COX-1, and likely COX-2, expression in U937 cells whereas LPS stimulates PGE2 production via induction of COX-2 expression in macrophages.  相似文献   

3.
Prostaglandins are known to play a key role in the initiation of labor in humans, but the mechanisms governing their synthesis in amnion are largely unknown. In this study, we have examined the regulatory pathways for prostaglandin E(2) (PGE(2)) production during protein kinase C-dependent activation of human WISH cells. In these cells, PGE(2) synthesis appears to be limited not by free arachidonic acid availability but by the expression levels of cyclooxygenase-2 (COX-2). Concomitant with the cells being able to synthesize and secrete PGE(2), we detected significant elevations of both COX-2 protein and mRNA levels. Specific inhibition of COX-2 by NS-398 totally ablated PGE(2) synthesis. All of these responses were found to be strikingly dependent on an active phosphatidate phosphohydrolase 1 (PAP-1). Inhibition of PAP-1 activity by three different strategies (i.e. use of bromoenol lactone, propranolol, and ethanol) resulted in inhibition of COX-2 expression and hence of PGE(2) production. These data unveil a novel signaling mechanism for the regulation of PGE(2) production via regulation of COX-2 expression and implicate phosphatidate phosphohydrolase 1 as a key regulatory component of eicosanoid metabolic pathways in the amnion.  相似文献   

4.
5.
Group IVA phospholipase A2 (GIVA PLA2) catalyzes the release of arachidonic acid (AA) from the sn-2 position of glycerophospholipids. AA is then further metabolized into terminal signaling molecules including numerous prostaglandins. We have now demonstrated the involvement of phosphatidic acid phosphohydrolase 1 (PAP-1) and protein kinase C (PKC) in the Toll-like receptor-4 (TLR-4) activation of GIVA PLA2. We also studied the effect of PAP-1 and PKC on Ca+ 2 induced and synergy enhanced GIVA PLA2 activation. We observed that the AA release induced by exposure of RAW 264.7 macrophages to the TLR-4 specific agonist Kdo2-Lipid A is blocked by the PAP-1 inhibitors bromoenol lactone (BEL) and propranolol as well as the PKC inhibitor Ro 31-8220; however these inhibitors did not reduce AA release stimulated by Ca+ 2 influx induced by the P2X7 purinergic receptor agonist ATP. Additionally, stimulation of cells with diacylglycerol (DAG), the product of PAP-1 mediated hydrolysis, initiated AA release from unstimulated cells as well as restored normal AA release from cells treated with PAP-1 inhibitors. Finally, neither PAP-1 nor PKC inhibition reduced GIVA PLA2 synergistic activation by stimulation with Kdo2-Lipid A and ATP.  相似文献   

6.
The proliferation and differentiation signals of myelogeneous U937 cells are provided by extracellular stimuli, such as lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA). In a DNA-native-polyacrylamide gel assay system, we demonstrated that a particular nuclease activity is expressed in PMA-stimulated U937 cells and secreted into the culture medium. The nuclease activity was induced in U937 cells by LPS treatment, while the secretion of the enzyme was undetected in the culture medium. Therefore, it is likely that the expression and secretion of the particular nuclease in U937 cells are controlled by extracellular stimulations, such as PMA and LPS treatment.  相似文献   

7.
Upon differentiation, U937 promonocytic cells gain the ability to release a large fraction of arachidonate esterified in phospholipids when stimulated, but the mechanism is unclear. U937 cells express group IV phospholipase A(2) (cPLA(2)), but neither its level nor its phosphorylation state increases upon differentiation. A group VI PLA(2) (iPLA(2)) that is sensitive to a bromoenol lactone inhibitor catalyzes arachidonate hydrolysis from phospholipids in some cells and facilitates arachidonate incorporation into glycerophosphocholine (GPC) lipids in others, but it is not known whether U937 cells express iPLA(2). We confirm that ionophore A23187 induces substantial [(3)H]arachidonate release from differentiated but not control U937 cells, and electrospray ionization mass spectrometric (ESI/MS) analyses indicate that differentiated cells contain a higher proportion of arachidonate-containing GPC species than control cells. U937 cells express iPLA(2) mRNA and activity, but iPLA(2) inhibition impairs neither [(3)H]arachidonate incorporation into nor release from U937 cells. Experiments with phosphatidate phosphohydrolase (PAPH) and phospholipase D (PLD) inhibitors coupled with ESI/MS analyses of PLD-PAPH products indicate that differentiated cells gain the ability to produce diacylglycerol (DAG) via PLD-PAPH. DAG promotes arachidonate release by a mechanism that does not require DAG hydrolysis, is largely independent of protein kinase C, and requires cPLA(2) activity. This may reflect DAG effects on cPLA(2) substrate state.  相似文献   

8.
J F Dunne  J Thomas  S Lee 《Cytometry》1989,10(2):199-204
Cells were sorted onto nitrocellulose filters which were saturated with a lysing cocktail designed to preferentially immobilize cellular mRNA. After washing, these filters were incubated with 32P-labeled specific DNA probes. We used the phorbol ester/lipopolysaccharide (PMA + LPS) co-induction of IL-1 mRNA and CD13 expression in U937 cells to demonstrate the specificity of the technique. In addition we used the abundant expression of c-fos in U937 to demonstrate linearity. IL-1 beta mRNA is readily discernable autoradiographically from as few as 5,000 PMA + LPS-induced cells sorted onto a filter. With liquid scintillation counting we demonstrate good linearity of the c-fos quantitation over the range of 1,000 cells to 60,000 cells per filter target. The technique is easily adapted to any sorting flow cytometer and should prove useful to help correlate any flow cytometric cell phenotype with specific mRNA abundance.  相似文献   

9.
Feedback control of cyclooxygenase-2 expression through PPARgamma   总被引:5,自引:0,他引:5  
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme for prostaglandins (PG), plays a key role in inflammation, tumorigenesis, development, and circulatory homeostasis. The PGD(2) metabolite 15-deoxy-Delta(12, 14) PGJ(2) (15d-PGJ(2)) was identified as a potent natural ligand for the peroxisome proliferator-activated receptor-gamma (PPARgamma). PPARgamma expressed in macrophages has been postulated as a negative regulator of inflammation and a positive regulator of differentiation into foam cell associated with atherogenesis. Here, we show that 15d-PGJ(2) suppresses the lipopolysaccharide (LPS)-induced expression of COX-2 in the macrophage-like differentiated U937 cells but not in vascular endothelial cells. PPARgamma mRNA abundantly expressed in the U937 cells, not in the endothelial cells, is down-regulated by LPS. In contrast, LPS up-regulates mRNA for the glucocorticoid receptor which ligand anti-inflammatory steroid dexamethasone (DEX) strongly suppresses the LPS-induced expression of COX-2, although both 15d-PGJ(2) and DEX suppressed COX-2 promoter activity by interfering with the NF-kappaB signaling pathway. Transfection of a PPARgamma expression vector into the endothelial cells acquires this suppressive regulation of COX-2 gene by 15d-PGJ(2) but not by DEX. A selective COX-2 inhibitor, NS-398, inhibits production of PGD(2) in the U937 cells. Taking these findings together, we propose that expression of COX-2 is regulated by a negative feedback loop mediated through PPARgamma, which makes possible a dynamic production of PG, especially in macrophages, and may be attributed to various expression patterns and physiological functions of COX-2.  相似文献   

10.
Human monocytes are known to metabolize arachidonic acid (AA) and to release prostaglandins upon stimulation. Previous data indicate that in vitro maturation and differentiation of monocytes result in alteration of this property with greatly diminished response to stimulators of release of prostaglandin E (PGE) and thromboxane B2 (TxB2) occurring after cells have been cultured. To further study the effects of differentiation on human monocyte AA metabolism, a model system was established based upon the human histiocytic cell line U937. Among tested stimulants, which included opsonized zymosan, complement fragment C3b, phorbol myristate acetate (PMA), calcium ionophore A23187, and concanavalin A, it was found that Escherichia coli lipopolysaccharide (LPS) was unique in that it stimulated increased release of TxB2 from U937 cells. The effect of the phorbol ester PMA, a compound commonly used to induce differentiation of U937, on the ability of U937 to respond to LPS was examined. Following 48 hr of treatment with PMA, U937 became capable of releasing both PGE and TxB2 in response to small doses of LPS. As previously observed for human monocytes, the release of PGE was delayed for several hours following stimulation and failed to reach maximal cumulative levels in culture until 24-48 hr following stimulation. In contrast to human monocytes, PMA-induced U937 were capable of maintaining their responsiveness to LPS for several days. Thus, the U937 cell line provides a useful model for study of the effects of differentiation of human mononuclear phagocytes on their ability to metabolize AA, and for the effects of LPS on histiocytic tumor cell prostaglandin release.  相似文献   

11.
The phorbol myristate acetate (PMA) stimulated nutrophil respiratory burst has been considered to simply involve the activation of protein kinase C (PKC). However, the PLD activity was also increased by 10‐fold in human neutrophils stimulated with 100 nM PMA. Unexpectedly, U73122, an inhibitor of phospholipase C, was found to significantly inhibit PMA‐stimulated respiratory burst in human neutrophils. U73122 at the concentrations, which were sufficient to inhibit the respiratory burst completely, caused partial inhibition of the PLD activity but no inhibition on PKC translocation and activation, suggesting that PLD activity is also required in PMA‐stimulated respiratory burst. Using 1‐butanol, a PLD substrate, to block phosphatidic acid (PA) generation, the PMA‐stimulated neutrophil respiratory burst was also partially inhibited, further indicating that PLD activation, possibly its hydrolytic product PA and diacylglycerol (DAG), is involved in PMA‐stimulated respiratory burst. Since GF109203X, an inhibitor of PKC that could completely inhibit the respiratory burst in PMA‐stimulated neutrophils, also caused certain suppression of PLD activation, it may suggest that PLD activation in PMA‐stimulated neutrophils might be, to some extent, PKC dependent. To further study whether PLD contributes to the PMA stimulated respiratory burst through itself or its hydrolytic product, 1,2‐dioctanoyl‐sn‐glycerol, an analogue of DAG , was used to prime cells at low concentration, and it reversed the inhibition of PMA‐stimulated respiratory burst by U73122. The results indicate that U73122 may act as an inhibitor of PLD, and PLD activation is required in PMA‐stimulated respiratory burst.  相似文献   

12.
Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 (PP-1) and 2A (PP-2A). The phosphorylation and dephosphorylation at the serine/threonine residues on proteins play important roles in regulating gene expression, cell cycle progression, and apoptosis. In this study, phosphatase inhibitor okadaic acid induces apoptosis in U937 cells via a mechanism that appears to involve caspase 3 activation, but not modulation of Bcl-2, Bax, and Bcl-X(L) expression levels. Treatment with 20 or 40 nM okadaic acid for 24 h produced DNA fragmentation in U937 cells. This was associated with caspase 3 activation and PLC-gamma1 degradation. Okadaic acid-induced caspase 3 activation and PLC-gamma1 degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 40 nM. Moreover, PMA (phorbol myristate acetate), PKC (protein kinase C) activator, protected U937 cells from okadaic acid-induced apoptosis, abrogated okadaic acid-induced caspase 3 activation, and specifically inhibited downregulation of XIAP (X-linked inhibitor of apoptosis) by okadaic acid. PMA cotreated U937 cells exhibited less cytochrome c release and sustained expression levels of the IAP (inhibitor of apoptosis) proteins during okadaic acid-induced apoptosis. In addition, these findings indicate that PMA inhibits okadaic acid-induced apoptosis by a mechanism that interferes with cytochrome c release and activity of caspase 3 that is involved in the execution of apoptosis.  相似文献   

13.
14.
The U937 cell line is a monoblast-like cell line that can be induced to differentiate when treated with phorbol ester or a variety of other agents. Collagenase was detected in the media of U937 cell cultures after treatment with phorbol myristate acetate (PMA) at concentrations of 5 ng/mL or greater. In general, no collagenase was detected in the media of untreated cells. The induced collagenase cleaved native type I collagen into the 3/4 and 1/4-length fragments and showed the inhibition by ethylenediaminetetraacetic acid characteristic of the action of mammalian collagenases. Collagenase activity could be detected in the media of treated cells 12-18 h after the addition of PMA. Secretion of collagenase continued for 2-3 days after PMA addition. The production of collagenase by PMA-treated U937 cells was inhibited by actinomycin D and cycloheximide, suggesting that the induction of the enzyme is the result of de novo synthesis. The collagenase secreted by U937 cells induced with PMA has been purified 12-fold by using DEAE-Sephacel followed by wheat germ agglutinin-agarose chromatography. The apparent molecular mass of this U937 collagenase, determined by gel filtration chromatography on the partially purified enzyme, was 29-36 kilodaltons.  相似文献   

15.
16.
Membrane-associated interleukin 1 (IL 1) activity was induced on the human macrophage tumor cell line, U937, by pretreatment with phorbol myristic acid (PMA). Incubation of PMA-treated, paraformaldehyde-fixed U937 cells with the murine cell line D10.G4.1 in the presence of concanavalin A caused an increase in DNA synthesis as measured by the uptake of tritiated thymidine. Paraformaldehyde-fixed U937, not pretreated with PMA, showed little or no activity. A rabbit polyclonal antibody directed against human IL 1 neutralized all membrane-associated IL 1-like activity, as measured by the inhibition of D10.G4.1 cell proliferation. PMA-treated U937 caused a pronounced enhancement of PGE2 production from a human chondrosarcoma cell line, SW-1353. Membrane-associated IL 1 induced a more potent PGE2 response than did a maximal concentration of soluble IL 1. Rabbit antihuman IL 1 neutralized membrane-bound IL 1 induction of PGE2. The data presented here raise the possibility that membrane-bound IL 1 may play a primary role in the pathophysiology of the inflammatory disease process.  相似文献   

17.
Phosphatidic acid phosphohydrolase (PAP) catalyzes the dephosphorylation of phosphatidic acid (PA) to diacylglycerol, the second messenger responsible for activation of protein kinase C. Despite the crucial role of PAP lipid signaling, there are no data on PAP signaling function in the human heart. Here we present a nonradioactive assay for the investigation of PAP activity in human myocardium using a fluorescent derivative of PA, 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphate (BODIPY-PA), as substrate in an in vitro PAP-catalyzed reaction. Unreacted BODIPY-PA was resolved from the PAP products by a binary gradient HPLC system and BODIPY-diacylglycerol was detected by fluorimetry. The reaction proceeded at a linear rate for up to 60 min and increased linearly with increasing amounts of cardiac protein in a range of 0.25 to 8.0 μg. This assay proved to be sensitive for accurate quantitation of total PAP activity, PAP-1 activity, and PAP-2 activity in human atrial tissue and right ventricular endomyocardial biopsies. Total PAP activity was approximately fourfold higher in ventricular myocardium than in atrial tissue. There was negligible PAP-1 activity in atrial myocardium compared with ventricular myocardium, indicating regional differences in activities and distribution pattern of PAP-1 and PAP-2 in the human heart.  相似文献   

18.
19.
20.
The objective of this work was to analyze the possible association between cyclooxygenase-2 (COX-2) and NADPH oxidases (NOX) in liver cells, in response to various proinflammatory and toxic insults. First, we observed that treatment of Chang liver (CHL) cells with various COX-2 inducers increased reactive oxygen species (ROS) production concomitant with GSH depletion, phorbol 12-myristate 13-acetate (PMA) being the most effective treatment. Moreover, early changes in the oxidative status induced by PMA were inhibited by glutathione ethyl ester, which also impeded COX-2 induction. In fact, CHL cells expressed NOX1 and NOX4, although only NOX4 expression was up-regulated in the presence of PMA. Knock-down experiments suggested that PMA initiated a pathway in which NOX1 activation controlled COX-2 expression and activity, which, in turn, induced NOX4 expression by activation of the prostaglandin receptor EP4. In addition, CHL cells overexpressing COX-2 showed higher NOX4 expression and ROS content, which were decreased in the presence of the COX-2 inhibitor DFU. Interestingly, we found that addition of prostaglandin E(2) (PGE(2)) also induced NOX4 expression and ROS production, which might promote cell adhesion. Finally, we determined that NOX4 induction by PGE(2) was dependent on ERK1/2 signaling. Taken together, these results indicate that NOX proteins and COX-2 are reciprocally regulated in liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号