首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that the small subunit of Xenopus DNA polymerase gamma (pol gammaB) acts as a processivity factor to stimulate the 140 kDa catalytic subunit of human DNA polymerase gamma. A putative human pol gammaB initially identified by analysis of DNA sequence had not been shown to be functional, and appeared to be an incomplete clone. In this paper, we report the cloning of full-length human and mouse pol gammaB. Both human and mouse pol gammaB proteins were expressed in their mature forms, without their apparent mitochondrial localization signals, and shown to stimulate processivity of the recombinant catalytic subunit of human pol gammaA. Deletion analysis of human pol gammaB indicated that blocks of sequence conserved with prokaryotic class II aminoacyl-tRNA synthetases are necessary for activity and inter-action with human pol gammaA. Purification of DNA pol gamma from HeLa cells indicated that both proteins are associated in vivo.  相似文献   

2.
Peptide sequences obtained from the accessory subunit of Xenopus laevis mitochondrial DNA (mtDNA) polymerase gamma (pol gamma) were used to clone the cDNA encoding this protein. Amino-terminal sequencing of the mitochondrial protein indicated the presence of a 44-amino-acid mitochondrial targeting sequence, leaving a predicted mature protein with 419 amino acids and a molecular mass of 47.3 kDa. This protein is associated with the larger, catalytic subunit in preparations of active mtDNA polymerase. The small subunit exhibits homology to its human, mouse, and Drosophila counterparts. Interestingly, significant homology to glycyl-tRNA synthetases from prokaryotic organisms reveals a likely evolutionary relationship. Since attempts to produce an enzymatically active recombinant catalytic subunit of Xenopus DNA pol gamma have not been successful, we tested the effects of adding the small subunit of the Xenopus enzyme to the catalytic subunit of human DNA pol gamma purified from baculovirus-infected insect cells. These experiments provide the first functional evidence that the small subunit of DNA pol gamma stimulates processive DNA synthesis by the human catalytic subunit under physiological salt conditions.  相似文献   

3.
Mitochondrial DNA polymerase (pol gamma) is the sole DNA polymerase responsible for replication and repair of animal mitochondrial DNA. Here, we address the molecular mechanism by which the human holoenzyme achieves high processivity in nucleotide polymerization. We have determined the crystal structure of human pol gamma-beta, the accessory subunit that binds with high affinity to the catalytic core, pol gamma-alpha, to stimulate its activity and enhance holoenzyme processivity. We find that human pol gamma-beta shares a high level of structural similarity to class IIa aminoacyl tRNA synthetases, and forms a dimer in the crystal. A human pol gamma/DNA complex model was developed using the structures of the pol gamma-beta dimer and the bacteriophage T7 DNA polymerase ternary complex, which suggests multiple regions of subunit interaction between pol gamma-beta and the human catalytic core that allow it to encircle the newly synthesized double-stranded DNA, and thereby enhance DNA binding affinity and holoenzyme processivity. Biochemical properties of a novel set of human pol gamma-beta mutants are explained by and test the model, and elucidate the role of the accessory subunit as a novel type of processivity factor in stimulating pol gamma activity and in enhancing processivity.  相似文献   

4.
We used electron microscopy to examine the structure of human DNA pol gamma, the heterotrimeric mtDNA replicase implicated in certain mitochondrial diseases and aging models. Separate analysis of negatively stained preparations of the catalytic subunit, pol gammaA, and of the holoenzyme including a dimeric accessory factor, pol gammaB(2), permitted unambiguous identification of the position of the accessory factor within the holoenzyme. The model explains protection of a partial chymotryptic cleavage site after residue L(549) of pol gammaA upon binding of the accessory subunit. This interaction region is near residue 467 of pol gammaA, where a disease-related mutation has been reported to impair binding of the B subunit. One pol gammaB subunit dominates contacts with the catalytic subunit, while the second B subunit is largely exposed to solvent. A model for pol gamma is discussed that considers the effects of known mutations in the accessory subunit and the interaction of the enzyme with DNA.  相似文献   

5.
Mutations in human mitochondrial DNA influence aging, induce severe neuromuscular pathologies, cause maternally inherited metabolic diseases, and suppress apoptosis. Since the genetic stability of mitochondrial DNA depends on the accuracy of DNA polymerase gamma (pol gamma), we investigated the fidelity of DNA synthesis by human pol gamma. Comparison of the wild-type 140-kDa catalytic subunit to its exonuclease-deficient derivative indicates pol gamma has high base substitution fidelity that results from high nucleotide selectivity and exonucleolytic proofreading. pol gamma is also relatively accurate for single-base additions and deletions in non-iterated and short repetitive sequences. However, when copying homopolymeric sequences longer than four nucleotides, pol gamma has low frameshift fidelity and also generates base substitutions inferred to result from a primer dislocation mechanism. The ability of pol gamma both to make and to proofread dislocation intermediates is the first such evidence for a family A polymerase. Including the p55 accessory subunit, which confers processivity to the pol gamma catalytic subunit, decreases frameshift and base substitution fidelity. Kinetic analyses indicate that p55 promotes extension of mismatched termini to lower the fidelity. These data suggest that homopolymeric runs in mitochondrial DNA may be particularly prone to frameshift mutation in vivo due to replication errors by pol gamma.  相似文献   

6.
The catalytic subunit (alpha) of mitochondrial DNA polymerase (pol gamma) shares conserved DNA polymerase and 3'-5' exonuclease active site motifs with Escherichia coli DNA polymerase I and bacteriophage T7 DNA polymerase. A major difference between the prokaryotic and mitochondrial proteins is the size and sequence of the region between the exonuclease and DNA polymerase domains, referred to as the spacer in pol gamma-alpha. Four gamma-specific conserved sequence elements are located within the spacer region of the catalytic subunit in eukaryotic species from yeast to humans. To elucidate the functional roles of the spacer region, we pursued deletion and site-directed mutagenesis of Drosophila pol gamma. Mutant proteins were expressed from baculovirus constructs in insect cells, purified to near homogeneity, and analyzed biochemically. We find that mutations in three of the four conserved sequence elements within the spacer alter enzyme activity, processivity, and/or DNA binding affinity. In addition, several mutations affect differentially DNA polymerase and exonuclease activity and/or functional interactions with mitochondrial single-stranded DNA-binding protein. Based on these results and crystallographic evidence showing that the template-primer binds in a cleft between the exonuclease and DNA polymerase domains in family A DNA polymerases, we propose that conserved sequences within the spacer of pol gamma may position the substrate with respect to the enzyme catalytic domains.  相似文献   

7.
8.
Pinz KG  Bogenhagen DF 《DNA Repair》2006,5(1):121-128
Mammalian DNA polymerase gamma, the sole polymerase responsible for replication and repair of mitochondrial DNA, contains a large catalytic subunit and a smaller accessory subunit, pol gammaB. In addition to the polymerase domain, the large subunit contains a 3'-5' editing exonuclease domain as well as a dRP lyase activity that can remove a 5'-deoxyribosephosphate (dRP) group during base excision repair. We show that the accessory subunit enhances the ability of the catalytic subunit to function in base excision repair mainly by stimulating two subreactions in the repair process. Pol gammaB appeared to specifically enhance the rate at which pol gamma was able to locate damage in high molecular weight DNA. One pol gammaB point mutant known to have impaired ability to bind duplex DNA stimulated repair poorly, suggesting that duplex DNA binding through pol gammaB may help the catalytic subunit locate sites of DNA damage. In addition, the small subunit significantly stimulated the dRP lyase activity of pol gammaA, although it did not increase the rate at which the dRP group dissociated from the enzyme. The ability of DNA pol gamma to process a high load of damaged DNA may be compromised by the slow release of the dRP group.  相似文献   

9.
Among the nearly 50 disease mutations in the gene for the catalytic subunit of human DNA polymerase gamma, POLG, the A467T substitution is the most common and has been found in 0.6% of the Belgian population. The A467T mutation is associated with a wide range of mitochondrial disorders, including Alpers syndrome, juvenile spinocerebellar ataxia-epilepsy syndrome, and progressive external ophthalmoplegia, each with vastly different clinical presentations, tissue specificities, and ages of onset. The A467T mutant enzyme possesses only 4% of wild-type DNA polymerase activity, and the catalytic defect is manifest primarily through a 6-fold reduction in kcat with minimal effect on exonuclease function. Human DNA polymerase gamma (pol gamma) requires association of a 55-kDa accessory subunit for enhanced DNA binding and highly processive DNA synthesis. However, the A467T mutant enzyme failed to interact with and was not stimulated by the accessory subunit, as judged by processivity, heat inactivation, and N-ethylmaleimide protection assays in vitro. Thermolysin digestion and immunoprecipitation experiments further indicate weak association of the subunits for A467T pol gamma. This is the first example of a mutation in POLG that disrupts physical association of the pol gamma subunits. We propose that reduced polymerase activity and loss of accessory subunit interaction are responsible for the depletion and deletion of mitochondrial DNA observed in patients with this POLG mutation.  相似文献   

10.
DNA polymerase gamma (pol gamma ) is required to maintain the genetic integrity of the 16,569-bp human mitochondrial genome (mtDNA). Mutation of the nuclear gene for the catalytic subunit of pol gamma (POLG) has been linked to a wide range of mitochondrial diseases involving mutation, deletion, and depletion of mtDNA. We describe a heterozygous dominant mutation (c.1352G-->A/p.G451E) in POLG2, the gene encoding the p55 accessory subunit of pol gamma , that causes progressive external ophthalmoplegia with multiple mtDNA deletions and cytochrome c oxidase (COX)-deficient muscle fibers. Biochemical characterization of purified, recombinant G451E-substituted p55 protein in vitro revealed incomplete stimulation of the catalytic subunit due to compromised subunit interaction. Although G451E p55 retains a wild-type ability to bind DNA, it fails to enhance the DNA-binding strength of the p140-p55 complex. In vivo, the disease most likely arises through haplotype insufficiency or heterodimerization of the mutated and wild-type proteins, which promote mtDNA deletions by stalling the DNA replication fork. The progressive accumulation of mtDNA deletions causes COX deficiency in muscle fibers and results in the clinical phenotype.  相似文献   

11.
The mechanisms involved in the regulation of mitochondrial DNA (mtDNA) replication, a process that is crucial for mitochondrial biogenesis, are not well understood. In this study, we evaluate the role of DNA polymerase gamma (pol gamma), the key enzyme in mtDNA replication, in both Drosophila cell culture and in developing flies. We report that overexpression of the pol gamma catalytic subunit (pol gamma-alpha) in cultured Schneider cells does not alter either the amount of mtDNA or the growth rate of the culture. The polypeptide is properly targeted to mitochondria, yet the large excess of pol gamma-alpha does not interfere with mtDNA replication under these conditions where the endogenous polypeptide is apparently present in amounts that exceed of the demand for its function in the cell. In striking contrast, overexpression of pol gamma-alpha at the same level in transgenic flies interferes with the mtDNA replication process, presumably by altering the mechanism of DNA synthesis, suggesting differential requirements for, and/or regulation of, mtDNA replication in Drosophila cell culture versus the developing organism. Overexpression of pol gamma-alpha in transgenic flies produces a significant depletion of mtDNA that causes a broad variety of phenotypic effects. These alterations range from pupal lethality to moderate morphological abnormalities in adults. depending on the level and temporal pattern of overexpression. Our results demonstrate that although cells may tolerate a variable amount of the pol gamma catalytic subunit under some conditions, its level may be critical in the context of the whole organism.  相似文献   

12.
Progressive external ophthalmoplegia (PEO) is a heritable mitochondrial disorder characterized by the accumulation of multiple point mutations and large deletions in mtDNA. Autosomal dominant PEO was recently shown to co-segregate with a heterozygous Y955C mutation in the human gene encoding the sole mitochondrial DNA polymerase, DNA polymerase gamma (pol gamma). Since Tyr-955 is a highly conserved residue critical for nucleotide recognition among family A DNA polymerases, we analyzed the effects of the Y955C mutation on the kinetics and fidelity of DNA synthesis by the purified human mutant polymerase in complex with its accessory subunit. The Y955C enzyme retains a wild-type catalytic rate (k(cat)) but suffers a 45-fold decrease in apparent binding affinity for the incoming nucleoside triphosphate (K(m)). The Y955C derivative is 2-fold less accurate for base pair substitutions than wild-type pol gamma despite the action of intrinsic exonucleolytic proofreading. The full mutator effect of the Y955C substitution was revealed by genetic inactivation of the exonuclease, and error rates for certain mismatches were elevated by 10-100-fold. The error-prone DNA synthesis observed for the Y955C pol gamma is consistent with the accumulation of mtDNA mutations in patients with PEO.  相似文献   

13.
Functional interactions between mitochondrial DNA polymerase (pol gamma) and mitochondrial single-stranded DNA-binding protein (mtSSB) from Drosophila embryos have been evaluated with regard to the overall activity of pol gamma and in partial reactions involving template-primer binding and initiation and idling in DNA strand synthesis. Both the 5' --> 3' DNA polymerase and 3' --> 5' exonuclease in pol gamma are stimulated 15-20-fold on oligonucleotide-primed single-stranded DNA by native and recombinant forms of mtSSB. That the extent of stimulation is similar for both enzyme activities over a broad range of KCl concentrations suggests their functional coordination and a similar mechanism of stimulation by mtSSB. At the same time, the high mispair specificity of pol gamma in exonucleolytic hydrolysis is maintained, indicating that enhancement of pol gamma catalytic efficiency is likely not accompanied by increased nucleotide turnover. DNase I footprinting of pol gamma.DNA complexes and initial rate measurements show that mtSSB enhances primer recognition and binding and stimulates 30-fold the rate of initiation of DNA strands. Dissociation studies show that productive complexes of the native pol gamma heterodimer with template-primer DNA are formed and remain stable in the absence of replication accessory proteins.  相似文献   

14.
The accessory protein polymerase (pol) γB of the human mitochondrial DNA polymerase stimulates the synthetic activity of the catalytic subunit. pol γB functions by both accelerating the polymerization rate and enhancing polymerase-DNA interaction, thereby distinguishing itself from the accessory subunits of other DNA polymerases. The molecular basis for the unique functions of human pol γB lies in its dimeric structure, where the pol γB monomer proximal to pol γA in the holoenzyme strengthens the interaction with DNA, and the distal pol γB monomer accelerates the reaction rate. We further show that human pol γB exhibits a catalytic subunit- and substrate DNA-dependent dimerization. By duplicating the monomeric pol γB of lower eukaryotes, the dimeric mammalian proteins confer additional processivity to the holoenzyme polymerase.  相似文献   

15.
Mammalian DNA polymerase delta (pol delta), a key enzyme of chromosomal DNA replication, consists of four subunits as follows: the catalytic subunit; p125, which is tightly associated with the p50 subunit; p68, a proliferating cell nuclear antigen (PCNA)-binding protein; and a fourth subunit, p12. In this study, the functional roles of the p12 subunit of pol delta were studied. The inter-subunit interactions of the p12 subunit were determined by yeast two-hybrid assays and by pulldown assays. These assays revealed that p12 interacts with p125 as well as p50. This dual interaction of p12 suggests that it may serve to stabilize the p125-p50 interaction. p12 was shown to be a novel PCNA-binding protein. This was confirmed by identification of a PCNA-binding motif at its N terminus by binding assays and by site-directed mutagenesis. The activities and reaction products of recombinant pol delta containing a p12 mutant defective in PCNA binding, as well as purified recombinant pol delta and its subassemblies, were analyzed. Our results indicate that p12 contributes to PCNA-dependent pol delta activity, i.e. the p12-PCNA interaction is functional. Our data indicate that both p12 and p68 are required for optimal pol delta activity. This supports the hypothesis that the interaction between pol delta and PCNA is a divalent one that involves p12 and p68. We propose a model in which pol delta interacts with PCNA via at least two of its subunits, and one in which p12 could play a role in stabilizing the overall pol delta-PCNA complex as well as pol delta itself.  相似文献   

16.
HeLa DNA polymerase epsilon (pol epsilon), possibly involved in both DNA replication and DNA repair, was previously isolated as a complex of a 261-kDa catalytic subunit and a tightly bound 59-kDa accessory protein. Saccharomyces cerevisiae pol epsilon, however, consists of four subunits: a 256-kDa catalytic subunit with 39% identity to HeLa pol epsilon p261, a 80-kDa subunit (DPB2) with 26% identity to HeLa pol epsilon p59, a 23-kDa subunit (DPB3), and a 22-kDa subunit (DPB4). We report here the identification and the cloning of two additional subunits of HeLa pol epsilon, p17, and p12. Both proteins contain histone fold motifs which are present also in S. cerevisiae DPB4 and DPB3. The histone fold motifs of p17 and DPB4 are related to that of subunit A of the CCAAT binding factor, whereas the histone fold motifs found in p12 and DPB3 are homologous to that in subunit C of CCAAT binding factor. p17 together with p12, but not p17 or p12 alone, interact with both p261 and p59 subunits of HeLa pol epsilon. The genes for p17 and p12 can be assigned to chromosome locations 9q33 and 2p12, respectively.  相似文献   

17.
18.
19.
Eukaryotic genomes are duplicated by a complex machinery, utilizing high fidelity replicative B-family DNA polymerases (pols) α, δ and ε. Specialized error-prone pol ζ, the fourth B-family member, is recruited when DNA synthesis by the accurate trio is impeded by replication stress or DNA damage. The damage tolerance mechanism dependent on pol ζ prevents DNA/genome instability and cell death at the expense of increased mutation rates. The pol switches occurring during this specialized replication are not fully understood. The loss of pol ζ results in the absence of induced mutagenesis and suppression of spontaneous mutagenesis. Disruption of the Fe-S cluster motif that abolish the interaction of the C-terminal domain (CTD) of the catalytic subunit of pol ζ with its accessory subunits, which are shared with pol δ, leads to a similar defect in induced mutagenesis. Intriguingly, the pol3-13 mutation that affects the Fe-S cluster in the CTD of the catalytic subunit of pol δ also leads to defective induced mutagenesis, suggesting the possibility that Fe-S clusters are essential for the pol switches during replication of damaged DNA. We confirmed that yeast strains with the pol3-13 mutation are UV-sensitive and defective in UV-induced mutagenesis. However, they have increased spontaneous mutation rates. We found that this increase is dependent on functional pol ζ. In the pol3-13 mutant strain with defective pol δ, there is a sharp increase in transversions and complex mutations, which require functional pol ζ, and an increase in the occurrence of large deletions, whose size is controlled by pol ζ. Therefore, the pol3-13 mutation abrogates pol ζ-dependent induced mutagenesis, but allows for pol ζ recruitment for the generation of spontaneous mutations and prevention of larger deletions. These results reveal differential control of the two major types of pol ζ-dependent mutagenesis by the Fe-S cluster present in replicative pol δ.  相似文献   

20.
gfLittle is known at present about the biochemical properties of very large-sized Drosophila DNA polymerases. In a previous study, we tried to purify Drosophila pol. catalytic subunit from embryos through seven column chromatographies and study its biochemical properties. However, we failed to characterize it precisely because an insufficient amount of the enzyme was generated. In this report, we describe direct purification from Drosophila embryos to near homogeneity using Drosophila DNA polymerase second subunit (Drosophila pol. 2) protein-conjugated affinity column chromatography and characterization of the enzyme in detail. To our knowledge this is the first demonstration of native DNA polymerase purification with activity using a subunit protein-affinity column. We observed new characteristics of Drosophila pol. catalytic subunit as follows: Drosophila pol. catalytic subunit synthesized DNA processively in the presence of both Mn(2+) and Mg(2+) ions, but Mn(2+) inhibited the 3'-5' proofreading activity, thereby decreasing the fidelity of DNA replication by 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号