首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of peptides in pure cultures of neurons from 8-day-old chick embryo cerebral hemispheres has been investigated by means of specific radioimmunoassays and chromatographic purification. Somatostatin, Met-enkephalin, Leu-enkephalin, and substance P immunoreactive substances have been detected in 8-day-old cultures grown in serum-free culture medium. The peptides were present in the cellular extracts, as well as in the culture medium extracts. beta-Endorphin, thyroliberin, luteinizing hormone-releasing hormone, and ACTH could not be detected. The largest amount was accounted by somatostatin (48 +/- 2 ng/mg protein). Some 60% of the somatostatin-immunoreactive material was found in the culture medium. Met-enkephalin, Leu-enkephalin, and substance P were present at lower concentrations: 1.61 +/- 0.27, 0.24 +/- 0.02, and 0.14 +/- 0.005 ng/mg protein, respectively. The identities of somatostatin- and enkephalin-immunoreactive materials were confirmed by high pressure liquid chromatography. The findings suggest that cultured neurons that express dopaminergic and GABAergic properties contain peptides similar, if not identical, to somatostatin, Met-enkephalin, Leu-enkephalin, and substance P.  相似文献   

2.
Pituitary gland growth hormone (GH) secretion is influenced by two hypothalamic neuropeptides: growth hormone-releasing hormone (GHRH) and somatostatin. Recent data also suggest that estrogen modulates GH release, particularly at the time of the preovulatory luteinizing hormone surge, when a coincident surge of GH is observed in sheep. The GHRH neurons do not possess estrogen receptor alpha (ERalpha), suggesting that estrogen does not act directly on GHRH neurons. Similarly, few somatotropes express ERalpha, suggesting a weak pituitary effect of estradiol on GH. It was hypothesized, therefore, that estradiol may affect somatostatin neurons to modulate GH release from the pituitary. Using immunocytochemical approaches, the present study revealed that although somatostatin neurons were located in several hypothalamic sites, only those in the arcuate nucleus (13% +/- 2%) and ventromedial nucleus (VMN; 29% +/- 1%) expressed ERalpha. In addition, we found that all neurons immunoreactive for somatostatin-14 were also immunoreactive for somatostatin-28(1-12). To determine whether increased GH secretion in response to estradiol is through modulation of GHRH and/or somatostatin neuronal activity, a final study investigated whether c-fos expression increased in somatostatin- and GHRH-immunoreactive cells at the time of the estradiol-induced LH surge in intact anestrous ewes. Estradiol significantly (P < 0.05) increased the percentage of GHRH (estradiol, 75% +/- 3%; no estradiol, 19% +/- 2%) neurons expressing c-fos in the hypothalamus. The percentage of somatostatin-immunoreactive neurons coexpressing c-fos in the estradiol-treated animals was significantly (P < 0.05) higher (periventricular, 44% +/- 3%; arcuate, 72% +/- 5%; VMN, 81% +/- 5%) than in the control animals (periventricular, 22% +/- 1%; arcuate, 29% +/- 3%; VMN, 31% +/- 3%). The present study suggests that estradiol modulates the activity of GHRH and somatostatin neurons but that this effect is most likely mediated through an indirect interneuronal pathway.  相似文献   

3.
Type I diabetes is associated with a low incidence of asthma. We tested whether a decrease in sensory neuropeptide release is associated with an attenuated bronchoconstrictive response to field stimulation (FS; 100 stimuli, 20 V, 0.1 ms, 20 Hz) in streptozotocin (STZ)-induced diabetes. The organ fluid of the preparations were also tested for substance P, calcitonin gene-related peptide (CGRP), and somatostatin concentrations by RIA. Preparations were from either normal rats or those pretreated with 50 mg/kg STZ iv 8 wk before experiment. A group of STZ-treated animals was supplied with insulin delivery (4 IU/day sc) implants between 4 and 8 wk. A subgroup was formed to study the effect of capsaicin desensitization. The atropine-resistant contraction was attenuated by diabetes without capsaicin-sensitive relaxation response. Exogenous CGRP and substance P potentiated, whereas somatostatin inhibited (1 nM-10 microM) the FS-induced contractions in rings from either group. FS released somatostatin, CGRP, and substance P from 0.17 +/- 0.024, 0.15 +/- 0.022, and 1.65 +/- 0.093 to 0.58 +/- 0.032, 0.74 +/- 0.122, and 5.34 +/- 0.295 in preparations from normal, and from 0.19 +/- 0.016, 0.11 +/- 0.019, and 0.98 +/- 0.116 to 0.22 +/- 0.076, 0.34 +/- 0.099, and 1.84 +/- 0.316 fmol/mg wet wt in preparations from diabetic rats. Insulin supplementation restored neuropeptide release in rings from STZ-treated rats. The results show that the decreased FS-induced contractions occurred with a decrease in sensory neuropeptide release in STZ-diabetic rats.  相似文献   

4.
The functional and biochemical characterization of rat bone marrow derived mast cells (RBMMC) confirms both species-related differences between rat and mouse bone marrow-derived mast cells (MBMMC) as well as mast cell heterogeneity in a single species. Such RBMMC have the staining characteristics of mucosal mast cells and contain the mucosal mast cell protease. The RBMMC release the preformed granule mediator beta-hexosaminidase both in response to immunologic stimulation with 200 ng Ag (net release 15.8 +/- 3.8%) and in response to 1 microM calcium ionophore A23187 (net release 21.8 +/- 6.8%). However, compound 48/80, substance P, and somatostatin did not induce mast cell degranulation. In experiments with optimal beta-hexosaminidase release, the RBMMC generated similar quantities of the newly formed arachidonic acid metabolites leukotriene C4 and PGD2 when stimulated with either Ag or calcium ionophore A23187. The RBMMC incorporate [35S]sulfate into proteoglycans consisting of 90% chondroitin sulfates and 10% heparin. The chondroitin sulfates were comprised of chondroitin 4 sulfate and chondroitin sulfate diB sulfated disaccharides in a ratio of 4/1. Although we show that RBMMC and MBMMC share a low histamine content, functional IgE receptors and unresponsiveness to cromolyn and selective secretagogues (compound 48/80, substance P, and somatostatin), we also provide evidence that RBMMC differ from MBMMC in their profile of newly generated mediators, preformed granule proteoglycan, and lack of proliferative response to mouse IL-3.  相似文献   

5.
INTRODUCTION: Airway sensory nerves have the capacity to release neuromediators such as substance P and nitric oxide to control airway functions. The aim of the present study was to investigate substance P and neuronal nitric oxide synthase (NOS-1) expression in airway-specific sensory neurons. METHODS: Airway-projecting neurons in the jugular-nodose ganglia were investigated for NOS-1 and substance P expression by neuronal tracing and double-labelling immunoreactivity. RESULTS: Of the Fast blue labelled neurons, 14.6+/-1.8% (mean+/-S.E.M.) were immunoreactive only for NOS-1, 3.0+/-0.3% for NOS-1 and substance P, 2.7+/-0.3% only for substance P, and 79.7+/-1.7% of the labelled neurons were nonimmunoreactive for substance P or NOS-1 but were partly positive for I-B4-lectin-binding. Fast blue labelled NOS and/or substance P-positive neurons were small to medium sized (<20 microm). CONCLUSION: Based on the expression of substance P and nitric oxide synthase in airway neurons, the present study suggests that there may be substance P and NO biosynthesis and release following a peripheral activation of the afferents, there could be a triggering of substance P and NO-mediated phenomena, including those related to airway inflammation, such as plasma extravasation and vasodilatation.  相似文献   

6.
Increased renal pelvic pressure or bradykinin increases afferent renal nerve activity (ARNA) via PGE(2)-induced release of substance P. Protein kinase C (PKC) activation increases ARNA, and PKC inhibition blocks the ARNA response to bradykinin. We now examined whether bradykinin mediates the ARNA response to increased renal pelvic pressure by activating PKC. In anesthetized rats, the ARNA responses to increased renal pelvic pressure were blocked by renal pelvic perfusion with the bradykinin B(2)-receptor antagonist HOE 140 and the PKC inhibitor calphostin C by 76 +/- 8% (P < 0.02) and 81 +/- 5% (P < 0.01), respectively. Renal pelvic perfusion with 4beta-phorbol 12,13-dibutyrate (PDBu) to activate PKC increased ARNA 27 +/- 4% and renal pelvic release of PGE(2) from 500 +/- 59 to 1, 113 +/- 183 pg/min and substance P from 10 +/- 2 to 30 +/- 2 pg/min (all P < 0.01). Indomethacin abolished the increases in substance P release and ARNA. The PDBu-mediated increase in ARNA was also abolished by the substance P-receptor antagonist RP 67580. We conclude that bradykinin contributes to the activation of renal pelvic mechanosensitive neurons by activating PKC. PKC increases ARNA via a PGE(2)-induced release of substance P.  相似文献   

7.
Summary The gross morphology and growth patterns of substance P, enkephalin-, somatostatin and vasoactive intestinal peptide-immunoreactive neurons have been studied in explant cultures of the myenteric plexus taken from beneath the newborn guinea-pig taenia coli, grown for up to 4 weeks in vitro. Substance P and enkephalin-immuno-reactive neurons were more abundant than somatostatin and vasoactive intestinal peptide-immunoreactive neurons. The peptide-containing neuronal cell bodies were clearly visible in culture and exhibited characteristic gross morphologies similar to those described in situ, although some overlap of shape between populations containing different peptides was seen. All four types of peptide-containing fibres were found in the outgrowth and central areas of the cultures. In the case of substance P and somatostatin, the density and pattern of labelling in the central, neuronal area of the cultures resembled that previously seen in the myenteric plexus of the newborn guinea-pig caecum in situ, while the density of the enkephalin-immunoreactive fibres was greater, and that of the vasoactive intestinal peptide-immunoreactive fibres less than that seen in situ. These observations suggest that subpopulations of myenteric neurons containing different peptides may be differentially affected by the culture environment. Possible contributory factors are discussed.  相似文献   

8.
The subpopulations were compared of neurons in human dorsal root ganglia (DRG), as substance P, identified by somatostatin, Glycine max lectin (SBA) specific to terminal N-acetylgalactosamine, and Ulex europaeus I agglutinin (UEA-I) specific to l-fucose. The lectins and neuropeptides all bound to neurons of small diameter. Furthermore, the majority of the SBA binding neurons or somatostatin positive neurons were also UEA-I binding neurons. However, SBA binding neurons were not colocalized with somatostatin or substance P. Less than 20% of substance P positive neurons showed colocalization with l-fucosyl residues, and approximately 10% of l-fucosyl residues showed colocalization with substance P. Our results suggest that both l-fucose and terminal N-acetylgalactosamine containing neurons in the human DRG are subjected to different subpopulations from substance P or somatostatin positive neurons.  相似文献   

9.
H Nawa  D W Sah 《Neuron》1990,4(2):279-287
An intriguing question regarding neuronal development is how neurons choose which neurotransmitter and/or peptide to express among over 40 candidates. We find that heart cell conditioned medium (CM) induces a number of neuropeptides and/or their precursor mRNAs, as well as acetylcholine, in cultured rat sympathetic neurons: substance P, somatostatin, vasoactive intestinal polypeptide, enkephalin derivatives, and cholecystokinin, but not neuropeptide Y. Different patterns of peptide induction were observed for CMs from primary cultures of heart, gut, and skin. Acetylcholine and substance P were induced most effectively by serum-free heart cell CM; enkephalin derivatives were induced most effectively by skin cell CM; and somatostatin and vasoactive intestinal polypeptide were induced equally well by all of the CMs. These observations suggest the possibility that many distinct, diffusible factors can influence the choice of transmitter and/or peptide phenotype in developing neurons.  相似文献   

10.
We examined the effects of ciliary neurotrophic factor (CNTF) and depolarization, two environmental signals that influence noradrenergic and cholinergic function, on neuropeptide expression by cultured sympathetic neurons. Sciatic nerve extract, a rich source of CNTF, increased levels of vasoactive intestinal peptide (VIP), substance P, and somatostatin severalfold while significantly reducing levels of neuropeptide Y (NPY). No change was observed in the levels of leu-enkephalin (L-Enk). These effects were abolished by immunoprecipitation of CNTF-like molecules from the extract with an antiserum raised against recombinant CNTF, and recombinant CNTF caused changes in neuropeptide levels similar to those of sciatic nerve extract. Alterations in neuropeptide levels by CNTF were dose-dependent, with maximal induction at concentrations of 5-25 ng/ml. Peptide levels were altered after only 3 days of CNTF exposure and continued to change for 14 days. Depolarization of sympathetic neuron cultures with elevated potassium elicited a different spectrum of effects; it increased VIP and NPY content but did not alter substance P, somatostatin, or L-Enk. Depolarization is known to block cholinergic induction in response to heart cell conditioned medium and we found that it blocked the induction of choline acetyltransferase (ChAT) and peptides by recombinant cholinergic differentiation factor/leukemia inhibitory factor (CDF/LIF). In contrast, it did not antagonize the effects of CNTF on either ChAT activity or neuropeptide expression. Thus, while CNTF has effects on neurotransmitter properties similar to those previously reported for CDF/LIF, the actions of these two factors are differentially modulated by depolarization, suggesting that the mechanisms of cholinergic and neuropeptide induction for the two factors differ. In addition, in contrast to CDF/LIF, CNTF did not alter levels of ChAT, VIP, substance P, or somatostatin in cultured dorsal root ganglion neurons. These observations indicate that CNTF and depolarization affect the expression of neuropeptides by sympathetic neurons and provide evidence for an overlapping yet distinct spectrum of actions of the two neuronal differentiation factors, CNTF and CDF/LIF.  相似文献   

11.
Counts performed on dissociated cell cultures of E10 chick embryo dorsal root ganglia (DRG) showed after 4-6 days of culture a pronounced decline of the neuronal population in neuron-enriched cultures and a net gain in the number of ganglion cells in mixed DRG cell cultures (containing both neurons and nonneuronal cells). In the latter case, the increase in the number of neurons was found to depend on NGF and to average 119% in defined medium or 129% in horse serum-supplemented medium after 6 days of culture. The lack of [3H]thymidine incorporation into the neuronal population indicated that the newly formed ganglion cells were not generated by proliferation. On the contrary, the differentiation of postmitotic neuroblasts present in the nonneuronal cell compartment was supported by sequential microphotographs of selected fields taken every hour for 48-55 hr after 3 days of culture. Apparently nonneuronal flat dark cells exhibited morphological changes and gradually evolved into neuronal ovoid and refringent cell bodies with expanding neurites. The ultrastructural organization of these evolving cells corresponded to that of primitive or intermediate neuroblasts. The neuronal nature of these rounding up cell bodies was indeed confirmed by the progressive expression of various neuronal cell markers (150 and 200-kDa neurofilament triplets, neuron specific enolase, and D2/N-CAM). Besides a constant lack of immunoreactivity for tyrosine hydroxylase, somatostatin, parvalbumin, and calbindin-D 28K and a lack of cytoenzymatic activity for carbonic anhydrase, all the newly produced neurons expressed three main phenotypic characteristics: a small cell body, a strong immunoreactivity to MAG, and substance P. Hence, ganglion cells newly differentiated in culture would meet characteristics ascribed to small B sensory neurons and more specifically to a subpopulation of ganglion cells containing substance P-immunoreactive material.  相似文献   

12.
Stretching the renal pelvic wall activates renal mechanosensory nerves by a PGE2-mediated release of substance P via activation of the cAMP-PKA pathway. Renal pelvic ANG II modulates the responsiveness of renal sensory nerves by suppressing the PGE2-mediated activation of adenylyl cyclase via a pertussis toxin (PTX)-sensitive mechanism. In SHR, activation of renal mechanosensory nerves is impaired. This is due to suppressed release of substance P in response to increased pelvic pressure. The present study was performed to investigate whether the PGE2-mediated release of substance P was suppressed in SHR vs. WKY and, if so, whether the impaired PGE2-mediated release of substance P was due to ANG II activating a PTX-sensitive mechanism. In an isolated renal pelvic wall preparation, PGE2, 0.14 microM, increased substance P release from 9 +/- 3 to 22 +/- 3 pg/min (P < 0.01) in Wistar-Kyoto rats (WKY), but had no effect in spontaneously hypertensive rats (SHR). A tenfold higher concentration of PGE2, 1.4 microM, was required to increase substance P release in SHR, from 7 +/- 1 to 22 +/- 3 pg/min (P < 0.01). In SHR, treating renal pelvises with losartan enhanced the release of substance P produced by subthreshold concentration of PGE2, 0.3 microM, from 16 +/- 2 to 26 +/- 3 pg/min (P < 0.01). Likewise, treating renal pelvises with PTX enhanced the PGE2-mediated release of substance P from 10 +/- 1 to 33 +/- 3 pg/min (P < 0.01) in SHR. In WKY, neither losartan nor PTX had an effect on the release of substance P produced by subthreshold concentrations of PGE2, 0.03 microM. In conclusion, the impaired responsiveness of renal sensory nerves in SHR involves endogenous ANG II suppressing the PGE2-mediated release of substance P via a PTX-sensitive mechanism.  相似文献   

13.
Abstract: Glial cell line-derived neurotrophic factor markedly enhances survival of neonatal dorsal root sensory neurons in vitro, an effect seen even in the presence of anti-nerve growth factor. Furthermore, it increases levels of substance P, inducing more than a sixfold rise that is maximal at 10 ng/ml. At the same dose, it potentiates the action of nerve growth factor on substance P but not on survival. Neither factor increases somatostatin content in neonatal neurons. Although its effect on substance P diminishes with age, glial cell line-derived neurotrophic factor dramatically increases somatostatin levels in neurons from adult rats. Glial cell line-derived neurotrophic factor is therefore the second trophic factor found to promote survival and regulate substance P in neonatal sensory neurons. More significant is that it is the first and sole neurotrophic factor reported to regulate somatostatin in sensory neurons at any age, with its effect restricted to the adult. These results suggest mechanisms for differential regulation of somatostatin versus substance P in nociceptive pathways.  相似文献   

14.
Antibodies against choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) were used to determine whether neurons that have previously been identified as intrinsic primary afferent neurons in the guinea-pig small intestine have a cholinergic phenotype. Cell bodies of primary afferent neurons in the myenteric plexus were identified by their calbindin immunoreactivity and those in the submucous plexus by immunoreactivity for substance P. High proportions of both were immunoreactive for ChAT, viz. 98% of myenteric calbindin neurons and 99% of submucosal substance P neurons. ChAT immunoreactivity also occurred in all nerve cell bodies immunoreactive for calretinin and substance P in the myenteric plexus, but in only 16% of nerve cells immunoreactive for nitric oxide synthase. VAChT immunoreactivity was in the majority of calbindin-immunoreactive varicosities in the myenteric ganglia, submucous ganglia and mucosa and also in the majority of the varicosities of neurons that were immunoreactive for calretinin and somatostatin and that had been previously established as being cholinergic. We conclude that the intrinsic primary afferent neurons are cholinergic and that they may release transmitter from their sensory endings in the mucosa.  相似文献   

15.
Somatostatin receptors in the rat pituitary gland were characterized by binding analysis with a radioiodinated high affinity somatostatin analogue, 125I-Tyr1[D-Trp8]somatostatin. Receptor binding of this derivative reached equilibrium at 30 min and was maintained at a plateau for at least 60 min. Two L-Trp8- labeled somatostatin analogues. 125I-Tyr1- and [125I-Tyr11]somatostatin, displayed less stable and lower specific uptake and higher nonspecific binding. In contrast to the rapid degradation of the L-Trp8 ligands during binding assay, 125I-Tyr1]D-Trp8]somatostatin retained more than 80% of its binding activity after 90 min of incubation with pituitary particles. Pituitary particles bound 125I-Tyr1]D-Tyr8]somatostatin with high affinity (Ka = 8.6 +/- 1.2 X 10(9) M-1) and capacity of 54.4 +/- 2.6 fmol/mg. These binding sites showed specificity for the native peptide and its active analogues, and other peptide hormones, including angiotensin II, thyrotropin-releasing hormone, vasopressin, oxytocin, substance P, and gonadotropin-releasing hormone, did not inhibit tracer binding. A good correlation was observed between the binding affinities of several somatostatin analogues and their potencies as inhibitors of growth hormone release in rat pituitary cells. These findings emphasize the physiological importance of the pituitary somatostatin receptor in mediating the inhibitory action of the peptide on growth hormone release. The use of Tyr1[d-Trp8]somatostatin as a labeled ligand permits accurate determinations of the binding affinity and concentration of receptors for somatostatin in the normal pituitary gland and provides a basis for further studies of somatostatin receptor regulation and receptor-mediated cellular effects of the tetradecapeptide.  相似文献   

16.
Neutrophils release soluble Fas ligand (sFasL), which can induce apoptosis in certain Fas-bearing cell types (Liles WC, Kiener PA, Ledbetter JA, Aruffo A, and Klebanoff SJ. J Exp Med 184: 429-440, 1996). We hypothesized that neutrophils could induce alveolar epithelial apoptosis via release of sFasL. A549 pulmonary adenocarcinoma cells expressed surface Fas and underwent cell death (10 +/- 7% viability) and DNA fragmentation (354 +/- 98% of control cells) when incubated with agonistic CD95/Fas monoclonal antibody (P < 0.05). Coincubation with human neutrophils induced significant A549 cell death at 48 (51 +/- 9% viability; P < 0.05) and 72 h (25 +/- 10%; P < 0.05) and increased DNA fragmentation (178 +/- 42% of control cells; P < 0.05), with morphological characteristics of apoptosis. The addition of antioxidants did not inhibit apoptosis. sFasL concentrations were maximally increased in coculture medium at 24 h (4.9 +/- 0.7 ng/ml; P < 0.05). Neutrophil-induced A549 cell apoptosis was blocked by inhibitory anti-Fas (42 +/- 6% of control cells; P < 0.05) and anti-FasL monoclonal antibodies (29 +/- 3%; P < 0.05). Human neutrophils and Fas similarly affected murine primary alveolar epithelial cell bilayers, and caspase activation occurred in response to Fas exposure. We conclude that neutrophils undergoing spontaneous apoptosis induce A549 cell death and DNA fragmentation, independent of the oxidative burst, that is mediated by sFasL.  相似文献   

17.
Stromal cells and epithelial glands were separated after enzymic digestion of specimens obtained from 27 women at hysterectomy or endometrial biopsy during the luteal phase, and then cultured to confluence in vitro. PGE release into the culture medium (mean +/- s.e.m.: ng/mg protein/24 h) from gland cell cultures was not changed by oestradiol (17.6 +/- 1.3 for control and 25.5 +/- 2.8 for oestradiol, respectively). However, in the presence of oestradiol, PAF (5 ng/ml) significantly elevated PGE release to 44.2 +/- 5.8. No stimulation was observed in the presence of progesterone. Stromal cell medium had no effect on PGE release in gland cell cultures. PGE release was always much lower in stromal cell cultures than in glands (control: 4.7 +/- 0.6). PAF stimulated PGE release in the presence of oestradiol in these cells also; gland cell medium was without effect. In co-cultures of glandular and stromal cells, PGE release was more similar to that seen in gland cell cultures, with PAF being stimulatory under the influence of oestradiol. PGF release into the medium from the same gland cell cultures was significantly elevated by hormonal treatment, being greatest (62.0 +/- 11.3) with oestradiol alone, and was strongly inhibited in all wells by addition of PAF and stromal cell medium. In stromal cell cultures without hormonal addition, PGF levels (15.0 +/- 2.4) were similar to those seen in glands (18.1 +/- 3.1), and no stimulation was achieved by oestradiol (29.6 +/- 5.9). PAF was inhibitory on PGF release, while gland cell medium was without effect. Co-cultures gave PGF values generally similar to those of stromal cells; oestradiol was again stimulatory (55.0 +/- 9.3). PAF was significantly inhibitory in the presence of oestradiol. PAF (mean +/- s.e.m.: pmol/mg protein/24 h using a platelet serotonin release assay) in stromal cells was significantly increased from control [M199 alone] (0.31 +/- 0.12) by progesterone (1.00 +/- 0.17). Addition of PGE-2 (7.5 ng/ml) to progesterone-treated wells further increased PAF concentration (5.34 +/- 0.09), but was without effect in wells receiving oestradiol alone. Wells exposed to both hormones exhibited an intermediate response. Similar results were obtained with addition of gland cell culture medium, presumably due to its endogenous PGE content. In co-cultures, PAF concentrations were significantly elevated by progesterone alone (4.78 +/- 0.78) or when combined with oestradiol (2.38 +/- 0.51), but not by oestradiol alone. Treatment with PGE-2 caused no additional stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Increasing renal pelvic pressure results in PGE(2)-mediated release of substance P. Substance P increases afferent renal nerve activity (ARNA), which leads to a reflex increase in urinary sodium excretion (U(Na)V). Endogenous ANG II modulates the responsiveness of renal mechanosensory nerves. The ARNA and U(Na)V responses are suppressed by low- and enhanced by high-sodium diet. We examined whether the ARNA responses are altered in rats with congestive heart failure (CHF), a condition characterized by increased ANG II and sodium retention. The ARNA responses to increasing renal pelvic pressure 相似文献   

19.
The concentration of PACAP 1-38 in porcine antrum amounted to 15.4+/-7.9 and 20.3+/-8 pmol/g tissue in the mucosal and muscular layers. PACAP immunoreactive (IR) fibres innervated the muscular (co-localised with VIP) and submucosal/mucosal layers (some co-storing VIP and CGRP) including myenteric and submucosal plexus and blood vessels. Only myenteric nerve cell bodies contained PACAP-IR (co-storing VIP). In isolated perfused antrum, vagus nerve stimulation (8 Hz) and capsaicin (10(-5) M) increased PACAP 1-38 release. PACAP 1-38 (10(-9) M) increased substance P (SP), gastrin releasing peptide (GRP) and VIP release. PACAP 1-38 (10(-8) M) inhibited gastrin secretion and stimulated somatostatin secretion and motility dose-dependently. PACAP-induced motility was strongly inhibited by the antagonist PACAP 6-38 but also by atropine and substance P-antagonists (CP99994/SR48968) but PACAP 6-38 had no effect on vagus-induced secretion or motility. Conclusion: PACAP 1-38 may be involved in antral motility and secretion by interacting with cholinergic, SP-ergic, GRP-ergic and/or VIP-ergic neurones, and may also be involved in afferent reflex pathways.  相似文献   

20.
Octreotide is a potent somatostatin analog that inhibits growth hormone (GH) release and restricts somatotrope cell growth. The long-acting octreotide formulation Sandostatin LAR is effective clinically in approximately 60% of patients with acromegaly. Tumoral GH secretion in this disorder is characterized by increases in pulse amplitude and frequency, nonpulsatile (basal) release, and irregularity. Whether sustained blockade by octreotide can restore physiological secretion patterns in this setting is unknown. To address this question, we studied seven patients with GH-secreting tumors during chronic receptor agonism. Responses were monitored by sampling blood at 10-min intervals for 24 h, followed by analyses of secretion and regularity by multiparameter deconvolution and approximate entropy (ApEn). The somatostatin agonist suppressed GH secretory-burst mass, nonpulsatile (basal) GH release, and pulsatile secretion, thereby decreasing total GH secretion by 86% (range 70-96%). ApEn decreased from 1.203 +/- 0.129 to 0.804 +/- 0.141 (P = 0.032), denoting greater regularity. None of GH pulse frequency, basal GH secretion rates, or ApEn normalized. In summary, chronic somatostatin agonism is able to repress amplitude-dependent measures of excessive GH secretion in acromegaly. Presumptive tumoral autonomy is inferred by continued elevations of event frequency, overall pattern disruption (irregularity), and nonsuppressible basal GH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号