首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperammonemia has been suggested to induce enhanced cerebral cortex ammonia uptake, subsequent glutamine synthesis and accumulation, and finally net glutamine release into the blood stream, but this has never been confirmed in liver insufficiency models. Therefore, cerebral cortex ammonia- and glutamine-related metabolism was studied during liver insufficiency-induced hyperammonemia by measuring plasma flow and venous-arterial concentration differences of ammonia and amino acids across the cerebral cortex (enabling estimation of net metabolite exchange), 1 day after portacaval shunting and 2, 4, and 6 h after hepatic artery ligation (or in controls). The intra-organ effects were investigated by measuring cerebral cortex tissue ammonia and amino acids 6 h after liver ischemia induction or in controls. Arterial ammonia and glutamine increased in portacaval-shunted rats versus controls, and further increased during liver ischemia. Cerebral cortex net ammonia uptake, observed in portacaval-shunted rats, increased progressively during liver ischemia, but net glutamine release was only observed after 6 h of liver ischemia. Cerebral cortex tissue glutamine, gamma-aminobutyric acid, most other amino acids, and ammonia levels were increased during liver ischemia. Glutamate was equally decreased in portacaval-shunted and liver-ischemia rats. The observed net cerebral cortex ammonia uptake, cerebral cortex tissue ammonia and glutamine accumulation, and finally glutamine release into the blood suggest that the rat cerebral cortex initially contributes to net ammonia removal from the blood during liver insufficiency-induced hyperammonemia by augmenting tissue glutamine and ammonia pools, and later by net glutamine release into the blood. The changes in cerebral cortex glutamate and gamma-aminobutyric acid could be related to altered ammonia metabolism.  相似文献   

2.
In the post-absorptive state, ammonia is produced in equal amounts in the small and large bowel. Small intestinal synthesis of ammonia is related to amino acid breakdown, whereas large bowel ammonia production is caused by bacterial breakdown of amino acids and urea. The contribution of the gut to the hyperammonemic state observed during liver failure is mainly due to portacaval shunting and not the result of changes in the metabolism of ammonia in the gut. Patients with liver disease have reduced urea synthesis capacity and reduced peri-venous glutamine synthesis capacity, resulting in reduced capacity to detoxify ammonia in the liver.The kidneys produce ammonia but adapt to liver failure in experimental portacaval shunting by reducing ammonia release into the systemic circulation. The kidneys have the ability to switch from net ammonia production to net ammonia excretion, which is beneficial for the hyperammonemic patient. Data in experimental animals suggest that the kidneys could have a major role in post-feeding and post-haemorrhagic hyperammonemia.During hyperammonemia, muscle takes up ammonia and plays a major role in (temporarily) detoxifying ammonia to glutamine. Net uptake of ammonia by the brain occurs in patients and experimental animals with acute and chronic liver failure. Concomitant release of glutamine has been demonstrated in experimental animals, together with large increases of the cerebral cortex ammonia and glutamine concentrations. In this review we will discuss interorgan trafficking of ammonia during acute and chronic liver failure. Interorgan glutamine metabolism is also briefly discussed, since glutamine synthesis from glutamate and ammonia is an important alternative pathway of ammonia detoxification. The main ammonia producing organs are the intestines and the kidneys, whereas the major ammonia consuming organs are the liver and the muscle.  相似文献   

3.
Cerebral Ammonia Metabolism in Hyperammonemic Rats   总被引:7,自引:7,他引:0  
The short-term metabolic fate of blood-borne [13N]ammonia was determined in the brains of chronically (8- or 14-week portacaval-shunted rats) or acutely (urease-treated) hyperammonemic rats. Using a "freeze-blowing" technique it was shown that the overwhelming route for metabolism of blood-borne [13N]ammonia in normal, chronically hyperammonemic and acutely hyperammonemic rat brain was incorporation into glutamine (amide). However, the rate of turnover of [13N]ammonia to L-[amide-13N]glutamine was slower in the hyperammonemic rat brain than in the normal rat brain. The activities of several enzymes involved in cerebral ammonia and glutamate metabolism were also measured in the brains of 14-week portacaval-shunted rats. The rat brain appears to have little capacity to adapt to chronic hyperammonemia because there were no differences in activity compared with those of weight-matched controls for the following brain enzymes involved in glutamate/ammonia metabolism: glutamine synthetase, glutamate dehydrogenase, aspartate aminotransferase, glutamine transaminase, glutaminase, and glutamate decarboxylase. The present findings are discussed in the context of the known deleterious effects on the CNS of high ammonia levels in a variety of diseases.  相似文献   

4.
Abstract: Liver failure, or shunting of intestinal blood around the liver, results in hyperammonemia and cerebral dysfunction. Recently it was shown that ammonia caused some of the metabolic signs of hepatic encephalopathy only after it was metabolized by glutamine synthetase in the brain. In the present study, small doses of methionine sulfoximine, an inhibitor of cerebral glutamine synthetase, were given to rats either at the time of portacaval shunting or 3–4 weeks later. The effects on several characteristic cerebral metabolic abnormalities produced by portacaval shunting were measured 1–3 days after injection of the inhibitor. All untreated portacaval-shunted rats had elevated plasma and brain ammonia concentrations, increased brain glutamine and tryptophan content, decreased brain glucose consumption, and increased permeability of the blood–brain barrier to tryptophan. All treated rats had high ammonia concentrations, but the brain glutamine content was normal, indicating inhibition of glutamine synthesis. One day after shunting and methionine sulfoximine administration, glucose consumption, tryptophan transport, and tryptophan brain content remained near control values. In the 3–4-week-shunted rats, which were studied 1–3 days after methionine sulfoximine administration, the effect was less pronounced. Brain glucose consumption and tryptophan content were partially normalized, but tryptophan transport was unaffected. The results agree with our earlier conclusion that glutamine synthesis is an essential step in the development of cerebral metabolic abnormalities in hyperammonemic states.  相似文献   

5.
To evaluate the effects of chronic liver failure on release of the excitatory transmitter glutamate, electrically stimulated Ca2(+)-dependent and Ca2(+)-independent release of glutamate in the absence or presence of NH4+ was studied in superfused slices of hippocampus from portacaval-shunted or sham-operated rats 4 weeks after surgery. Spontaneous and stimulation-evoked release of glutamate was higher in shunted rats in the presence of normal or low Ca2+ concentrations, and this release was depressed by 5 mM ammonium chloride. These findings suggest that portacaval shunting results in increased levels of extracellular glutamate in brain, probably due to a decreased reuptake of glutamate into perineuronal astrocytes, shown in previous studies to undergo neuropathological changes following portacaval shunting. Changes in the inactivation of transmitter glutamate could be responsible, at least in part, for the neurological dysfunction resulting from sustained hyperammonemia and portal-systemic shunting resulting from chronic liver failure.  相似文献   

6.
Abstract: Brain edema in hepatic encephalopathy has been associated with circulating ammonia that is metabolized to glutamine. We measured alterations in blood chemistry and brain regional specific gravity and ion and amino acid contents in models of simple hyperammonemia and liver failure induced by daily administrations of ammonium acetate (AAc) or thioacetamide (TAA), respectively. Serum and brain ammonia increased to similar levels (200 and 170% of control, respectively) in both experimental groups. Serum transaminase activities increased 10-fold in animals injected with TAA but were unchanged in animals given AAc injections. In both experimental groups glutamine was elevated in cerebral white matter, cerebral gray matter, and basal ganglia, whereas brain tissue specific gravity decreased in all brain regions, indicating edema formation. In the AAc group, we observed a decrease in glutamate and taurine contents concomitant with the development of brain edema. In these animals, cerebral gray matter specific gravity and taurine contents returned to control levels 24 h after the third AAc injection. TAA-injected animals demonstrated similar decreases in brain tissue specific gravity, whereas glutamine, glutamate, and taurine contents were all elevated. During hepatic encephalopathy, ammonia-induced changes in brain amino acid content may contribute to brain edema development.  相似文献   

7.
Acute hyperammonemia was induced by 15NH4+ infusion in portacaval-shunted (PCS) and control rats to investigate its effects on cerebral metabolism of glutamine, glutamate and gamma-aminobutyrate. Cerebral 15N-metabolites were observed by 15N-NMR spectroscopy in the ex vivo brain, removed in toto at the end of infusion. Key 15N-metabolites in the brain and liver were quantitated and their specific activities measured by NMR and biochemical assays in perchloric acid extracts of the freeze-clamped organs. In the ex vivo brain, [gamma-15N]glutamine, present at tissue concentrations of 3-5 mumol/g with 15N enrichment of 36-48%, was observable within 6-13 min of data acquisition. [alpha-15N]glutamine/glutamate, each present at 0.5-1 mumol/g (approx. 10% enrichment), were observed in 27 min. The results demonstrate the feasibility of observing these cerebral metabolites by 15N-NMR within a physiological time scale. In a rat pretreated with glutamine synthetase inhibitor, L-methionine DL-sulfoximine, cerebral [15N]gamma-aminobutyrate was observed after 910 min. In PCS rats, decreased 15NH4+ removal in the liver was accompanied by formation of approx. 2-fold higher concentration of cerebral [gamma-15N]glutamine relative to that in weight-matched controls. The result suggests that increased diffusion of blood-borne 15NH3 into the brain led to increased [gamma-15N]glutamine synthesis in astrocytes as well as ammonia-mediated inhibition of glutaminase.  相似文献   

8.
Benzoate stimulates glutamate release from perfused rat liver.   总被引:1,自引:1,他引:0       下载免费PDF全文
In isolated perfused rat liver, benzoate addition to the influent perfusate led to a dose-dependent, rapid and reversible stimulation of glutamate output from the liver. This was accompanied by a decrease in glutamate and 2-oxoglutarate tissue levels and a net K+ release from the liver; withdrawal of benzoate was followed by re-uptake of K+. Benzoate-induced glutamate efflux from the liver was not dependent on the concentration (0-1 mM) of ammonia (NH3 + NH4+) in the influent perfusate, but was significantly increased after inhibition of glutamine synthetase by methionine sulphoximine or during the metabolism of added glutamine (5 mM). Maximal rates of benzoate-stimulated glutamate efflux were 0.8-0.9 mumol/min per g, and the effect of benzoate was half-maximal (K0.5) at 0.8 mM. Similar Vmax. values of glutamate efflux were obtained with 4-methyl-2-oxopentanoate, ketomethionine (4-methylthio-2-oxobutyrate) and phenylpyruvate; their respective K0.5 values were 1.2 mM, 3.0 mM and 3.8 mM. Benzoate decreased hepatic net ammonia uptake and synthesis of both urea and glutamine from added NH4Cl. Accordingly, the benzoate-induced shift of detoxication from urea and glutamine synthesis to glutamate formation and release was accompanied by a decreased hepatic ammonia uptake. The data show that benzoate exerts profound effects on hepatic glutamate and ammonia metabolism, providing a new insight into benzoate action in the treatment of hyperammonaemic syndromes.  相似文献   

9.
The maximal activity of phosphate-dependent glutaminase was increased in the small intestine, decreased in the liver and unchanged in the kidney of late-pregnant rats. This was accompanied by increases in the size of both the small intestine and the liver. The maximal activity of phosphate-dependent glutaminase was increased in both the small intestine and liver but unchanged in the kidney of peak-lactating rats. Enterocytes isolated from late-pregnant or peak-lactating rats exhibited an enhanced rate of utilization of glutamine and production of glutamate, alanine and ammonia. Arteriovenous-difference measurements across the gut showed an increase in the net glutamine removed from the circulation in late-pregnant and peak-lactating rats, which was accompanied by enhanced rates of release of glutamate, alanine and ammonia. Arteriovenous-difference measurements for glutamine showed that both renal uptake and skeletal-muscle release of glutamine were not markedly changed during late pregnancy or peak lactation; but pregnant rats showed a hepatic release of the amino acid. It is concluded that, during late pregnancy and peak lactation, the adaptive changes in glutamine metabolism by the small intestine, kidneys and skeletal muscle of hindlimb are similar; however, the liver appears to release glutamine during late pregnancy, but to utilize glutamine during peak lactation.  相似文献   

10.
Portal-systemic shunting and hyperammonemia lead to an accumulation of the large neutral amino acids in brain and apparently alter transport of neutral amino acids across the blood-brain barrier. It has been proposed that portal-systemic shunting leads to a high brain concentration of glutamine, a product of cerebral ammonia detoxification, and thereby affects the transport of other neutral amino acids across the blood-brain barrier. To test this hypothesis, rats with a portacaval shunt were treated with L-methionine-dl-sulfoximine (MSO), an inhibitor of glutamine synthesis. Treatment with MSO resulted in lower concentrations of the neutral amino acids in brain of portacaval-shunted rats and a higher brain ammonia concentration, compared with untreated shunted rats. These results suggest that the accumulation of neutral amino acids in brain after portacaval shunt depends on the increased synthesis of glutamine in brain.  相似文献   

11.
Portocaval anastomosis (PCA) in the rat leads, within 4 weeks, to severe liver atrophy, sustained hyperammonemia, and increased brain ammonia. Because brain is not equipped with an effective urea cycle, removal of ammonia involves glutamine synthesis and PCA results in significantly increased brain glutamine. Glutamine synthetase activities, however, are decreased by 15% in cerebral cortex and are unchanged in brainstem of shunted rats. Administration of ammonium acetate to rats following PCA results in severe encephalopathy (loss of righting reflex and, ultimately, coma). Glutamine concentrations in brainstem of comatose rats are increased a further two-fold, whereas those of cerebral cortex are unchanged. Consequently, ammonia levels in cerebral cortex reach disproportionately high levels (of the order of 5 mM). These findings suggest a limitation in the capacity of cerebral cortex to remove additional blood-borne ammonia by glutamine formation following PCA. Such mechanisms may explain the hypersensitivity of rats with PCA and of patients with portal-systemic shunting to small increases of blood ammonia. Disproportionately high levels of brain ammonia in certain regions, such as cerebral cortex, may then result in alterations of inhibitory neurotransmission and, ultimately, loss of cellular (astrocytic) integrity.  相似文献   

12.
Abstract: Portal-systemic encephalopathy (PSE) is characterized by neuropsychiatric symptoms progressing through stupor and coma. Previous studies in human autopsy tissue and in experimental animal models of PSE suggest that alterations in levels of brain amino acids may play a role in the pathogenesis of PSE. To assess this possibility, levels of amino acids were measured using in vivo cerebral microdialysis in frontal cortex of portacaval-shunted rats administered ammonium acetate (3.85 mmol/kg, i.p.) to precipitate severe PSE. Sham-operated rats served as controls. Portacaval shunting resulted in significant increases of levels of extracellular glutamine (threefold, p < 0.001), alanine (38%, p < 0.01), aspartate (44%, p < 0.05), phenylalanine (170%, p < 0.001), tyrosine (140%, p < 0.001), tryptophan (63%, p < 0.001), leucine (75%, p < 0.001), and serine (60%, p < 0.001). Administration of ammonium acetate to sham-operated animals led to a significant increase in extracellular glutamine and taurine content, but this response was absent in shunted rats. The lack of taurine release into extracellular fluid following ammonium acetate administration in portacaval-shunted rats could relate to the phenomenon of brain edema in these animals. Ammonium acetate administration resulted in significant increases in the extracellular concentrations of phenylalanine and tyrosine in both sham-operated and portacaval-shunted rats. Severe PSE was not accompanied by significant increases in extracellular fluid concentrations of glutamate, aspartate, GABA, tryptophan, leucine, or serine, suggesting that increased spontaneous release of these amino acids in cerebral cortex is not implicated in the pathogenesis of hepatic coma.  相似文献   

13.
Acute and chronic ammonia toxicity was produced in the mice by intraperitoneal injection of ammonium chloride (200 mg/kg) and by exposure of mice to ammonia vapours (5% v/v) continuously for 2 days and 5 days respectively. The ammonia content was elevated in the cerebellum, cerebral cortex and brain stem and in liver. In acute ammonia intoxication there was a decrease in the monoamine oxidase (MAO) activity in all the three regions of brain. In chronic ammonia toxicity (2 days of exposure) a significant increase in the activity of MAO was observed in the cerebral cortex while in cerebellum and brain stem there was a significant decrease. In cerebral cortex and cerebellum there was a rise in the activity of MAO as a result of exposure to ammonia vapours for 5 days. A significant decrease was observed in the activity of glutamate decarboxylase (GAD) in all the three regions of the brain both in acute and chronic ammonia toxicity (2 days). There was a decrease in the activity of this enzyme only in the cerebral cortex in the animals exposed to ammonia for 5 days. The activity of GABA-aminotransferase (GABA-T) showed a significant rise in cerebellum and a fall in the brain stem in acute ammonia toxicity. In chronic ammonia toxicity GABA-T showed a rise in all the three regions of brain. Chronic ammonia toxicity produced a significant decrease in the content of glutamate in all the three regions without a significant change in the content of aspartate. GABA and glutamine. The content of alanine increased in all the three regions of brain under these experimental conditions. The ratio of glutamate + aspartate/GABA and glutamate/glutamine showed a decrease in all the three regions as a result of ammonia toxicity.  相似文献   

14.
Sparse-fur (spf) mutant mice with X-linked ornithine transcarbamylase (OTC) deficiency were examined for hyperammonemia and its effect on energy metabolism. We compared the levels of ammonia, glutamine, glutamate and some of the intermediates of energy metabolism in the brain and liver of spf mice with those of control mice. In spf mice we observed significant increases in ammonia, glutamine, alpha-ketoglutarate and glucose with a significant decrease in ATP, glutamate and pyruvate in both brain and liver. The redox states of the brain and liver were also altered in spf mice. The results suggest that many of the metabolic alterations seen in spf mice could be due to the elevated ammonia levels. The spf mouse may, therefore, be an ideal model for the study of the neurotoxic effects of ammonia in chronic hyperammonemic syndromes.  相似文献   

15.
It has been proposed that impairment of the glutamate-nitric oxide-cyclic guanosine monophosphate (cGMP) pathway in brain contributes to cognitive impairment in hepatic encephalopathy. The aims of this work were to assess whether the function of this pathway and of nitric oxide synthase (NOS) are altered in cerebral cortex in vivo in rats with chronic liver failure due to portacaval shunt (PCS) and whether these alterations are due to hyperammonemia. The glutamate-nitric oxide-cGMP pathway function and NOS activation by NMDA was analysed by in vivo microdialysis in cerebral cortex of PCS and control rats and in rats with hyperammonemia without liver failure. Similar studies were done in cortical slices from these rats and in cultured cortical neurons exposed to ammonia. Basal NOS activity, nitrites and cGMP are increased in cortex of rats with hyperammonemia or liver failure. These increases seem due to increased inducible nitric oxide synthase expression. NOS activation by NMDA is impaired in cerebral cortex in both animal models and in neurons exposed to ammonia. Chronic liver failure increases basal NOS activity, nitric oxide and cGMP but reduces activation of NOS induced by NMDA receptors activation. Hyperammonemia is responsible for both effects which will lead, independently, to alterations contributing to neurological alterations in hepatic encephalopathy.  相似文献   

16.
Cerebral activities of glutamate dehydrogenase (GDH), glutamine synthetase (GS), and branched-chain amino acid aminotransferase (BCAA-T) along with the levels of ammonia in serum and brain were determined in normal, sham-operated and partially hepatectomized rats. Mild hyperammonemia was observed in sham-operated animals, and the cerebral activities of all the enzymes studied were found to be decreased when compared with those of normal animals. In hepatectomized animals, blood and brain ammonia levels were elevated further. In these animals, GS activity returned to the normal values and that of BCCA-T was elevated, while there was a continued suppression of GDH activity. These results were discussed in relation to the utilization of BCAA (leucine, isoleucine, and valine) for the synthesis of glutamate and glutamine in brain in hyperammonemic states.  相似文献   

17.
Glutamate transporters in hyperammonemia   总被引:2,自引:0,他引:2  
Evidence suggests that increases in brain ammonia due to congenital urea cycle disorders, Reye Syndrome or liver failure have deleterious effects on the glutamate neurotransmitter system. In particular, ammonia exposure of the brain in vivo or in vitro preparations leads to alterations of glutamate transport. Exposure of cultured astrocytes to ammonia results in reduced high affinity uptake sites for glutamate due to a reduction in expression of the astrocytic glutamate transporter GLAST. On the other hand, acute liver failure leads to decreased expression of a second astrocytic glutamate transporter GLT-1 and a consequent reduction in glutamate transport sites in brain. Effects of the chronic exposure of brain to ammonia on cellular glutamate transport are less clear. The loss of glutamate transporter activity in brain in acute liver failure and hyperammonemia is associated with increased extracellular brain glutamate concentrations which may be responsible for the hyperexcitability and cerebral edema observed in hyperammonemic disorders.  相似文献   

18.
In isolated perfused rat liver, addition of the oxoanalogues of leucine, isoleucine, methionine and phenylalanine is followed by a rapid and reversible stimulation of glutamate release. This is not observed with the corresponding amino acids or 2-oxoisovalerate, 2-oxoglutarate or oxaloacetate. The increased glutamate release by the liver is accompanied by a decrease in the tissue contents of 2-oxoglutarate and glutamate by about 25% and 50%, respectively. During the metabolism of glutamine, i.e. conditions with elevated tissue glutamate concentrations, 2-oxoacid-induced glutamate release is stimulated. In the presence of glutamine (5 mM), 2-oxoisocaproate, 2-oxo-4-methylvalerate and 2-oxo-4-methylthiobutyrate were found to be most effective and glutamate release by the liver increased linearly from about 80 nmol g-1 min-1 to 600 nmol g-1 min-1 at increasing 2-oxoacid concentrations up to 1 mM. When glutamate tissue levels were decreased by phenylephrine, stimulation of glutamate release by 2-oxoisocaproate was markedly diminished. 2-Oxoacid-stimulated glutamate release is independent of oxoacid metabolism, indicating that the effect is probably not explained by a 2-oxoacid/glutamate exchange across the liver plasma membrane. 2-Oxoacid-induced glutamate export predominantly occurs in a sodium-independent way. At low concentrations of 2-oxoisocaproate (below 0.2 mM), the increased glutamate release was accompanied by a slight inhibition of 14CO2 production from added [14C]glutamate, indicating a simultaneous glutamate uptake and release also under these conditions. Stimulation of glutamate release by 2-oxoisocaproate is followed by a decreased rate of urea and glutamine synthesis from portal ammonia, as a consequence of an increased glutamate release.  相似文献   

19.
Abstract: Elevated activities of nitric oxide synthase (NOS) have been reported previously in the brains of portacaval-shunted (PCS) rats, a model of chronic hepatic encephalopathy (HE). As l -arginine availability for nitric oxide synthesis depends on a specific uptake mechanism in neurons, we studied the kinetics of l -[3H]-arginine uptake into synaptosomes prepared from the brains of PCS rats. Results demonstrate that l -arginine uptake is significantly increased in cerebellum (60%; p < 0.01), cerebral cortex (42%; p < 0.01), hippocampus (56%; p < 0.01), and striatum (51%; p < 0.01) of PCS rats compared with sham-operated controls. Hyperammonemia in the absence of portacaval shunting also stimulated the transport of l -[3H]arginine; kinetic analysis revealed that the elevated uptake was due to increased uptake capacity ( V max) without any change in affinity ( K m). Incubation of cerebellar synaptosomes with ammonium acetate for 10 min caused a dose-dependent stimulation of l -[3H]arginine uptake. Neither portacaval shunting nor hyperammonemia had any significant effect on the synaptosomal uptake of N G-nitro- l -[3H]arginine. These studies demonstrate that increased NOS activity observed in experimental HE may result from increased availability of l -arginine resulting from a direct stimulatory effect of ammonia on l -arginine transport.  相似文献   

20.
The aims of this study were twofold: (i) to determine quantitatively the contribution of glutamate/glutamine cycling to total astrocyte/neuron substrate trafficking for the replenishment of neurotransmitter glutamate; and (ii) to determine the relative contributions of anaplerotic flux and glutamate/glutamine cycling to total glutamine synthesis. In this work in vivo and in vitro (13)C NMR spectroscopy were used, with a [2-(13)C]glucose or [5-(13)C]glucose infusion, to determine the rates of glutamate/glutamine cycling, de novo glutamine synthesis via anaplerosis, and the neuronal and astrocytic tricarboxylic acid cycles in the rat cerebral cortex. The rate of glutamate/glutamine cycling measured in this study is compared with that determined from re-analysis of (13)C NMR data acquired during a [1-(13)C]glucose infusion. The excellent agreement between these rates supports the hypothesis that glutamate/glutamine cycling is a major metabolic flux ( approximately 0.20 micromol/min/g) in the cerebral cortex of anesthetized rats and the predominant pathway of astrocyte/neuron trafficking of neurotransmitter glutamate precursors. Under normoammonemic conditions anaplerosis was found to comprise 19-26% of the total glutamine synthesis, whilst this fraction increased significantly during hyperammonemia ( approximately 32%). These findings indicate that anaplerotic glutamine synthesis is coupled to nitrogen removal from the brain (ammonia detoxification) under hyperammonemic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号