首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A prominent action of converting enzyme inhibitors, such as captopril, is a reduction in angiotensin II formation, but interpretation of responses has been complicated by the potential for such agents to reduce bradykinin degradation and promote prostaglandin release. To assess the specificity of the action of captopril, we pretreated rabbits with desoxycorticosterone and a high sodium intake, to suppress the renin-angiotensin system and thus maximize the renal vascular responses which might be unrelated to angiotensin II. Captopril was infused intravenously in graded dosage from 10 to 3,000 μg/kg, and renal blood flow measured with an electromagnetic flowmeter. Despite suppression of the renin system, captopril increased renal blood flow from 3.7 ± 0.5 to 5.3 ± 0.8 ml/g/min (p < .001) in 7 rabbits. In 6 additional rabbits, captopril was superimposed on a saralasin infusion (1.0 μg/kg/min) in a dose sufficient to block responses to endogenous angiotensin II. Saralasin prevented entirely the renal vasodilator response to captopril. Two surprising conclusions derive from this study: first, the renal vasodilator response to captopril appears to be specific for a reduction in angiotensin II formation; second, endogenous angiotensin appears to contribute to renal vascular tone, at least when anesthesia is employed, even when the renin system has been suppressed by a combination of a high sodium intake and desoxycorticosterone.  相似文献   

2.
Effects of endogenous angiotensin II on the fetal circulation   总被引:4,自引:0,他引:4  
The role of endogenous angiotensin II in the regulation of the circulation was investigated by infusion of [sar1],[ala8]-angiotensin II, a competitive antagonist of angiotensin II, into fetal sheep with chronically-maintained intravascular catheters. The thesis considered was that angiotensin II may have a greater role in the fetus than in the adult since the autonomic nervous system does not develop fully until late in gestation. Fetal cardiac output and its distribution to various organs and actual blood flows to fetal tissues were determined by the radionuclide-labelled microsphere technique. Intravenous infusion of [sar1], [ala8]-angiotensin II at a rate of 13.95-42.15 microgram/min per kg fetal body weight increased plasma renin activity from a control value of 8.9 +/- 1.6 to 18.9 +/- 3.9 ng/ml per h (SEM). Mean arterial blood pressure fell significantly from a control level of 47 +/- 1.6 to 41 +/- 1.1 mmHg. Blood flow to the unbilical-placental circulation decreased from 239 +/- 27.0 to 198 +/- 20.2 ml/min per kg, but the calculated vascular resistance in the umbilical-placental circulation did not change. Although cardiac output did not change, blood flow to the peripheral circulation, which includes the fetal skin, muscle and and bone and constitutes 75 +/- 0.9% of the total fetal body weight, increased as did flow to the thyroid and adrenal circulations. Endogenous angiotensin II appears to be important in maintaining blood flow to the umbilical-placental circulation by maintaining fetal arterial blood pressure. Angiotensin II exerts this effect by mediating a tonic vasoconstriction primarily in the peripheral circulation.  相似文献   

3.
We characterized blockade induced by 2 octapeptide and 2 heptapeptide analogues of angiotensin in the vascular beds of the kidney and hindlimb. Bolus injections of angiotensin II and its 1-des Asp analogue (angiotensin III) at the dose which reduced blood flow by about 50 percent and graded infusions of the analogue-antagonists were made directly into each artery and flow responses were measured with an electromagnetic flowmeter in the anesthetized dog. With the dose of antagonist which produced 50 percent inhibition of the control angiotensin response (ID 50) as the index, inhibition was slightly greater in the kidney than in the hindlimb for both the potent octapeptide antagonist {1-Sar, 8-Ala angiotensin II: kidney ID 50 = 15.3±1.7 (SD) ng/kg/min; hindlimb ID 50 = 23.3±1.8 (SD) ng/kg/min} and the weak octapeptide antagonist {1-D-Asn, 8-Ala angiotensin II: kidney ID 50 = 178.7±2.0 (SD) ng/kg/min; hindlimb ID 50 = 266.7±1.9 (SD) ng/kg/min}. In contrast, both the potent and weak heptapeptide analogues were much more effective as antagonists in the renal than the femoral vascular bed {1-des Asp, 8-Ile AII: kidney ID 50 = 14.9±1.8 (SD) ng/kg/min; hindlimb ID 50 = 36.2±1.9 (SD) ng/kg/min}; {1-des Asp, 8-Ala angiotensin II: kidney ID 50 = 408.9±1.8 (SD) ng/kg/min; hindlimb ID 50 = 1270±2.8 (SD) ng/kg/min}. The difference in the influence of the analogues in the two vascular beds may reflect either a difference in their angiotensin receptors or in the rate at which heptapeptide analogues are degraded in their transit through the renal and femoral vasculature.  相似文献   

4.
We studied the effects of synthetic atrial natriuretic factor (ANF, 28-amino acid peptide) on base-line perfusion pressures and pressor responses to hypoxia and angiotensin II (ANG II) in isolated rat lungs and on the following hemodynamic and renal parameters in awake, chronically instrumented rats: cardiac output (CO), systemic (Rsa) and pulmonary (Rpa) vascular resistances, ANG II- and hypoxia (10.5% O2)-induced changes in Rsa and Rpa, and urine output. Intra-arterial ANF injections lowered base-line perfusion pressures and blunted hypoxia- and ANG II-induced pressor responses in the isolated lungs. Bolus intravenous injection of ANF (10 micrograms/kg) into intact rats decreased CO and arterial blood pressures of both systemic and pulmonary circulations and increased Rsa. ANG II (0.4 micrograms/kg) increased both Rsa and Rpa, and hypoxia increased Rpa alone in the intact rats. ANF (10 micrograms/kg) inhibited both ANG II- and hypoxia-induced increases in Rpa but did not significantly affect the ANG II-induced increase in Rsa. The antagonistic effect of ANF on pulmonary vasoconstriction was reversible and dose-dependent. The threshold doses of ANF required to inhibit pulmonary vasoconstriction were in the same range as those required to elicit diuresis and natriuresis. The data demonstrate that ANF has a preferential relaxant effect on pulmonary vessels constricted by hypoxia or ANG II. Both the renal and the pulmonary vascular effects of ANF may represent fundamental physiological actions of ANF. These actions may serve as a negative feedback control system that protects the right ventricle from excessive mechanical loads.  相似文献   

5.
The effects of angiotensin II (AII) and its 1-des Asp analog (AIII) given intra-arterially (0.3–30 ng/kg) were compared in the mesenteric, femoral, and renal vascular beds in anesthetized dogs in which flow was measured with an electromagnetic flowmeter. As has been shown previously, AII and AIII produced similar changes in renal blood flow. In view of the reduced pressor activity of AIII it was surprising to find strikingly similar responses to AII and AIII in the mesenteric and femoral vascular beds. We conclude that the difference in pressor activity of these agents is attributable to something other than differences in their peripheral vascular receptor, and perhaps may be due to differences in their central actions.  相似文献   

6.
Half-time of the offset of antagonist action was used to assess the possibility that factors which determine the duration of action of angiotensin antagonists were responsible for regional differences in their effectiveness: thus, for example, enhanced degradation of angiotensin III analogues in the limb circulation would reduce their effectiveness there despite an angiotensin receptor identical to that in the kidney. In the anesthetized dog blood flow in the renal and femoral vascular beds was measured with an electromagnetic flowmeter; the octapeptide analogue saralasin (1-Sar, 8-Ala AII) and a heptapeptide analogue (des-Asp, 8-Ile AII) were infused intravenously (1 μg/kg/min) for 10 minutes and, after stopping the infusion, the effectiveness of their blockade of angiotensin II was assessed over time. The half-time of offset of the antagonist action was determined from semilogarithmic plots of percent inhibition during recovery. Offset of heptapeptide-induced inhibition in the hindlimb would have been more rapid if increased rate of degradation was the explanation for its reduced effectiveness and such was not the case: Indeed offset was more rapid in the renal (5.8 ± 1.1 min) than the femoral vascular bed (11.7 ± 2.1 min) (p > 0.05). Saralasin showed identical offsets in the two beds (renal 17.2 ± 1.5 min; femoral 15.1 ± 2.9 min) (p > 0.5). Consistent with these observations, the offset of the agonist action of angiotensin III was shorter in the kidney (0.69 ± 0.06 min) than in the limb (1.46 ± 0.13 min; p < 0.001). This study has confirmed the relatively greater efficacy of heptapeptide analogues in the renal than in the femoral vascular bed and has ruled out degradation as accounting for that difference: The difference is most likely to lie in a different angiotensin receptor in the two regions.  相似文献   

7.
P C Wong  B G Zimmerman 《Life sciences》1980,27(14):1291-1297
Participation of intrarenal converting enzyme (ICE) in mediation of the renal vasodilator response to captopril (C) was studied in 7 anesthetized dogs. Blood pressure (BP), renal blood flow (RBF) and femoral blood flow (FBF) were measured and vasoconstrictor responses were elicited by i.a. injections of angiotensin (A) I to the renal and femoral vascular beds. The latter responses served as indices of intrarenal and skeletal muscle converting enzyme activity, respectively. Successive infusions of C were given i.a. to the kidney at 0.4, 0.8 and 1.6 μg/kg/min for 30 min each. RBF and renal vascular resistance (RVR) were unaffected by any of these doses of C. The % changes in RBF caused by A-I were reduced from 45 to 23, 20 and 17% by these successive doses of C, respectively; however, the decrements were not significantly different from each other. When C was administered i.v., 0.5 mg/kg, after the highest i.a. dose had been given, there was no further decrease in the response to A-I, suggesting maximal blockade of ICE obtainable by C. BP, RBF and RVR were further affected by the i.v. administration of C. BP decreased from 146 to 136 mm Hg (P<0.05), RBF increased from 240 to 290 ml/min (P<0.01) and RVR decreased from 32 to 24 mm Hg/ml/min/g (P<0.01). These results suggest that ICE plays a minor role in the renal vasodilator response to C, and implicate an influence of circulating peptides on the kidney.  相似文献   

8.
Cardiovascular responses of the taurine-depleted rat to vasoactive agents   总被引:1,自引:0,他引:1  
Mozaffari MS  Abebe W 《Amino acids》2000,19(3-4):625-634
Summary. The objective of this study was to assess the effect of taurine-depletion on cardiovascular responses of rat to vasoactive agents. Male Wistar-Kyoto (WKY) rats were given either tap water (control) or 3% β-alanine (taurine-depleted) for three weeks. Thereafter, mean arterial pressure (MAP) and heart rate of the freely moving animal were measured in response to vasoactive agents. Administration of phenylephine (5–40 μg/kg/min; i.v.) resulted in a similar and significant increase in MAP but a reduction in heart rate in both control and taurine-depleted groups. On the other hand, administration of sodium nitroprusside (15–300 μg/kg/min; i.v.) elicited a similar and significant reduction in MAP but increased heart rate in both groups. Lack of a differential response to phenylephrine and sodium nitroprusside between the two groups suggests that baroreflex regulation of cardiovascular function is not adversely affected by taurine-depletion. Administration of angiotensin II (0.1–3.0 μg/kg/min; i.v.) resulted in a dose-related increase in the pressor response and a decrease in heart rate in both groups. However, angiotensin II-induced pressor response was reduced in the taurine-depleted compared to the control rats (p < 0.05); heart rate was similarly reduced in both groups. Acute exposure to β-alanine (3 g/kg; i.v., 30-minutes) did not alter angiotensin II-induced hemodynamic responses. Similarly, incubation of aortic rings with β-alanine (40 mM, 30 minutes) did not affect the contractile responses to angiotensin II. The results suggest that β-alanine, per se, does not affect angiotensin II-induced responses in rat. However, β-alanine-induced taurine depletion is associated with a reduction in the pressor response to angiotensin II without impairing baroreflex function. Received December 17, 1999/Accepted January 12, 2000  相似文献   

9.
Although exogenous angiotensin is recognized as a potent dipsogen, the participation of endogenous angiotensin in thirst has not been well established. To investigate this question, we produced thirst in rats by relative cellular dehydration (hypertonic NaCl injection), or hypovolemia (hyperoncotic polyethylene glycol injection). An angiotensin receptor antagonists (sar(1)-ala(8)- angiotensin II, P-113), or a converting enzyme inhibitor (SQ, 20, 881, SQ) given to thirsty rats by intracerebroventricular (IVT) or peripheral routes. P-113 infused i.v. (10 μg/kg/min) or injected IVT (10 μg) did not alter the drinking response to either thirst stimulus. The latter treatment reduced the drinking response to 50 ng of IVT angiotensin II (p < 0.005). SQ given i.m. (2 mg/kg), IVT (2 × 50 μg), or both routes did not alter relative cellular dehydration thirst. Injection of SQ IVT did not alter hypovolemic thirst, whereas a significantly (p < 0.005) enhanced response occured after i.m. SQ. The enhanced response was not observed when animals were given both IVT and i.m. SQ. The IVT treatment with SQ markedly reduced (P < 0.005) drinking after 50 ng IVT angiotensin I. The data demonstrate that inhibition of angiotensin receptors or converting enzyme does not prevent appropriate drinking responses to primary thirst stimuli. Thus, if angiotensin participates in these endogenous thirst drives, its role is not an absolute requirement.  相似文献   

10.
Input to the nucleus medianus of the preoptic region has been suggested to be involved in both the drinking and pressor responses elicited by the central administration of angiotensin II. Evidence in support of this suggestion has been gained principally from electrical lesion experiments. This lesion procedure does not differentiate between the cells of the region and fibers coursing through the region. To test the hypothesis that cells in this region are involved in both the pressor and drinking responses elicited by central administration of angiotensin II, injections of kainic acid were made to induce lesions of the cells, while sparing fibers of passage. Drinking and blood pressure responses were determined pre- and post-lesion in the chronically instrumented awake rat. Injections of 50 ng angiotensin II in a 2-microL volume into a lateral cerebral ventricle of the conscious rat elicited pronounced drinking and pressor responses with a latency of 3-5 min. Lesions of the median preoptic region produced by injecting 1.0 microgram of kainic acid in 0.25 microL for 15 s attenuated or blocked the drinking response and increased the latency to drink induced by central injections of angiotensin II. However, kainic acid lesions did not significantly alter the pressor responses produced by angiotensin II administration. These results suggest that cells in the median preoptic region are involved in the drinking response but do not participate in the pressor response elicited by angiotensin II administration into a lateral cerebral ventricle of the conscious rat.  相似文献   

11.
Six rabbits were sham operated and were given water to drink (sham-water group); six additional rabbits were sham operated and were given saline to drink (sham-salt group); another six rabbits received an implant of deoxycorticosterone (DOCA) and were given water to drink (DOCA-water group); a final group of six rabbits received implants of DOCA and were given saline to drink (DOCA-salt group). Two weeks later, all four groups of rabbits had approximately the same mean arterial pressures, and the sham-salt, DOCA-water, and DOCA-salt groups all had plasma renin activity values less than the sham-water group. The DOCA-salt group had greater pressor responses to norepinephrine (NE) at several doses than did the other three groups of rabbits. In another group of six sham-water and six DOCA-salt rabbits, measurements of cardiac output before and during infusions of NE at 800 ng/min/kg body wt revealed no changes in cardiac output before or during NE infusion, but the DOCA-salt group had significantly greater increases in mean arterial pressure and total peripheral resistance during NE than did the sham-water group. In another group of six DOCA-salt rabbits, the pressor response to several doses of NE were determined during infusion of the angiotensin II (AII) antagonist, [Sar1, Ile8] AII; this AII antagonist failed to alter the enhanced pressor responses to NE. A final experiment examined pressor responses to NE in six normal rabbits before and after cross circulation of blood with six DOCA-salt rabbits. After blood cross circulation the normal rabbits had exaggerated pressor responses to NE at 5, 15, and 30 min, but not at 60 min. Similar cross-circulation experiments between six pairs of normal rabbits did not show any transfer of pressor hyperresponsiveness. These studies indicated that pressor and vascular hyperresponsiveness in DOCA-salt rabbits is conveyed by a fast-acting hormonal factor and that AII probably is not involved in mediating this hyperresponsiveness.  相似文献   

12.
It has been reported that both sodium and chloride ions must be ingested to induce the elevated blood pressure of deoxycorticosterone acetate (DOCA)-salt-sensitive hypertension. This study was designed to determine the separate roles of the sodium and chloride ions in the altered hemodynamics underlying the high blood pressure. DOCA pellets (75 mg) were implanted in uninephrectomized rats and the animals were then fed one of four diets: (i) high sodium chloride, (ii) high sodium-low chloride, (iii) high chloride-low sodium, or (iv) low sodium chloride. Blood pressures were measured weekly by tail-cuff plethysmography for 5 weeks and the animals were then subjected to a terminal experiment to measure cardiac output by thermodilution technique, renal blood flow by electromagnetic flow probe, and direct arterial pressure. Blood pressure in the DOCA-high NaCl group was significantly greater (P less than 0.05) compared with that of the DOCA-low NaCl group (160 +/- 3 mm Hg vs 124 +/- 2 mm Hg, respectively) at 5 weeks after treatment; all other groups were not significantly different from the DOCA-low NaCl group. Cardiac output was significantly greater in DOCA-treated rats consuming diets high in sodium (44 +/- 2 ml/min/100 g) or sodium chloride (40 +/- 2 ml/min/100 g) compared with animals consuming low sodium chloride (31 +/- 2 ml/min/100 g; P less than 0.01 for each comparison). Direct intraarterial blood pressure and renal blood flow were used to calculate renal vascular resistance. Renal vascular resistance was increased in those DOCA-treated rats consuming diets high in chloride (42 +/- 3 mm Hg/ml/min/100 g) and high sodium chloride (54 +/- 3 mm Hg/ml/min/100 g) compared with rats consuming low sodium chloride (30 +/- 3 mm Hg/ml/min/100 g; P less than 0.01 for each). It appears that elevations in cardiac output are associated with increased dietary sodium and act in synergy with the elevations in renal vascular resistance associated with increased dietary chloride. Increases in both cardiac output and renal vascular resistance are involved in the maintenance of elevated blood pressure in the DOCA-salt-sensitive model of hypertension.  相似文献   

13.
The present study investigated the action of des-aspartate-angiotensin I (DAA-I) on the pressor action of angiotensin II in the renal and mesenteric vasculature of WKY, SHR and streptozotocin (STZ)-induced diabetic rats. Angiotensin II-induced a dose-dependent pressor response in the renal vasculature. Compared to the WKY, the pressor response was enhanced in the SHR and reduced in the STZ-induced diabetic rat. DAA-I attenuated the angiotensin II pressor action in renal vasculature of WKY and SHR. The attenuation was observed for DAA-I concentration as low as 10(-18) M and was more prominent in SHR. However, the ability of DAA-I to reduce angiotensin II response was lost in the STZ-induced diabetic kidney. Instead, enhancement of angiotensin II pressor response was seen at the lower doses of the octapeptide. The effect of DAA-I was not inhibited by PD123319, an AT2 receptor antagonist, and indomethacin, a cyclo-oxygenase inhibitor in both WKY and SHR, indicating that its action was not mediated by angiotensin AT2 receptor and prostaglandins. The pressor responses to angiotensin II in mesenteric vascular bed were also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses were significantly smaller in SHR but no significant difference was observed between STZ-induced diabetic and WKY rat. Similarly, PD123319 and indomethacin had no effect on the action of DAA-I. The findings reiterate a regulatory role for DAA-I in vascular bed of the kidney and mesentery. By being active at circulating level, DAA-I subserves a physiological role. This function appears to be present in animals with diseased state of hypertension and diabetes. It is likely that DAA-I functions are modified to accommodate the ongoing vascular remodeling.  相似文献   

14.
C E Hock  J C Passmore 《Life sciences》1985,37(21):1997-2003
We investigated the respective contributions of the renin-angiotensin and alpha-adrenergic systems to nicotine-induced, canine, renal vasoconstriction by using saralasin (4 micrograms/kg/min) and phentolamine (25 micrograms/kg/min) blockade respectively. Nicotine infusion (0.024 mg/kg/min) increased mean arterial blood pressure (MABP) (114 +/- 3.0 to 219 +/- 8.0 mmHg) and decreased total renal blood flow (TRBF) (3.12 +/- 0.34 to 1.60 +/- 0.37 ml/min/g). Nicotine infusion produced a significantly lesser blood flow in outer cortex (OC), inner cortex (IC), and outer medulla (OM) compared to control dogs. The intrarenal-artery infusion of saralasin or phentolamine had no effect on the nicotine-induced MABP changes. Phentolamine infusion prior to nicotine resulted in a significantly greater TRBF (P less than 0.01), OC (p less than 0.001), IC (p less than 0.001) and OM (p less than 0.01) flow than in the group that received nicotine only. Saralasin pretreatment prior to nicotine resulted only in a significantly (p less than 0.01) greater OC flow than nicotine only. Our data suggest that while angiotensin II mediates a portion of the action of nicotine on the OC renal vasculature, the alpha adrenergic system predominates as the mediator of nicotine-induced renal vasoconstriction in the first 7 minutes of nicotine infusion.  相似文献   

15.
dl-Propranolol (0.8-1.6 mg/kg - h for 1 h) produced a transient two- to three-fold increase in sodium excretion in nondiuretic rats infused with Pitressin and aldosterone and in water diuretic rats. Sodium excretion increased more in rats depleted of renin by chronic Doca and salt administration than in rats maintained on a low salt diet. An angiotensin inhibitor (1,sarcosine-8,valine angiotensin II) decreased sodium excretion. Therefore the natriuresis was not mediated by antidiuretic hormone, aldosterone, or renin-angiotensin. d-Propranolol did not produce a natriuresis. Prior treatment with phenoxybenzamine did not prevent the natriuretic response but chlorisondamine pretreatment did. The natriuresis is produced by beta blockade and requires post ganglionic nerve function but is independent of alpha receptors. dl-Propranolol decreased heart rate and cardiac output but systemic pressure did not fall and renal blood flow increased. This suggests a dopamine-mediated renal vasodilation and natriuresis. Haloperidol and pimozide, both dopamine blocking agents with minimal beta blocking effects, prevented the natriuretic response. We conclude that propranolol may increase sodium excretion directly by blocking beta receptors in the distal nephron and indirectly by dopamine-mediated renal vasodilation.  相似文献   

16.
In the present study in normotensive Wistar Kyoto rats (WKY), we investigated whether any angiotensin II (ANG II) increases in vascular cyclic GMP production were via stimulation of AT(2) receptors. Adult WKY were infused for 4h with ANG II (30 ng/kg per min, i.v.) or vehicle (0.9% NaCl, i.v.) after pretreatment with (1) vehicle, (2) losartan (100 mg/kg p.o.), (3) PD 123319 (30 mg/kg i.v.), (4) losartan+PD 123319, (5) icatibant (500 microg/kg i.v.), (6) L-NAME (1 mg/kg i.v.), (7) minoxidil (3 mg/kg i.v.). Mean arterial blood pressure (MAP) was continuously monitored, and plasma ANG II and aortic cyclic GMP were measured at the end of the study. ANG II infusion over 4h raised MAP by a mean of 13 mmHg. This effect was completely prevented by AT(1) receptor blockade. PD 123319 slightly attenuated the pressor effect induced by ANG II alone (123.4+/-0.8 versus 130.6+/-0.6) but did not alter MAP in rats treated simultaneously with ANG II + losartan (113+/-0.6 versus 114.3+/-0.8). Plasma levels of ANG II were increased 2.2-3.7-fold by ANG II infusion alone or ANG II in combination with the various drugs. The increase in plasma ANG II levels was most pronounced after ANG II+losartan treatment but absent in rats treated with losartan alone. Aortic cyclic GMP levels were not significantly changed by either treatment. Our results demonstrate that the AT(2) receptor did not contribute to the cyclic GMP production in the vascular wall of normotensive WKY.  相似文献   

17.
A fluorescent analog of angiotensin II was synthesized by reacting fluorescein 5′-isothiocyanate with (Asp1, Ile5)-angiotensin II. Nα-(N-Fluoresceinthiocarbamoyl)-(Asp1, Ile5)-angiotensin II was purified by chromatography on DEAE-cellulose and Sephadex G-25. Analysis of the analog by thin-layer chromatography, thin-layer electrophoresis, and reversed-phase high-performance liquid chromatography indicated that the analog was free of angiotensin II and fluorescein 5′-isothiocyanate. N-Terminal sequence analysis demonstrated that fluorescein 5′-isothiocyanate reacted with the N-terminal aspartic acid residue of angiotensin II. Nα-(N-Fluoresceinthiocarbamoyl)-(Asp1, Ile5)-angiotensin II has an absorption maximum at 492 nm, and the value of the molar extinction coefficient, ?, is 7.7 × 104m?1 cm?1. The fluorescence emission maximum occurs at 520 nm. Infusion of the analog (0.69 μg/min/kg body wt) directly into the renal artery of an anesthetized rat reduced the blood flow by 12 to 27% within 2 min. Infusion of angiotensin II (0.48 μg/min/kg body wt) reduced renal arterial blood flow by 35 to 53% within 2 min. Saralasin, a partial agonist and antagonist of angiotensin II, inhibited the biologic effect of the fluorescent analog and angiotensin II by 75 and 70%, respectively. The purity, spectral properties, and in vivo biologic activity of Nα-(N-fluoresceinthiocarbamoyl)-(Asp1, Ile5)-angiotensin II indicate that this analog should facilitate characterization of angiotensin II receptors.  相似文献   

18.
The purpose of this study was to determine the systemic hemodynamic mechanism(s) underlying the pressor response to nonexertional heat stress in the unrestrained conscious rat. After a 60-min control period [ambient temperature (Ta) 24 degrees C], male Sprague-Dawley rats (260-340 g) were exposed to a Ta of 42 degrees C until a colonic temperature (Tc) of 41 degrees C was attained. As Tc rose from control levels (38.1 +/- 0.1 degrees C) to 41 degrees C, mean arterial blood pressure (carotid artery catheter, n = 33) increased from 124 +/- 2 to 151 +/- 2 mmHg (P less than 0.05). During this period, heart rate increased (395 +/- 5 to 430 +/- 6 beats/min, P less than 0.05) and stroke volume remained unchanged. As a result, ascending aorta blood flow velocity (Doppler flow probe, n = 8), used as an index of cardiac output, did not change from control levels during heating, but there was a progressive Tc-dependent increase in systemic vascular resistance (+30% at end heating, P less than 0.05). This systemic vasoconstrictor response was associated with decreases in blood flow (-31 +/- 9 and -21 +/- 5%) and increases in vascular resistance (94 +/- 16 and 53 +/- 8%; all P less than 0.05) in the superior mesenteric and renal arteries (n = 8 each) and increases in plasma norepinephrine (303 +/- 37 to 1,237 +/- 262 pg/ml) and epinephrine (148 +/- 28 to 708 +/- 145 pg/ml) concentrations (n = 12, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.

1. 1.|The effect of hypothermia (24°C) on the pressor action of angiotensin II (ANG II) was studied in anaesthetized rats.

2. 2.|Hypothermia prolonged the pressor response to ANG II leading to an increase in the estimated half-life of ANG II.

3. 3.|Hypothermia also caused a significant increase in stroke volume and a significant decrease in heart rate with no change in cardiac output.

4. 4.|It is conclued that hypothermia causes a prolongation of the pressor action of ANG II probably by reducing the activity of the catabolic enzymes leading to an increase in ANG II half-life.

Author Keywords: Cold; cardiac output; stroke volume; heart rate; blood pressure; angiotensin catabolism; rats  相似文献   


20.
Increased systemic resistance is the main haemodynamic abnormality in DOCA-salt hypertension which is more pronounced in young than in adult rats. A mild increase of cardiac output also contributes to higher blood pressure in young animals. Arterial compliance is decreased only in young hypertensive rats. The acute blockade of different pressor systems indicates that the role of back-up pressor systems (vasopressin and angiotensin II) is increased in adult DOCA-salt hypertensive animals while the increased activity of adrenergic system and digoxin-like factors contributes to the enhanced hypertensive response of young rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号