首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
1. When yeast oxidizes propan-2-ol in the presence of KCl no uptake of K+ occurs. 2. When propionate is added to suspensions containing propan-2-ol, or if the suspensions are bubbled with CO2, a considerable uptake of K+ occurs. 3. Maximum K+ uptake occurs at a propionate concentration of 2mm. 4. The addition of 20mm-propionate to the suspension lowers the intracellular pH of the yeast from a resting value in the region of 6.2 to approx. 5.6. 5. When K+ uptake is measured in the presence of 20mm-propionate, progressive changes in the rate of K+ uptake and intracellular pH occur. The optimum rate of K+ uptake occurs at an intracellular pH of 5.70. 6. The effect of both intra- and extra-cellular pH on K+–K+ exchange was studied and an optimum rate was found at an extracellular pH of 5.35, the corresponding intracellular pH being 6.44. 7. When a Na+-loaded yeast oxidizes propan-2-ol in the presence of KCl, a steady efflux of Na+ and influx of K+ occurs. The addition of 10mm-propionate to the suspension markedly inhibited the Na+ efflux but only slightly decreased the K+ influx. 8. The effect of both extra- and intra-cellular pH on Na+ efflux was studied with propan-2-ol and with glucose. The results can be best interpreted in terms of intracellular pH changes, and an optimum was obtained at approx. pH6.40.  相似文献   

2.
Transport Pathways for Therapeutic Concentrations of Lithium in Rat Liver   总被引:1,自引:0,他引:1  
Although both amiloride- and phloretin-sensitive Na+/Li+ exchange activities have been reported in mammalian red blood cells, it is still unclear whether or not the two are mediated by the same pathway. Also, little is known about the relative contribution of these transport mechanisms to the entry of therapeutic concentrations of Li+ (0.2–2 mm) into cells other than erythrocytes. Here, we describe characteristics of these transport systems in rat isolated hepatocytes in suspension. Uptake of Li+ by hepatocytes, preloaded with Na+ and incubated in the presence of ouabain and bumetanide, comprised three components. (a) An amiloride-sensitive component, with apparent K m 1.2 mm Li+, V max 40 μmol · (kg dry wt · min)−1, showed increased activity at low intracellular pH. The relationship of this component to the concentration of intracellular H+ was curvilinear suggesting a modifier role of [H+] i . This system persisted in Na+-depleted cells, although with apparent K m 3.8 mm. (b) A phloretin-sensitive component, with K m 1.2 mm, V max 21 μmol · (kg · min)−1, was unaffected by pH but was inactive in Na+-depleted cells. Phloretin inhibited Li+ uptake and Na+ efflux in parallel. (c) A residual uptake increased linearly with the external Li+ concentration and represented an increasing proportion of the total uptake. The results strongly suggest that the amiloride-sensitive and the phloretin-sensitive Li+ uptake in rat liver are mediated by two separate pathways which can be distinguished by their sensitivity to inhibitors and intracellular [H+]. Received: 8 April 1999/Revised: 19 July 1999  相似文献   

3.
Kinetics of Sulfate and Acetate Uptake by Desulfobacter postgatei   总被引:8,自引:4,他引:4       下载免费PDF全文
The kinetics of sulfate and acetate uptake was studied in the sulfate-reducing bacterium Desulfobacter postgatei (DSM 2034). Kinetic parameters (Km and Vmax) were estimated from substrate consumption curves by resting cell suspensions with [35S]sulfate and [14C]acetate. Both sulfate and acetate consumption followed Michaelis-Menten saturation kinetics. The half-saturation constant (Km) for acetate uptake was 70 μM with cells from either long-term sulfate- or long-term acetate-limited chemostat cultures. The average Km value for sulfate uptake by D. postgatei was about 200 μM. Km values for sulfate uptake did not differ significantly when determined with cells derived either from batch cultures or sulfate- or acetate-limited chemostat cultures. Acetate consumption was observed at acetate concentrations of ≤1 μM, whereas sulfate uptake usually ceased at 5 to 20 μM. The results show that D. postgatei is not freely permeable to sulfate ions and further indicate that sulfate uptake is an energy-requiring process.  相似文献   

4.
The effect of CO2 on potassium transport by Chlorella fusca   总被引:1,自引:1,他引:0  
Abstract. The effect of CO2 on net K+ uptake by Chlorella fusca grown on high CO2 levels was examined by passing 1.5% CO2 through algal suspensions gassed previously with air or CO2-free air Addition of CO2 in the light caused a large net uptake of K+ (initial velocity 4.2–9.2 mmol s?1 m?3 cells) which decreased the concentration of K+ in the supernatant from 0.1–0.2 mol m?3 to 3–10 mmol m?3. In the dark and in the presence of 30 mmol m?3 DCMU, no effects were found. Measurement or the unidirectional K+ fluxes by using 86Rb+ as a label showed that in the presence of 1.5% CO2, influx of K+ was increased by a factor of 2–4 while efflux was inhibited completely. CO2 hyperpolarized the membrane potential (determined through TPP+ uptake) from –120mV to –130 mV which could not explain the more than 15,000-fold K+ accumulations. In the light, CO2 lowered the intracellular pH (determined with DMO) by 0.5 units. In the dark and in the presence of DCMU only, a small acidification of 0.1 units was found. During the first 15 min after addition of CO2 the malate content of the cells increased from 0.7 to 1.5 mol m?3 packed cells. On the basis of these and earlier results, CO2-induced net K+ uptake is interpreted as a stimulation of an electroneutral ATP-dependent K+/H+ exchange at the plasmalemma. This exchange acts as a ‘pHstat’ by reducing the intracellular acidification caused by production of acidic assimilation products.  相似文献   

5.
Regulation of the mitochondrial adenine nucleotide pool size   总被引:1,自引:0,他引:1  
A mechanism by which normal adult rat liver mitochondria may regulate the matrix adenine nucleotide content was studied in vitro. If mitochondria were incubated with 1 mm ATP at 30 ° C in 225 mm sucrose, 2 mm K2HPO4, 5 mm MgCl2, and 10 mm Tris-Cl (pH 7.4), the adenine nucleotide pool size increased at a rate of 0.44 ± 0.02 nmol/mg mitochondrial protein/min. The rate of adenine nucleotide accumulation under these conditions was concentration dependent and specific for ATP or ADP; AMP was not taken up. The rate of net ADP uptake was 50–75% slower than that for ATP. The Km values for net uptake of ATP and ADP were 2.08 and 0.36 mm, respectively. Adenine nucleotide uptake was stoichiometrically dependent on Mg2+ and stimulated by inorganic phosphate. Net uptake was inhibited by n-ethylmaleimide, or mersalyl, but not by n-butylmalonate. Nigericin inhibited net uptake, but valinomycin did not. In the presence of uncouplers, net uptake was not only inhibited, but adenine nucleotide efflux was observed instead. Like uptake, uncoupler-induced efflux of adenine nucleotides was inhibited by mersalyl, indicating that a protein was required for net flux in either direction. Carboxyatractyloside, bongkrekic acid, or respiratory substrates reduced the rate of adenine nucleotide accumulation, however, this did not appear to be a direct inhibition of the transport process, but rather was probably related indirectly to an increase in the matrix ATPADP ratio. The collective properties of the transport mechanism(s) for adenine uptake and efflux were different from those which characterize any of the known transport systems. It is proposed that uptake and efflux operate to regulate the total matrix adenine nucleotide pool size: a constant pool size is maintained if the rates of uptake and efflux are equal. Transient alterations in the relative rates of uptake and efflux may occur in response to hormones or other metabolic signals, to bring about net changes in the pool size.  相似文献   

6.
Cations were generally ineffective in stimulating succinate transport in a succinate dehydrogenase mutant of Bacillus subtilis unless accompanied by polyvalent anions; phosphate and sulfate being particularly active. The Km values for the phosphate or sulfate requirement were approx. 3 mM.Biphasic kinetics were characteristic of both the succinate (Km values 0.1 and 1 mM), and inorganic phosphate (Km values 0.1 and 3 mM) transport system(s). The phosphate transport system(s) was repressed by high inorganic phosphate and a coordinate increase in the transport of phosphate, arsenate, and phosphate-stimulated succinate transport accompanied growth in low phosphate media.A class of arsenate resistant mutants were simultaneously defective in the transport of arsenate, phosphate and succinate when cells were repressed for phosphate transport, however, the transport of these ions was regained in these mutants when grown in low phosphate media. Organic phosphate esters did not stimulate succinate transport in arsenate resistant mutants but were effective after growth in low phosphate media. Growth under phosphate limitation permitted the simultaneous regain of both phosphate and sulfate dependent succinate transport activities whereas sulfate limitation alone was ineffective.Succinate was not transported by an anion exchange diffusion mechanism since phosphate efflux was low or absent during succinate transport.The transport of C4-dicarboxylates in B. subtilis is strongly stimulated by intracellular polyvalent anions. The absence of an anion permeability mechanism precludes succinate transport but partial escape from this restriction is mediated by the derepression of a phosphate transport system.  相似文献   

7.
E. Komor  M. Thom  A. Maretzki 《Planta》1981,153(2):181-192
Sugarcane cell suspensions took up sugar from the medium at rates comparable to or greater than sugarcane tissue slices or plants in the field. This system offers an opportunity for the study of kinetic and energetic mechanisms of sugar transport in storage parenchyma-like cells in the absence of heterogeneity introduced by tissues. The following results were obtained: (a) The sugar uptake system was specific for hexoses; as previously proposed, sucrose was hydrolyzed by an extracellular invertase before the sugar moieties were taken up; no evidence for multiple sugar uptake systems was obtained. — (b) Uptake of the glucose-analog 3-O-methylglucose (3-OMG) reached a plateau value with an intracellular concentration higher than in the medium (approximately 15-fold). — (c) There was a balance of influx and efflux during steady state; the rate of exchange influx was lower than the rate of net influx; the Km value was higher (70 M) than for net influx (24 M); the exchange efflux is proposed to be mediated by the same transport system with a Km value of approximately 2.6 mM for internal 3-OMG; the rate of net efflux of hexoses was less than a third of the rate of exchange efflux. — (d) The uptake of hexoses proceeded as proton-symport with a stoichiometry of 0.87 H+ per sugar; during the onset of hexose transport there was a K+ exit of 0.94 K+ per sugar for charge compensation. (It was assumed that the real stoichiometries are 1 H+ and 1 K+ per sugar.) The Km values for sugar transport and sugar-induced proton uptake were identical. Sucrose induced proton uptake only in the presence of cell wall invertase. — (e) There was no net proton uptake with 3-OMG by cells which were preloaded with glucose though there was significant sugar uptake. It is assumed, therefore, that the exit of hexose occurs together with protons. — (f) The protonmotive potential of sugarcane cells corresponded to about 120 mV: pH-gradient 1.1 units, membrane potential of-60 mV (these values increased if vacuolar pH and membrane potential were also considered). It was abolished by uncouplers, and the magnitude of the components depended on the external pH value. We present evidence for the operation of a proton-coupled sugar transport system in cell suspensions that were derived from, and have characteristics of, storage parenchyma. The quantitative rates of sugar transport suggest that the role of this transport system is not limiting for sugar storage.Abbreviations 3-OMG 3-O methylglucose - DMO 5,5-dimethyl-2, 4-oxazolidinedione - TPP tetraphenylphosphonium chloride - CCCP carbonyl cyanide, m-chlorophenylhydrozane  相似文献   

8.
Rubidium uptake in potassium-starved cells followed biphasic kinetics in the micromolar and millimolar range and was independent of the temperature. In contrast, Rb+ uptake in normal-K+ cells followed a monophasic kinetics in the millimolar range and increased at temperatures higher than 30°C. Differences in the K m values and in the Arrhenius plots of Rb+ uptake suggest different uptake systems in K+-starved and in normal-K+ cells. In addition, the substantial inhibition of Rb+ uptake caused by carbonyl cyanide-m-chlorophenyl hydrazone indicates that these systems are strongly dependent on membrane voltage. Lithium (sodium) tolerance, influx, and efflux were separately studied. F. oxysporum was shown to be very tolerant to sodium, while lithium caused a specific toxic effect. Li+ uptake in K+-starved cells exhibits a monophasic kinetics with low affinity. Li+ efflux was not affected by external pH or addition of potassium to the medium, suggesting that a Na+/cation antiporter is not involved in this process. Received: 14 March 2000 / Accepted: 5 June 2000  相似文献   

9.
The apparent photosynthetic Km (CO2) of air-grown Dunaliella salina is 2 M as measured both by the filtering centrifugation technique and by O2 electrode. These cells are capable of accumulating inorganic carbon (Cinorg) up to 20 times its concentration in the medium. It is suggested that air-grown Dunaliella cells are able to concentrate CO2 within the cell. Analysis of the efflux of Cinorg from cells previously loaded with H14CO 3 - demonstrated the existence of an internal pool which has an half-time of depletion of 2.5–7 min depending on the conditions of the experiment. This finding indicates that the internal Cinorg pool is not readily exchangeable with the external medium. Furthermore, the influence of the presence or absence of unlabelled Cinorg in the medium during the efflux experiment on the half-time observed indicate that efflux of Cinorg is not a simple diffusion process but is rather carrier-mediated.Abbreviation Cinorg inorganic carbon  相似文献   

10.
Neurons maintain relatively high intracellular concentrations of vitamin C, or ascorbic acid. In this work we studied the mechanisms by which neuronal cells in culture transport and maintain ascorbate, as well as how this system responds to oxidant stress induced by glutamate. Cultured SH-SY5Y neuroblastoma cells took up ascorbate, achieving steady-state intracellular concentrations of 6 mM and higher at extracellular concentrations of 200 μM and greater. This gradient was generated by relatively high affinity sodium-dependent ascorbate transport (K m of 113 μM). Ascorbate was also recycled from dehydroascorbate, the reduction of which was dependent on GSH, but not on d-glucose. Glutamate in concentrations up to 2 mM caused an acute concentration-dependent efflux of ascorbate from the cells, which was prevented by the anion channel blocker 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid. Intracellular ascorbate did not affect radiolabeled glutamate uptake, showing absence of heteroexchange.  相似文献   

11.
The uptake of K+ and Ca2+ in Dunaliella salina is mediated by two distinct carriers: a K+ carrier with a high selectivity against Na+, Li+, and choline+ but not towards Rb+, K+, Cs+, or NH4+, and a Ca2+ carrier with a high selectivity against Mg2+. The latter is specifically blocked by La3+ and by Cd2+. Apparent Km values for K+ and Ca2+ uptake are 2.5 and 0.8 millimolar, respectively, and their maximal calculated fluxes are 22 and 0.8 nanomoles per square meter per second, respectively. Effects of permeable ions and ionophores on K+ and Ca2+ uptake suggest that the driving force for their uptake is the transmembrane electrical potential. Inhibitors of ATP production, typical inhibitors of plasma membrane H+-ATPases and protonionophores inhibit K+ and Ca2+ uptake and accelerate K+ efflux. The results suggest that an H+-ATPase in the cell membrane provides the driving force for K+ and Ca2+ uptake. Efflux measurements from 86Rb+ and 45Ca2+ loaded cells suggest that part of the intracellular K+ and most of the intracellular Ca2+ is nonexchangeable with the extracellular pool. Correlations between phosphate and K+ contents and the effect of phosphate on K+ efflux suggest intracellular associations between K+ and polyphosphates. On the basis of these results, it is suggested that: (a) K+ and Ca2+ uptake in D. salina is driven by the transmembrane electrical potential which is generated by the action of an H+-ATPase of the plasma membrane. (b) Part of the intracellular K+ is associated with polyphosphate bodies, while most of the intracellular Ca2+ is accumulated in intracellular organelles in the algal cells.  相似文献   

12.
The TRK proteins—Trk1p and Trk2p— are the main agents responsible for “active” accumulation of potassium by the yeast Saccharomyces cerevisiae. In previous studies, inward currents measured through those proteins by whole-cell patch-clamping proved very unresponsive to changes of extracellular potassium concentration, although they did increase with extracellular proton concentration—qualitatively as expected for H+ coupling to K+ uptake. These puzzling observations have now been explored in greater detail, with the following major findings: a) the large inward TRK currents are not carried by influx of either K+ or H+, but rather by an efflux of chloride ions; b) with normal expression levels for Trk1p and Trk2p in potassium-replete cells, the inward TRK currents are contributed approximately half by Trk1p and half by Trk2p; but c) strain background strongly influences the absolute magnitude of these currents, which are nearly twice as large in W303-derived spheroplasts as in S288c-derived cells (same cell-size and identical recording conditions); d) incorporation of mutations that increase cell size (deletion of the Golgi calcium pump, Pmr1p) or that upregulate the TRK2 promoter, can further substantially increase the TRK currents; e) removal of intracellular chloride (e.g., replacement by sulfate or gluconate) reveals small inward currents that are K+-dependent and can be enhanced by K+ starvation; and f) finally, the latter currents display two saturating kinetic components, with preliminary estimates of K0.5 at 46 μM [K+]out and 6.8 mM [K+]out, and saturating fluxes of ∼5 mM/min and ∼10 mM/min (referred to intracellular water). These numbers are compatible with the normal K+-transport properties of Trk1p and Trk2p, respectively.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

13.
The stimulation of H+ extrusion by hyper-osmotic stress (0.2–0.3 M mannitol) in cultured cells of Arabidopsis thaliana (L.) Heynh. was shown to be associated with an inhibition of Cl? efflux, whereas hypo-osmotic stress, inhibiting H+ extrusion, early and strongly stimulated Cl? efflux. In this paper, we investigate the contribution of other factors [K+ transport and transmembrane electric potential difference (Em)] to the hyper-osmotic-induced activation of the plasma membrane (PM) H+-ATPase. The effects of mannitol (MA) on K+ transport and on Em were compared with those of fusicoccin (FC) since the modes of action of osmotica and of the toxin in stimulating H+-ATPase activity seem to differ at least in some steps. The changes in H+ extrusion induced by hyper- or hypo-osmotic stress were opposite and could be reversed by the application of the respective opposite stress. The effect of MA on H+ extrusion was dependent on the presence of K+ (or Rb+) similarly to that of FC, while Na+ and Li+, which also stimulated the FC effect, were ineffective on that of MA. The MA effect was independent of the anions (Cl?, SO42?, NO3?) accompanying K+. K+ net uptake and K+ influx were stimulated by both MA and FC. Tetraethylammonium (TEA+) and Cs+ inhibited both MA- and FC-induced H+ extrusion, suggesting the involvement of K+ channels. MA (0.2 M) induced a strong hyperpolarization of Em both in the absence and in the presence of K+. The hyperpolarizing effect of MA was also found when the cells were already hyperpolarized by FC, and was rapidly reversed by removing the osmoticum from the medium. In the presence of the lipophilic cation tributylbenzylammonium (TBBA+), MA was no longer able to stimulate H+ extrusion, while FC still stimulated it. In cells pretreated with TBBA+, which strongly depolarized Em, the subsequent addition of FC repolarized it, while the hyperpolarizing effect of MA was lacking. On the contrary, in cells pretreated with Erythrosine B (EB), Em was strongly depolarized and the following addition of FC did not hyperpolarize it, while the hyperpolarizing effect of MA was still observed. These results suggest that the mechanism of MA in activating H+ extrusion and K+ uptake is different from that of FC. The rise in net K+ uptake seems to be driven by the activation of some hyperpolarizing system that does not seem to depend on a direct activation of PM H+-ATPase, but rather on the inhibition of Cl? efflux induced by hyper-osmotic stress.  相似文献   

14.
Fusicoccin (FC) has long been known to promote K+ uptake in higher plant cells, including stomatal guard cells, yet the precise mechanism behind this enhancement remains uncertain. Membrane hyperpolarization, thought to arise from primary H+ pumping stimulated in FC, could help drive K+ uptake, but the extent to which FC stimulates influx and uptake frequently exceeds any reasonable estimates from Constant Field Theory based on changes in the free-running membrane potential (V m) alone; furthermore, unidirectional flux analyses have shown that in the toxin K+ (86Rb+) exchange plummets to 10% of the control (G.M. Clint and E.A.C. MacRobbie 1984, J. Exp. Bot.35 180–192). Thus, the activities of specific pathways for K+ movement across the membrane could be modified in FC. We have explored a role for K+ channels in mediating these fluxes in guard cells ofVicia faba L. The correspondence between FC-induced changes in chemical (86Rb+) flux and in electrical current under voltage clamp was followed, using the K+ channel blocker tetraethylammonium chloride (TEA) to probe tracer and charge movement through K+-selective channels. Parallel flux and electrical measurements were carried out when cells showed little evidence of primary pump activity, thus simplifying analyses. Under these conditions, outward-directed K+ channel current contributed appreciably to charge balance maintainingV m, and adding 10 mM TEA to block the current depolarized (positive-going)V m; TEA also reduced86Rb+ efflux by 68–80%. Following treatments with 10 M FC, both K+ channel current and86Rb+ efflux decayed, irreversbly and without apparent lag, to 10%–15% of the controls and with equivalent half-times (approx. 4 min). Fusicoccin also enhanced86Rb+ influx by 13.9-fold, but the influx proved largely insensitive to TEA. Overall, FC promotednet cation uptake in 0.1 mM K+ (Rb+), despite membrane potentials which were 30–60 mVpositive of the K+ equilibrium potential. These results tentatively link (chemical) cation efflux to charge movement through the K+ channels. They offer evidence of an energy-coupled mechanism for K+ uptake in guard cells. Finally, the data reaffirm early suspicions that FC alters profoundly the K+ transport capacity of the cells, independent of any changes in membrane potential.Abbreviations and symbols E K equilibrium potential for K+ - FC fusicoccin - Hepes 4-(2-hydroxyethyl)-1-piperazineeth-anesulfonic acid - G m membrane (slope) conductance atV m - I-V current-voltage (relationship) - apparent rate constant for exchange - K i + , K 0 + intracellular, extracellular K+ (concentration) - TEA tetraethylammonium chloride - V m free-running membrane potential (difference)  相似文献   

15.
The fluxes of choline across the plasma membrane were measured in primary nerve cell cultures from chick embryo cerebral hemispheres containing neurons and supporting cells.The incubation of cells with exogenous concentrations of choline far below the concentrations present in the growth medium (~30–50 μM) and in the range of the high affinity uptake mechanism (about 0.5 μM) profoundly affected the steady state of the endocellular free choline levels. The kinetics of the uptake were dependent upon the endocellular status of the choline pool since after preincubation in the absence of choline two Kms are observed (Km1: 0.8 μM; Vmax1: 44.8 pmol/mg protein/2 min; Km2: 14.3 μM, Vmax2: 333.3 pmol/mg protein/2 min) while only one mechanism can be found when the endocellular pool of choline was kept in steady state conditions (Km: 14.3 μM, Vmax: 545.5 pmol/mg protein/2 min). The presence of an homoexchange phenomenon was suspected since choline efflux could be increased by increasing the concentrations of choline in the incubation medium.The results suggest that the movement of choline into nerve cells in culture appears to be mediated by a single mechanism which is regulated by the endocellular status of the choline pool.  相似文献   

16.
It is known that heme iron and inorganic iron are absorbed differently. Heme iron is found in the diet mainly in the form of hemoglobin and myoglobin. The mechanism of iron absorption remains uncertain. This study focused on the heme iron uptake by Caco-2 cells from a hemoglobin digest and its response to different iron concentrations. We studied the intracellular Fe concentration and the effect of time, K+ depletion, and cytosol acidification on apical uptake and transepithelial transport in cells incubated with different heme Fe concentrations. Cells incubated with hemoglobin-digest showed a lower intracellular Fe concentration than cells grown with inorganic Fe. However, uptake and transepithelial transport of Fe was higher in cells incubated with heme Fe. Heme Fe uptake had a low V max and K m as compared to inorganic Fe uptake and did not compete with non-heme Fe uptake. Heme Fe uptake was inhibited in cells exposed to K+ depletion or cytosol acidification. Heme oxygenase 1 expression increased and DMT1 expression decreased with higher heme Fe concentrations in the media. The uptake of heme iron is a saturable and temperature-dependent process and, therefore, could occur through a mechanism involving both a receptor and the endocytic pathway.  相似文献   

17.
Transport of glucose by Leishmania tropica promastigotes was measured by the uptake of the nonutilizable glucose analog, 2-deoxy-D-glucose (2-DOG), using the rapid filtration method. Both D-glucose and 2-DOG show identical rates of initial uptake. Intracellular 2-DOG readily exchanges with extracellular D-glucose and 2-DOG uptake is competitively inhibited by D-glucose. These observations suggest that both sugars are taken up by the same system. Neither the glucose analog α-methyl-D-glucoside (α-MG) nor 3-0-methyl glucose (3-0-MG) is taken up to any appreciable extent. Transport of 2-DOG shows saturation kinetics with a Vmax of 3.2 nmoles/mg cells/min and a Km of 0.16 mM. There is thus a stereospecific, carrier-mediated transport system for glucose uptake in L. tropica. About 2/3 of the intracellular pool following transport consists of 2-deoxy-D-glucose phosphate (2-DOG-P) and the remainder is free, unaltered 2-DOG.  相似文献   

18.
Summary Microscopic observations of isotonic suspensions of human red blood cells demonstrate that cell shape is unaltered when the transmembrane electrical potential, orE m , is set in the range –85 to +10 mV with valinomycin at varied external K+, or K o .E m was measured with the fluorescent potentiometric indicator, diS-C3(5), as calibrated by a pH method. Repeating Glaser's experiments in which echinocytosis was attributed to hyperpolarization, we found that at low ionic strength the pH-dependent effects of amphotericin B appear to be unrelated toE m . The effects of increased intracellular Ca2+, or Ca o , on echinocytosis and onE m are separable. With Ca ionophore A23187 half-maximal echinocytosis occurs at greater Ca o than that which induces the half-maximal hyperpolarization associated with Ca-induced K+ conductance (Gardos effect). Thus, cells hyperpolarized by increased Ca o remain discoidal when Ca is below the threshold for echinocytosis. With A23187 and higher Ca o , extensive echinocytosis occurs in cells which are either hyperpolarized or at their resting potential. The Ca-activation curve for echinocytosis is left-shifted by low K o , a new observation consistent with increased DIDS-sensitive uptake of45Ca by hyperpolarized cells. These results support the following conclusions: (1) the shape and membrane potential of human red blood cells are independent under the conditions studied; (2) in cells treated with A23187, the Gardos effect facilitates echinocytosis by increasing Ca.  相似文献   

19.
Some strains of Saccharomyces cerevisiae exhibit a specific transport system for ureidosuccinic acid, which is regulated by nitrogen metabolism. Ureidosuccinic acid uptake occurs with proline but with ammonium sulfate as nitrogen source it is inhibited. The V for transport is 20–25 μmol/ml cell water per min. The apparent Km is 3 · 10-5. For the urep1 mutant (ureidosuccinic acid permease less) the internal concentration never exceeds the external one.In the permease plus strain ureidosuccinic acid can be concentrated up to 10 000 fold and the accumulated compound remains unchanged in the cells. Energy poisons such as dinitrophenol, carbonyl cyanide-m-chlorophenyl-drazone (CCCP) or NaN3 inhibit the uptake. No significant efflux of the accumulated compound occurs even in the presence of these drugs.The specificity of the permease is very strict, only amino acids carrying an α-N-carbamyl group are strongly competitive inhibitors.The high concentration capacity of the cells and the lack of active exit of the accumulated compound support the hypothesis of a carrier mediated active transport system.  相似文献   

20.
Poole RJ 《Plant physiology》1969,44(4):485-490
The flux ratio (influx/efflux) of K+ across the plasmalemma of beet cells at an external potassium concentration of 0.6 mm does not respond to changes of membrane potential in the manner expected for the free diffusion of ions. The K+ efflux is affected by the presence of adsorbed Ca2+, but is apparently unrelated to the electrical potential or to the net uptake of potassium. The K+ efflux is greater than the efflux of the sulfate and organic anions which are accumulated with potassium, and is partially dependent on the presence of external potassium. Thus the loss of 42K from the cell does not appear to be a leakage of freely diffusing K+ ions, nor a leakage of ion pairs, but a carrier-mediated transport or exchange of potassium across the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号