首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
真核基因中内含子是在蛋白异化过程中获得   总被引:1,自引:0,他引:1  
本文对肌动蛋白家族中的内含子序列按同亚型和不同亚型在相同插入位置作了比较分析。结果得出:整个肌动蛋白的外显子序列是高度保守,由此推断整个肌动蛋白可能从共同祖先蛋白进化的。同亚型肌动蛋白的内含子序列的类似性随进化距离而变化,并且在短进化距离的物种间,在相同插入位置的内含子序列类似性都较高。不同亚型肌动蛋白的内含子序列的类似性都较低,即使是同一物种,如人,不同亚型肌动蛋白的内含子序列的类似性也远低于同亚型但进化距离较近的物种。由此可推断同亚型肌动蛋白的内含子序列可能从共同祖先进化,不同亚型肌动蛋白的内含子序列从不同祖先进化。综上结果可推出内含子可能是在蛋白异化过程中获得。  相似文献   

2.
Wnt信号通路高度保守,对细胞命运决定、迁移、极性建立、原始体轴形成和器官的发生以及干细胞的自我更新等起着关键的作用。Dishevelled (DVL)作为第一个被发现的胞浆蛋白,是Wnt信号通路的核心组分,在Wnt信号传导通路中都起着重要作用。通过对不同物种(从单细胞动物到哺乳动物)基因组中DVL家族基因进行检索发现:DVL蛋白家族起源于早期的多细胞动物,与大堡礁海绵有共同的祖先,其成员可分为四个亚家族,分别是DVL1亚家族、DVL2亚家族、DVL3亚家族和无脊椎动物DVL亚家族,并发现DVL蛋白家族演化过程中存在基因复制现象;在演化历程中,DVL蛋白家族Motif的组成存在着规律性的变化,随着物种的演化Motif的数量有所增加;DVL家族基因存在着内含子的插入和缺失现象,其相位在高等动物中较为保守。本研究为进一步理解DVL蛋白家族的起源与演化动态提供一定的参考。  相似文献   

3.
本文提出了一种计算蛋白质绝对进化距离和进化速率的方法,它根据现有同源蛋白质的序列构建分子进化树,并推断进化过程中各结点处的共同祖先序列,根据某成员与某结点处共同祖先序列的氨基酸差异百分率,计算该蛋白质序列的特异进化距离和进化速率。比较我们的算法和Dayhoff等的模拟统计方法表明,我们的算法在一定范围内是正确的。结合计算哺乳动物红细胞生成素的进化速率,讨论了本算法在分子进化研究中的应用。  相似文献   

4.
黄志华  薛庆中 《植物学报》2006,23(4):402-408
假基因(pseudogene)是指基因组中与正常基因序列相似, 但是缺乏功能的DNA 序列。通过序列同源性搜索, 可以收集基因组中假基因的群体特性、染色体分布和同源家族等特性。假基因很好地保留了数百万年前基因组中祖先基因的分子记录, 被视为“基因化石”, 因此假基因在进化和比较基因组学中是重要的资源。应用假基因和基因比较体系, 可以探究生物基因的进化史和基因组稳定性。如: 用Ka/Ks比值确定假基因的自然选择压、物种亲缘关系和进化距离, 分析假基因自身的进化趋势, 探讨DNA 突变的成因等。  相似文献   

5.
假基因的组成、分布及其分子进化   总被引:5,自引:0,他引:5  
假基因(pseudogene)是指基因组中与正常基因序列相似,但是缺乏功能的DNA序列.通过序列同源性搜索,可以收集基因组中假基因的群体特性、染色体分布和同源家族等特性.假基因很好地保留了数百万年前基因组中祖先基因的分子记录,被视为"基因化石",因此假基因在进化和比较基因组学中是重要的资源.应用假基因和基因比较体系,可以探究生物基因的进化史和基因组稳定性.如:用Ka/Ks比值确定假基因的自然选择压、物种亲缘关系和进化距离,分析假基因自身的进化趋势,探讨DNA突变的成因等.  相似文献   

6.
为了研究内含子可能储存的有关生命进化信息,本研究以果蝇基因组中的内含子为样本,统计了内含子在不同长度区间内的相对频数,得到了内含子随其长度的分布,发现这种分布呈现出一定的规律性,即长度在1~80 bp内的内含子数目随其长度增加而增加,长度大于80 bp的内含子数目随其长度的增加而减少;本研究推论这种分布规律应该与某种分布模型一致,经过各种分布的拟合,最后发现这种分布与Γ(α,β)分布相符合;另外,将果蝇内含子分布规律和相应的外显分布进行了比较分析,发现虽然两类序列的分布规律都符合Γ(α,β)分布,但也存在明显的区别,并就此讨论了两类序列在生物进化中的意义。  相似文献   

7.
脊椎动物肌动蛋白各亚型的表达具有严格的与物种无关的组织特异性; 本文改进和完善了一种顺式元件匹配预测方法, 在实验资料的基础上, 统计出5 种顺式元件的核苷酸分布权重矩阵模式, 对脊椎动物β细胞质亚型和α平滑肌亚型肌动蛋白基因的5' 调控区进行顺式元件的匹配预测和序列分析,获得了相应亚型的特异性的顺式元件编码分布模式,并分析了其进化趋势。  相似文献   

8.
内含子插入和丢失的进化动力及机制尚存有许多疑问。我们拟通过对真核生物的604个同源基因的蛋白高度保守区域内含子-外显子的结构研究, 对人Homo sapiens、大鼠Rattus norvegicus、小鼠Mus musculus、黑腹果蝇Drosophila melanogaster、冈比亚按蚊Anopheles gambiae和拟南芥Arabidopsis thaliana中的12 585个内含子、3 074个保守内含子进行分析, 推断出不同系统中内含子进化趋势。结果显示在进化中双翅目昆虫丢失了约850多个内含子, 脊椎动物获得了1 600多个内含子, 而双翅目昆虫获得的内含子及脊椎动物丢失的内含子则较少。在内含子分布上, 除酵母有明显5′末端倾向性外, 双翅目昆虫也显示出内含子分布倾向于基因的5′端, 而在脊椎动物及拟南芥中则没有这种分布的倾向性。这可能是由于双翅目昆虫丢失的内含子大多位于基因的3′端造成的。通过对现在脊椎动物内含子分布及获得的内含子的插入相的研究, 发现内含子的获得可能在一定程度上导致了现存基因的内含子中插入相0的内含子最多这一倾向。  相似文献   

9.
八肋游仆虫Rab家族新成员Eo-rab-1N基因的克隆与序列分析   总被引:2,自引:1,他引:1  
李凌燕  柴宝峰  梁爱华  孙永华  王伟 《遗传》2006,28(4):437-442
Rab蛋白家族属于小分子GTP结合蛋白家族Ras超家族中最大的亚家族,主要在囊泡运输中起作用。本实验运用PCR、RT-PCR等技术,从八肋游仆虫中克隆到一种新的rab基因。序列分析结果表明:在大核中,该基因全长884bp,除去两端的端粒与非编码区,该基因在大核中由723bp组成。从小核中克隆相应的基因片段,此基因片段序列与大核中序列一致,表明该基因在小核中无内部删除序列的存在。通过RT-PCR,从mRNA获得的该基因的开放读框为663bp,表明该基因在转录过程中有内含子的删除。大核基因序列和cDNA序列比较,发现60bp的内含子序列位于大核基因的153~212bp之间,并符合一类内含子GU-AG剪切规则。在遗传密码使用上,该基因内部含有2个TGA,在游仆虫中编码半胱氨酸。同时首次发现,八肋游仆虫基因使用TAG作为终止密码子。NCBI上序列比对表明该基因翻译的蛋白与其它物种Rab1蛋白的同源性达49%~52%,因此我们将它命名为Eo-rab-1N,GenBank登录号为DQ105562。Eo-rab-1N与其他物种的Rab1蛋白构建进化树,发现该蛋白的进化与物种的进化保持一致,表明该基因在细胞中具有重要功能。  相似文献   

10.
以已公布的114种真菌线粒体基因组数据为依据,对cob内含子及其编码的Ⅱ型LAGLIDADG归巢内切酶进行全面分析,以揭示其进化规律。在cob内含子中共发现27个Ⅱ型LAGLIDADG归巢内切酶基因,其中18个位于S433内含子插入位点,其余9个散布在另外8个插入位点。结合Pfam数据,将Ⅱ型LAGLIDADG归巢内切酶分成10个主要类群,其中4个类群存在不同生物界物种间的水平迁移。S433位点的18个归巢内切酶均属于类群1,它们与宿主内含子可能从共同祖先垂直遗传而来,并在传递过程中伴有水平迁移;其他归巢内切酶及宿主内含子则应是水平迁移的结果。类群1中的归巢内切酶可分为两个亚类,两亚类识别的靶序列存在明显差异;保守模体氨基酸序列分析显示它们大多数具有潜在内切酶活性。全面呈现了真菌线粒体cob内含子及其编码的Ⅱ型LAGLIDADG归巢内切酶的存在状态和进化模式,为归巢内切酶的改造和设计提供了新素材。  相似文献   

11.
The origin and evolutionary relationship of actin isoforms was investigated in chordates by isolating and characterizing two new ascidian cytoplasmic and muscle actin genes. The exon–intron organization and sequences of these genes were compared with those of other invertebrate and vertebrate actin genes. The gene HrCA1 encodes a cytoplasmic (nonmuscle)-type actin, whereas the MocuMA2 gene encodes an adult muscle-type actin. Our analysis of these genes showed that intron positions are conserved among the deuterostome actin genes. This suggests that actin gene families evolved from a single actin gene in the ancestral deuterostome. Sequence comparisons and molecular phylogenetic analyses also suggested a close relationship between the ascidian and vertebrate actin isoforms. It was also found that there are two distinct lineages of muscle actin isoforms in ascidians: the larval muscle and adult body-wall isoforms. The four muscle isoforms in vertebrates show a closer relationship to each other than to the ascidian muscle isoforms. Similarly, the two cytoplasmic isoforms in vertebrates show a closer relationship to each other than to the ascidian and echinoderm cytoplasmic isoforms. In contrast, the two types of ascidian muscle actin diverge from each other. The close relationship between the ascidian larval muscle actin and the vertebrate muscle isoforms was supported by both neighbor-joining and maximum parsimony analyses. These results suggest that the chordate ancestor had at least two muscle actin isoforms and that the vertebrate actin isoforms evolved after the separation of the vertebrates and urochordates. Received: 20 June 1996 / Accepted: 16 October 1996  相似文献   

12.
Recombinant phages that carry the human smooth muscle (enteric type) gamma-actin gene were isolated from human genomic DNA libraries. The amino acid sequence deduced from the nucleotide sequence matches those of cDNAs but differs from the protein sequence previously reported at one amino acid position, codon 359. The gene containing one 5' untranslated exon and eight coding exons extends for 27 kb on human chromosome 2. The intron between codons 84 and 85 (site 3) is unique to the two smooth muscle actin genes. In the 5' flanking region, there are several CArG boxes and E boxes, which are regulatory elements in some muscle-specific genes. Hybridization with the 3' untranslated region, which is specific for the human smooth muscle gamma-actin gene, suggests the single gene in the human genome and specific expressions in enteric and aortic tissues. From characterized molecular structures of the six human actin isoform genes, we propose a hypothesis of evolutionary pathway of the actin gene family. A presumed ancestral actin gene had introns at least sites 1, 2, and 4 through 8. Cytoplasmic actin genes may have directly evolved from it through loss of introns at sites 5 and 6. However, through duplication of the ancestral actin gene with substitutions of many amino acids, a prototype of muscle actin genes had been created. Subsequently, striated muscle actin and smooth muscle actin genes may have evolved from this prototype by loss of an intron at site 4 and acquisition of a new intron at site 3, respectively.  相似文献   

13.
A recombinant phage containing an actin gene (lambda Ha201) was isolated from a human DNA library and the structure of the actin gene was determined. The amino acid sequences deduced from the nucleotide sequences of lambda Ha201 were compared with those of six actin isoforms; they matched those of bovine aortic smooth muscle actin, except for codon 309, which was valine (GTC) in lambda Ha201 and alanine (GCN) in bovine aortic smooth muscle actin. Southern blot hybridization experiments showed that the gene of normal human cells did not have the TaqI-sensitive site around position 309, whereas half of the genes of HUT14 cells did. These results indicate that one allele of the aortic smooth muscle actin gene in HUT14 cells has a transition point mutation (C----T) at codon 309 and that the amino acid sequences of normal human aorta and bovine smooth muscle actins are probably identical. In addition to the five introns interrupting exons at codons 150, 204, and 267, and between codons 41 and 42 and 327 and 328, which are common to skeletal muscle and cardiac muscle actin genes, the smooth muscle actin gene has two more intron sites between codons 84 and 85 and 121 and 122. The previously unreported intron site between codons 84 and 85 is unique to the smooth muscle actin gene. The intron site between codons 121 and 122 is common to beta-actin genes but is not found in other muscle actin genes. A hypothesis is proposed for the evolutionary pathway of the actin gene family.  相似文献   

14.
15.
Yuasa HJ  Takagi T 《Gene》2000,245(2):275-281
Two cDNAs encoding troponin C (TnC) isoforms are isolated from the scallop, Patinopecten yessoensis, striated adductor muscle. The sequential differences between these isoforms, named TnC(long) and TnC(short), are restricted in several residues of the C-terminal region. TnC(long) is commonly expressed in both the striated and the smooth adductor muscle; however, TnC(short) is only in the striated adductor muscle. The TnC gene is a single copy gene in the scallop, thus they are expressed through the alternative splicing from the same gene. The scallop TnC gene is constructed from five exons and four introns, and positions of introns are identical with chordate TnC genes, although the scallop TnC possesses no corresponding intron to the fourth intron of chordates. The loss of this intron is also observed in Drosophila TnC; these may be remnants of their ancestor, namely the early metazoan TnC gene might be a five exons-four introns structure. In addition, the absence of the corresponding intron is also observed among protostomian calmodulins (CaMs), a molecule closely related to TnC. This suggests that the common ancestor gene of the TnC superfamily might also be a five exons-four introns structure. Assuming this to be true, the discordance of the fourth intron positions observed among members of the family is well explained by the evolutionary independent gain of the intron on each member's lineage.  相似文献   

16.
The cytoplasmic actin genes BmA3 and BmA4 of Bombyx mori were found clustered in a single genomic clone in the same orientation. As a similar clustering of the two cytoplasmic actin genes Ha3a and Ha3b also occurs in another lepidopteran, Helicoverpa armigera, we analyzed the sequence of the pair of genes from each species. Due to the high conservation of cytoplasmic actins, the coding sequence of the four genes was easily aligned, allowing the detection of similarities in noncoding exon and intron sequences as well as in flanking sequences. All four genes exhibited a conserved intron inserted in codon 117, an original position not encountered in other species. It can thus be postulated that all of these genes derived from a common ancestral gene carrying this intron after a single event of insertion. The comparison of the four genes revealed that the genes of B. mori and H. armigera are related in two different ways: the coding sequence and the intron that interrupts it are more similar between paralogous genes within each species than between orthologous genes of the two species. In contrast, the other (noncoding) regions exhibited the greatest similarity between a gene of one species and a gene of the other species, defining two pairs of orthologous genes, BmA3 and HaA3a on one hand and BmA4 and HaA3b on the other. However, in each species, the very high similarities of the coding sequence and of the single intron that interrupts it strongly suggest that gene conversion events have homogenized this part of the sequence. As the divergence of the B. mori genes was higher than that of the H. armigera genes, we postulated that the gene conversion occurred earlier in the B. mori lineage. This leads us to hypothesize that gene conversion could also be responsible for the original transfer of the common intron to the second gene copy before the divergence of the B. mori and H. armigera lineages.  相似文献   

17.
Origin and evolution of group I introns in cyanobacterial tRNA genes.   总被引:10,自引:4,他引:6       下载免费PDF全文
Many tRNA(Leu)UAA genes from plastids contain a group I intron. An intron is also inserted in the same gene at the same position in cyanobacteria, the bacterial progenitors of plastids, suggesting an ancient bacterial origin for this intron. A group I intron has also been found in the tRNA(fMet) gene of some cyanobacteria but not in plastids, suggesting a more recent origin for this intron. In this study, we investigate the phylogenetic distributions of the two introns among cyanobacteria, from the earliest branching to the more derived species. The phylogenetic distribution of the tRNA(Leu)UAA intron follows the clustering of rRNA sequences, being either absent or present in clades of closely related species, with only one exception in the Pseudanabaena group. Our data support the notion that the tRNA(Leu)UAA intron was inherited by cyanobacteria and plastids through a common ancestor. Conversely, the tRNA(fMet) intron has a sporadic distribution, implying that many gains and losses occurred during cyanobacterial evolution. Interestingly, a phylogenetic tree inferred from intronic sequences clearly separates the different tRNA introns, suggesting that each family has its own evolutionary history.  相似文献   

18.
The compositional distributions of large (main-band) DNA fragments from eight birds belonging to eight different orders (including both paleognathous and neognathous species) are very broad and extremely close to each other. These findings, which are paralleled by the compositional similarity of homologous coding sequences and their codon positions, support the idea that birds are a monophyletic group.The compositional distribution of third-codon positions of genes from chicken, the only avian species for which a relatively large number of coding sequences is known, is very broad and bimodal, the minor GC-richer peak reaching 100% GC. The very high compositional heterogeneity of avian genomes is accompanied (as in the case of mammalian genomes) by a very high speciation rate compared to cold-blooded vertebrates which are characterized by genomes that are much less heterogeneous. The higher GC levels attained by avian compared to mammalian genomes might be correlated with the higher body temperature (41–43°C) of birds compared to mammals (37°C).A comparison of GC levels of coding sequences and codon positions from man and chicken revealed very close average GC levels and standard deviations. Homologous coding sequences and codon positions from man and chicken showed a surprisingly high degree of compositional similarity which was, however, higher for GC-poor than for GC-rich sequences. This indicates that GC-poor isochores of warm-blooded vertebrates reflect the composition of the isochores of the genome of the common reptilian ancestor of mammals and birds, which underwent only a small compositional change at the transition from cold- to warm-blooded vertebrates. In contrast, the GC-rich isochores of birds and mammals are the result of large compositional changes at the same evolutionary transition, where were in part different in the two classes of warm-blooded vertebrates.Correspondence to: G. Bernaadi  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号