首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Branching morphogenesis is a molecularly conserved mechanism that is adopted by several organs, such as the lung, kidney, mammary gland and salivary gland, to maximize the surface area of a tissue within a small volume. Branching occurs through repetitive clefting and elongation of spherical epithelial structures, called endbuds, which invade the surrounding mesenchyme. In the salivary gland, lumen formation takes place alongside branching morphogenesis, but in a controlled manner, so that branching is active at the distal ends of epithelial branches while lumen formation initiates at the proximal ends, and spreads distally. We present here data showing that interaction between FGF signaling and the canonical (β-catenin dependent) and non-canonical branches of Wnt signaling coordinates these two processes. Using the Axin2lacZ reporter mice, we find Wnt/β-catenin signaling activity first in the mesenchyme and later, at the time of lumen formation, in the ductal epithelium. Gain and loss of function experiments reveal that this pathway exerts an inhibitory effect on salivary gland branching morphogenesis. We have found that endbuds remain devoid of Wnt/β-catenin signaling activity, a hallmark of ductal structures, through FGF-mediated inhibition of this pathway. Our data also show that FGF signaling has a major role in the control of lumen formation by preventing premature hollowing of epithelial endbuds and slowing down the canalization of presumptive ducts. Concomitantly, FGF signaling strongly represses the ductal marker Cp2l1, most likely via repression of Wnt5b and non-canonical Wnt signaling. Inhibition of canonical and non-canonical Wnt signaling in endbuds by FGF signaling occurs at least in part through sFRP1, a secreted inhibitor of Wnt signaling and downstream target of FGF signaling. Altogether, these findings point to a key function of FGF signaling in the maintenance of an undifferentiated state in endbud cells by inhibition of a ductal fate.  相似文献   

2.
Li  Bing  Chi  Xiaochun  Song  Jiagui  Tang  Yan  Du  Juan  He  Xiaokun  Sun  Xiaoran  Bi  Zhenwu  Wang  Yunling  Zhan  Jun  Zhang  Hongquan 《中国科学:生命科学英文版》2019,62(2):225-234

Kindlin-2, an integrin-interacting protein, regulates breast cancer progression. However, currently, no animal model to study the role of Kindlin-2 in the carcinogenesis of mammary gland is available. We established a Kindlin-2 transgenic mouse model using a mammary gland-specific promoter, mammary tumor virus (MMTV) long terminal repeat (LTR). Kindlin-2 was overexpressed in the epithelial cells of the transgenic mice. The mammary gland ductal trees were found to grow faster in MMTV-Kindlin-2 transgenic mice than in control mice during puberty. Kindlin-2 promoted mammary gland growth as indicated by more numerous duct branches and larger lumens, and more alveoli were formed in the mammary glands during pregnancy under Kindlin-2 overexpression. Importantly, mammary gland-specific expression of Kindlin-2 induced tumor formation at the age of 55 weeks on average. Additionally, the levels of estrogen receptor and progesterone receptor were decreased, whereas human epidermal growth factor receptor 2 and β-catenin were upregulated in the Kindlin-2-induced mammary tumors. These findings demonstrated that Kindlin-2 induces mammary tumor formation via activation of the Wnt signaling pathway.

  相似文献   

3.
4.
Inhibitor of differentiation-1 (Id-1) has been shown to play an essential role in cell proliferation, invasion, migration, and anti-apoptosis. However, the effect of Id-1 in mammary gland development remains unknown. Here, we generated MMTV-Id-1 transgenic mice to study the role of Id-1 in mammary gland development. In virgin mice, Id-1 overexpression led to precocious development and delayed regression of terminal end buds (TEBs) compared with wild-type mice. The number of BrdU-positive cells and the expression of Wnt signaling molecules, β-catenin and cyclin D1, which regulate ductal extension and TEB formation in virgin, were statistically higher in Id-1 transgenic mice than in wild-type mice. Id-1 also had an effect on the formation and proliferation of lobuloalveolar structures during early and mid-pregnancy. Id-1 transgenic mice had more lobulated and prominent alveolar budding than wild-type mice and had significantly greater counts of lobuloalveolar structures in early pregnancy. The expression of BrdU, β-catenin, and cyclin D1 was also predominantly increased in Id-1 transgenic mice. Moreover, Id-1 transgenic mice showed delayed involution. Id-1 regulated the expression levels of anti-apoptotic Bcl-2 and pro-apoptotic Bax, and resulted in delay of apoptotic peak during postlactational involution. We also found that Id-1 was able to modulate expression of the regulators of Wnt/β-catenin signaling such as phospho-Akt, BMP2, FGF3, and RAR-β in tubuloalveolar development of mammary glands. Taken together, our results suggest that Id-1 plays a pivotal role in mammary gland development through Wnt signaling-mediated acceleration of precocity and alveologenesis and Bcl-2 family members-mediated delay of involution.  相似文献   

5.

Background

MicroRNA (miRNA) are negative regulators of gene expression, capable of exerting pronounced influences upon the translation and stability of mRNA. They are potential regulators of normal mammary gland development and of the maintenance of mammary epithelial progenitor cells. This study was undertaken to determine the role of miR-30b on the establishment of a functional mouse mammary gland. miR-30b is a member of the miR-30 family, composed of 6 miRNA that are highly conserved in vertebrates. It has been suggested to play a role in the differentiation of several cell types.

Methodology/Principal Findings

The expression of miR-30b was found to be regulated during mammary gland development. Transgenic mice overexpressing miR-30b in mammary epithelial cells were used to investigate its role. During lactation, mammary histological analysis of the transgenic mice showed a reduction in the size of alveolar lumen, a defect of the lipid droplets and a growth defect of pups fed by transgenic females. Moreover some mammary epithelial differentiated structures persisted during involution, suggesting a delay in the process. The genes whose expression was affected by the overexpression of miR-30b were characterized by microarray analysis.

Conclusion/Significance

Our data suggests that miR-30b is important for the biology of the mammary gland and demonstrates that the deregulation of only one miRNA could affect lactation and involution.  相似文献   

6.
《Translational oncology》2022,15(12):101228
The miR-200 family consists of five members expressed as two clusters: miR-200c/141 cluster and miR-200b/200a/429 cluster. In the mammary gland, miR-200s maintain epithelial identity by decreasing the expression of mesenchymal markers leading to high expression of epithelial markers. While the loss of miR-200s is associated with breast cancer growth and metastasis the impact of miR-200 expression on mammary tumor initiation has not been investigated. Using mammary specific expression of the miR-200b/200a/429 cluster in transgenic mice, we found that elevated expression miR-200s could almost completely prevent mammary tumor development. Only 1 of 16 MTB-IGFIRba429 transgenic mice (expressing both the IGF-IR and miR-200b/200a/429 transgenes) developed a mammary tumor while 100% of MTB-IGFIR transgenic mice (expressing only the IGF-IR transgene) developed mammary tumors. RNA sequencing, qRT-PCR, and immunohistochemistry of mammary tissue from 55-day old mice found Spp1, Saa1, and Saa2 to be elevated in mammary tumors and inhibited by miR-200b/200a/429 overexpression. This study suggests that miR-200s could be used as a preventative strategy to protect women from developing breast cancer. One concern with this approach is the potential negative impact miR-200 overexpression may have on mammary function. However, transgenic overexpression of miR-200s, on their own, did not significantly impact mammary ductal development indicating the miR-200 overexpression should not significantly impact mammary function. Thus, this study provides the initial foundation for using miR-200s for breast cancer prevention and additional studies should be performed to identify strategies for increasing mammary miR-200 expression and determine whether miR-200s can prevent mammary tumor initiation by other genetic alterations.  相似文献   

7.
《Translational oncology》2021,14(12):101228
The miR-200 family consists of five members expressed as two clusters: miR-200c/141 cluster and miR-200b/200a/429 cluster. In the mammary gland, miR-200s maintain epithelial identity by decreasing the expression of mesenchymal markers leading to high expression of epithelial markers. While the loss of miR-200s is associated with breast cancer growth and metastasis the impact of miR-200 expression on mammary tumor initiation has not been investigated. Using mammary specific expression of the miR-200b/200a/429 cluster in transgenic mice, we found that elevated expression miR-200s could almost completely prevent mammary tumor development. Only 1 of 16 MTB-IGFIRba429 transgenic mice (expressing both the IGF-IR and miR-200b/200a/429 transgenes) developed a mammary tumor while 100% of MTB-IGFIR transgenic mice (expressing only the IGF-IR transgene) developed mammary tumors. RNA sequencing, qRT-PCR, and immunohistochemistry of mammary tissue from 55-day old mice found Spp1, Saa1, and Saa2 to be elevated in mammary tumors and inhibited by miR-200b/200a/429 overexpression. This study suggests that miR-200s could be used as a preventative strategy to protect women from developing breast cancer. One concern with this approach is the potential negative impact miR-200 overexpression may have on mammary function. However, transgenic overexpression of miR-200s, on their own, did not significantly impact mammary ductal development indicating the miR-200 overexpression should not significantly impact mammary function. Thus, this study provides the initial foundation for using miR-200s for breast cancer prevention and additional studies should be performed to identify strategies for increasing mammary miR-200 expression and determine whether miR-200s can prevent mammary tumor initiation by other genetic alterations.  相似文献   

8.
Cadherins comprise a family of cell-cell adhesion proteins critical to the architecture and function of tissues. Expression of family members E-, N-, and P-cadherin is regulated in a spatial and temporal fashion in the developing and adult organism. Using in vivo and in vitro experimental systems, perturbation of cadherin expression by genetic deletion, overexpression, mutant dominant-negative constructs, and, to a lesser degree, expression of an inappropriate cadherin have all been shown to alter embryogenesis, tissue architecture, and cell behavior. Here we studied how expression of an inappropriate cadherin affects the adult mouse mammary gland. Human P-cadherin was expressed in mammary epithelial cells under control of the mouse mammary tumor virus (MMTV) promoter, and the effect on mammary gland behavior was studied. Typically, E-cadherin is expressed by mammary epithelial cells, whereas P-cadherin is found in myoepithelial cells and cap cells of the ductal terminal end bud. However, breast cancers frequently express P-cadherin, even though they are thought to arise from epithelial cells, and it is a marker of poor prognosis. We developed two independent transgenic mouse lines that exhibited high levels of P-cadherin protein expression in the mammary epithelium. P-cadherin was detected in most, but not all, luminal epithelial cells, and was appropriately localized to cell-cell borders. It was detected in the mammary glands of virgin, pregnant, lactating, post-lactation, and aged parous female mice. Despite the robust and widespread expression of an inappropriate cadherin, no effect was observed on mammary gland morphogenesis, architecture, lactation, or involution in transgenic mice compared to wild-type mice. No mammary tumors formed spontaneously in either wild-type or transgenic mice. Moreover, mammary tumors induced by the neu oncogene, which was introduced by a breeding strategy, showed no differences between mice with or without hP-cadherin. Surprisingly, however, none of the tumors expressed hP-cadherin protein. Together, our studies show no apparent effect on adult mammary gland or tumor behavior by inappropriate expression of P-cadherin in normal mammary epithelial cells.  相似文献   

9.
Abstract

Insulin-like growth factor 1 (IGF-1) mediates many of the actions of growth hormone. Overexpression of IGF-1 was reported to have endocrine and paracrine/autocrine effects on somatic growth in transgenic mice. To study the paracrine/autocrine effects of IGF-1 in mammary gland, transgenic mice were produced by pronuclear microinjection of a construct containing a bovine α-lactalbumin (α-LA) promoter linked to an ovine IGF-1 cNDA. This α-LA promoter has previously been shown to direct expression of a human factor VIII gene specifically to the mammary gland of transgenic mice. Three transgenic mouse lines were established as a result of microinjection of 398 embryos. Transgene expression was found in mammary gland at day 1 of lactation from these three lines. Progeny test were carried out by mating two transgenic males/one transgenic female to two nontransgenic females/one nontransgenic male. Mice from one line (line 1225) were all nonexpressors and the other (line 1372) failed to produce offspring. Milk yield was analyzed in the line 1137 that produced 10 mice, of which three were transgenic females and three nontransgenic females. All of the three transgenic females showed integration of the transgene and expressed transgene IGF-1 mRNA in the mammary gland. Milk yields from days 5, 10, and 15 of lactation were significant greater in transgenic expressors than in their nontransgenic littermates. Specifically, there is 17.9% increase in total milk yield from these three days for transgenics compared with nontransgenics. These results demonstrate that local overexpression of IGF-1 in transgenic mice is capable to stimulating milk yield during the first lactation.  相似文献   

10.
Muc4 (also called Sialomucin complex) is a heterodimeric glycoprotein complex consisting of a peripheral O-glycosylated subunit ASGP-1 (ascites sialoglycoprotein-1) tightly but non-covalently bound to an N-glycosylated transmembrane subunit ASGP-2. Muc4/SMC can act as an intramembrane ligand for ErbB2 via an EGF-like domain present in the transmembrane subunit. The complex is developmentally regulated in normal rat mammary gland and overexpressed in a number of mammary tumors. Overexpression of Muc4/SMC has been shown to block cell-cell and cell-matrix interactions, protect tumor cells from immune surveillance, promote metastasis, and protect from apoptosis. We have investigated whether Muc4/SMC and ErbB2 are co-expressed and co-localized in normal rat mammary gland and whether Muc4/SMC-ErbB2 complex formation is developmentally regulated in this tissue. Muc4/SMC and ErbB2 have different expression patterns and regulatory mechanisms in the developing rat mammary gland, but both are maximally expressed during late pregnancy and lactation. The two proteins form a complex in lactating mammary gland which is not detected in the virgin gland. Moreover, this complex does not contain ErbB3. ErbB2 is co-localized with Muc4/SMC at the apical surfaces of ductal and alveolar cells in lactating gland; however, another form of ErbB2, recognized by a different antibody, localizes to the basolateral surfaces of these cells. ErbB2 phosphorylated on Tyr 1248 co-localized with Muc4/SMC at the apical surface but not at the basolateral surfaces of these cells. To investigate the function of Muc4 in the mammary gland, transgenic mice were derived using an MMTV-Muc4 construct. Interestingly, mammary gland development in the transgenic mice was aberrant, exhibiting a bifurcated pattern, including invasion down the blood vessel, similar to that exhibited by transgenic mice inappropriately expressing activated ErbB2 in the mammary gland. These data provide further evidence of the ability of Muc4/SMC to interact with ErbB2 and influence its behavior in normal epithelia.  相似文献   

11.
SHARPIN is a widely expressed multifunctional protein implicated in cancer, inflammation, linear ubiquitination and integrin activity inhibition; however, its contribution to epithelial homeostasis remains poorly understood. Here, we examined the role of SHARPIN in mammary gland development, a process strongly regulated by epithelial–stromal interactions. Mice lacking SHARPIN expression in all cells (Sharpincpdm), and mice with a stromal (S100a4‐Cre) deletion of Sharpin, have reduced mammary ductal outgrowth during puberty. In contrast, Sharpincpdm mammary epithelial cells transplanted in vivo into wild‐type stroma, fully repopulate the mammary gland fat pad, undergo unperturbed ductal outgrowth and terminal differentiation. Thus, SHARPIN is required in mammary gland stroma during development. Accordingly, stroma adjacent to invading mammary ducts of Sharpincpdm mice displayed reduced collagen arrangement and extracellular matrix (ECM) stiffness. Moreover, Sharpincpdm mammary gland stromal fibroblasts demonstrated defects in collagen fibre assembly, collagen contraction and degradation in vitro. Together, these data imply that SHARPIN regulates the normal invasive mammary gland branching morphogenesis in an epithelial cell extrinsic manner by controlling the organisation of the stromal ECM.  相似文献   

12.
Transforming growth factor-beta 1 (TGF-beta 1) possesses highly potent, diverse and often opposing cell-specific activities, and has been implicated in the regulation of a variety of physiologic and developmental processes. To determine the effects of in vivo overexpression of TGF-beta 1 on mammary gland function, transgenic mice were generated harboring a fusion gene consisting of the porcine TGF-beta 1 cDNA placed under the control of regulatory elements of the pregnancy-responsive mouse whey-acidic protein (WAP) gene. Females from two of four transgenic lines were unable to lactate due to inhibition of the formation of lobuloalveolar structures and suppression of production of endogenous milk protein. In contrast, ductal development of the mammary glands was not overtly impaired. There was a complete concordance in transgenic mice between manifestation of the lactation-deficient phenotype and expression of RNA from the WAP/TGF-beta 1 transgene, which was present at low levels in the virgin gland, but was greatly induced at mid-pregnancy. TGF-beta 1 was localized to numerous alveoli and to the periductal extracellular matrix in the mammary gland of transgenic females late in pregnancy by immunohistochemical analysis. Glands reconstituted from cultured transgenic mammary epithelial cells duplicated the inhibition of lobuloalveolar development observed in situ in the mammary glands of pregnant transgenic mice. Results from this transgenic model strongly support the hypothesis that TGF-beta 1 plays an important in vivo role in regulating the development and function of the mammary gland.  相似文献   

13.
The spatial, temporal, and hormonal pattern of expression of the β-casein gene is highly regulated and confined to the epithelial cells of the lactating mammary gland. Previous studies have shown that 1.7 kb of the bovine β-casein promoter were able to drive cell-specific and hormone-dependent expression to a mouse mammary cell line but failed to induce accurate expression to the mammary gland of transgenic mice. We investigated here the ability of 3.8 kb of the bovine β-casein gene promoter to drive the expression of the human growth hormone (hGH) gene in transgenic mice. A Northern blot analysis using total RNA obtained from different tissues of lactating and nonlactating females revealed the presence of hGH mRNA only in the mammary gland of lactating females. hGH mRNA was not detectable in the mammary gland of virgin females or males. A developmental analysis showed that hGH mRNA only peaked on parturition, resembling more closely the bovine β-casein temporal expression pattern rather than the murine. In situ hibridization studies performed on mammary gland sections showed that the cellular pattern of hGH expression was homogeneous in all lobules from heterozygous and homozygous transgenic mice. Silver grain counts on the tissue sections highly correlated with the hGH contents in the milk determined by radioimmunoassay (r = 0.996). Thus 3.8 kb of the bovine β-casein promoter direct a high-level expression of a reporter gene to the lactating mammary gland of transgenic mice in a tissue-specific and developmentally regulated manner. Mol. Reprod. Dev. 49:236–245, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
15.
To characterize the role of BRCA1 in mammary gland development and tumor suppression, a transgenic mouse model of BRCA1 overexpression was developed. Using the mouse mammary tumor virus (MMTV) promoter/enhancer, transgenic mice expressing human BRCA1 or select mutant controls were generated. Transgenic animals examined during adolescence were shown to express the human transgene in their mammary glands. The mammary glands of 13-week-old virgin homozygous MMTV-BRCA1 mice presented the morphology of moderately increased lobulo-alveolar development. The mammary ductal trees of both hemizygous and homozygous MMTV-BRCA1t340 were similar to those of control non-transgenic littermates. Interestingly, both hemi- and homozygous mice expressing a splice variant of BRCA1 lacking the N-terminal RING finger domain (MMTV-BRCA1sv) exhibited marked mammary lobulo-alveolar development, particularly terminal end bud proliferation. Morphometric analyses of mammary gland whole mount preparations were used to measure epithelial staining indices of ~35% for homozygous MMTV-BRCA1 mice and ~60% for both hemizygous and homozygous MMTV-BRCA1sv mice versus ~25% for non-transgenic mice. Homozygous MMTV-BRCA1 mice showed delayed development of tumors when challenged with 7,12 dimethylbenzanthracene (DMBA), relative to non-transgenic and homozygous BRCA1t340 expressing mice. In contrast, homozygous MMTV-BRCA1sv transgenic animals were sensitized to DMBA treatment and exhibited a very rapid onset of mammary tumor development and accelerated mortality. MMTV-BRCA1 effects on mortality were restricted to DMBA-induced tumors of the mammary gland. These results demonstrate in vivo roles for BRCA1 in both mammary gland development and in tumor suppression against mutagen-induced mammary gland neoplasia.  相似文献   

16.
Using a Rosa26 gene targeting strategy in mouse embryonic stem cells, we have generated a new transgenic mouse (Pgr‐B LSL), which is designed to conditionally express the epitope‐tagged mouse progesterone receptor‐B (PGR‐B) isoform when crossed with a specific cre driver mouse. To functionally validate this transgenic mouse, we crossed the Pgr‐B LSL mouse with the MMTV‐CREA transgenic mouse to create the MMTV‐CREA/Pgr‐B LSL bigenic (termed PR‐B:OE to denote PGR‐B o vere xpressor). As expected, transgene‐derived PGR‐B protein was specifically targeted to the virgin mammary gland epithelium. At a functional level, the PR‐B:OE bigenic exhibited abnormal mammary morphogenesis—dilated epithelial ducts, precocious alveologenesis and lateral side‐branching, along with a prominent proliferative signature—that resulted in pregnant PR‐B:OE mice unable to exhibit mammary gland terminal differentiation at parturition. Because of this developmental failure, the PR‐B:OE mammary gland was incapable of producing milk resulting in early neonatal death of otherwise healthy litters. This first line of analysis demonstrates the utility of the Pgr‐B LSL mouse to examine the role of the PGR‐B isoform in different physiologic and pathophysiologic systems that are responsive to progesterone.  相似文献   

17.
The retinoblastoma (Rb) tumor suppressor controls cellular proliferation, survival, and differentiation and is functionally inactivated by mutations or hyperphosphorylation in most human cancers. Although activation of endogenous Rb is thought to provide an effective approach to suppress cell proliferation, long-term inhibition of apoptosis by active Rb may have detrimental consequences in vivo. To directly test these paradigms, we targeted phosphorylation-resistant constitutively active Rb alleles, Rb Delta Ks, to the mouse mammary gland. Pubescent transgenic females displayed reduced ductal elongation and cell proliferation at the endbuds. Post-puberty transgenic mice exhibited precocious cellular differentiation and beta-casein expression and extended survival of the mammary epithelium with a moderate but specific effect on the expression of E2F1, IGF1R alpha, and phospho-protein kinase B/AKT. Remarkably, approximately 30% Rb Delta K transgenic females developed focal hyperplastic nodules, and approximately 7% exhibited full-blown mammary adenocarcinomas within 15 mo. Expression of the Rb Delta K transgene in these mammary tumors was reduced greatly. Our results suggest that transient activation of Rb induces cancer by extending cell survival and that the dual effects of Rb on cell proliferation and apoptosis impose an inherent caveat to the use of the Rb pathway for long-term cancer therapy.  相似文献   

18.
We have recently demonstrated the regulated expression ofHGF/SFand its receptor (c-met) during mouse mammary gland development together with the mitogenic, motogenic and morphogenic effects of exogenous HGF/SF on primary mammary epithelial cells in culture. This study was undertaken to analyze the influence of HGF/SF on reconstituted mouse mammary gland developmentin vivo.Here we report that overexpression of HGF/SF induces a range of alterations in the architecture of virgin mouse mammary gland. These include an enhancement of ductal end bud (mammary gland morphoregulatory control point) size and numbers and hyperplastic branching morphogenesis. These data are the first demonstration of the effects of HGF/SF on mammary epitheliumin vivo.  相似文献   

19.
Netrin-1 has been shown to regulate the function of the EGF-like protein Cripto-1 (Cr-1) and affect mammary gland development. Since Cr-1 is a target gene of Nanog and Oct4, we investigated the relationship between Netrin-1 and Cr-1, Nanog and Oct4 during different stages of development in the mouse mammary gland. Results from histological analysis show that exogenous Netrin-1 was able to induce formation of alveolar-like structures within the mammary gland terminal end buds of virgin transgenic Cripto-1 mice and enhance mammary gland alveologenesis in early pregnant FVB/N mice. Results from immunostaining and Western blot analysis show that Netrin-1, Nanog and Oct4 are expressed in the mouse embryonic mammary anlage epithelium while Cripto-1 is predominantly expressed outside this structure in the surrounding mesenchyme. We find that in lactating mammary glands of postnatal FVB/N mice, Netrin-1 expression is highest while Cripto-1 and Nanog levels are lowest indicating that Netrin-1 may perform a role in the mammary gland during lactation. HC-11 mouse mammary epithelial cells stimulated with lactogenic hormones and exogenous soluble Netrin-1 showed increased beta-casein expression as compared to control thus supporting the potential role for Netrin-1 during functional differentiation of mouse mammary epithelial cells. Finally, mouse ES cells treated with exogenous soluble Netrin-1 showed reduced levels of Nanog and Cripto-1 and higher levels of beta-III tubulin during differentiation. These results suggest that Netrin-1 may facilitate functional differentiation of mammary epithelial cells and possibly affect the expression of Nanog and/or Cripto-1 in multipotent cells that may reside in the mammary gland.  相似文献   

20.

Background  

The Six1 homeobox gene is highly expressed in the embryonic mammary gland, continues to be expressed in early postnatal mammary development, but is lost when the mammary gland differentiates during pregnancy. However, Six1 is re-expressed in breast cancers, suggesting that its re-instatement in the adult mammary gland may contribute to breast tumorigenesis via initiating a developmental process out of context. Indeed, recent studies demonstrate that Six1 overexpression in the adult mouse mammary gland is sufficient for initiating invasive carcinomas, and that its overexpression in xenograft models of mammary cancer leads to metastasis. These data demonstrate that Six1 is causally involved in both breast tumorigenesis and metastasis, thus raising the possibility that it may be a viable therapeutic target. However, because Six1 is highly expressed in the developing mammary gland, and because it has been implicated in the expansion of mammary stem cells, targeting Six1 as an anti-cancer therapy may have unwanted side effects in the breast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号