首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. F. Vanin 《Biophysics》2006,51(6):851-852
The NO + Fe2+ + thiols system in an aqueous solution has been found earlier to exhibit temporal oscillatory changes in the concentration of paramagnetic dinitrosyl iron complexes with thiol-containing ligands and S-nitrosothiols, as well as in the concentration of free iron (not included in the complexes). It is proposed that autowaves can appear in this system characterized by periodic changes in the concentrations of its components in time and space. Such changes may form a basis for the control of the physiological effects of nitric oxide, dinitrosyl iron complexes, and S-nitrosothiols as agents affecting various cellular and tissue targets.  相似文献   

2.
It is hypothesized that in cells producing nitric oxide (NO), NO and its endogenous derivatives (low-molecular S-nitrosothiols and dinitrosyl iron complexes (DNIC) with thiol-containing ligands) can move in the intracellular space not only by diffusion but also in an autowave mode. This hypothesis is based on the previously obtained data on autowave distribution of DNIC with glutathione following application of a drop of a solution of Fe2+ + glutathione onto the surface of a thin layer of a S-nitrosoglutathione solution. The appearance of autowaves is conditioned by a self-regulating self-sustained system arising in the process. This system consists of self-convertible DNIC and S-nitrosothiols as well as free ferrous iron ions, thiols and NO and can function in the autowave regime for several seconds with subsequent passage to a steady state maintained by chemical equilibrium between DNIC and their constituent components (free Fe2+ ions, thiols, S-nitrosothiols and NO). Possible advantages of autowave distribution of NO and its endogenous derivatives in the intracellular space over free diffusion, which might entail higher efficiency of their biological action, are discussed.  相似文献   

3.
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine with important roles in inflammation, wound repair, and cancer. Cells secrete TGF-beta as a latent protein complex, consisting of disulfide-bonded homodimers of growth factor and latency-associated propeptide. Latency regulates extracellular TGF-beta action by controlling the levels of active growth factor available. We report here that active and latent TGF-beta were inactivated in vitro by reduction of the growth factor dimer under physiological conditions. We also demonstrate that the latency-associated propeptide has chaperone-like activity and partially protects TGF-beta from inactivation. TGF-beta inactivation occurred upon incubation with the physiological redox agents, cysteine, homocysteine, and reduced glutathione. Inactivation was temperature- and dose-dependent. While inactivation by physiological concentrations of redox agents was partial at 37 degrees C, active and latent TGF-beta were completely inactivated by raising the temperature in the presence of the redox agents. The mechanism of TGF-beta inactivation involved the generation of biologically inactive growth factor monomer and required the presence of free thiol groups, since thiol blockers protected TGF-beta from reduction. We conclude that non-enzymatic redox reactions may be involved in the regulation of extracellular TGF-beta activity. This might be of particular relevance in wound repair (e.g. in burns), as a mechanism protecting from excess TGF-beta activity, as well as in conditions involving redox dysregulation, such as reperfusion injury of the heart, Alzheimer's disease, and cancer.  相似文献   

4.
5.
Allicin (diallyl thiosulfinate) is the main biologically active component of the freshly crushed garlic extracts. In the present work the ability of allicin to cross through membranes (artificial and biological) was studied. Partition coefficients of allicin in water/octanol, water/hexadecane and water/phospholipids mixtures were determined. Using phospholipid vesicles loaded with hydrophilic thiols (reduced glutathione or 2-nitro-5-thiobenzoate), we observed that allicin freely permeates through phospholipid bilayers and interacts with the SH groups. The reaction rate of allicin with SH containing molecules after crossing the membrane was the same as in solution. Fast diffusion and permeation of allicin across human red blood cell membranes was also demonstrated. Allicin does not induce leakage, fusion or aggregation of membrane. The high permeability of allicin through membranes may greatly enhance the intracellular interaction with thiols.  相似文献   

6.
7.
Although the nitric oxide (.NO)-mediated nitrosation of thiol-containing molecules is increasingly recognized as an important post-translational modification in cell signaling and pathology, little is known about the factors that govern this process in vivo. In the present study, we examined the chemical pathways of nitrosothiol (RSNO) production at low micromolar concentrations of .NO. Our results indicate that, in addition to nitrosation by the .NO derivative dinitrogen trioxide (N2O3), RSNOs may be formed via intermediate one-electron oxidation of thiols, possibly mediated by nitrogen dioxide (.NO2), and the subsequent reaction of thiyl radicals with .NO. In vitro, the formation of S-nitrosoglutathione (GSNO) from .NO and excess glutathione (GSH) was accompanied by the formation of glutathione disulfide, which could not be ascribed to the secondary reaction of GSH with GSNO. Superoxide dismutase significantly increased GSNO yields and the thiyl radical trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), inhibited by 45 and 98% the formation of GSNO and GSSG, respectively. Maximum nitrosation yields were obtained at an oxygen concentration of 3%, whereas higher oxygen tensions decreased GSNO and increased GSSG formation. When murine fibroblasts were exposed to exogenous .NO, RSNO formation was sensitive to DMPO and oxygen tension in a manner similar to that observed with GSH alone. Our data indicate that RSNO formation is favored at oxygen concentrations that typically occur in tissues. Nitrosothiol formation in vivo depends not only on the availability of .NO and O2 but also on the degree of oxidative stress by affecting the steady-state concentration of thiyl radicals.  相似文献   

8.
9.
Kim CS  Choi JS  Park JW  Bae EH  Ma SK  Lee J  Kim SW 《Regulatory peptides》2012,174(1-3):65-70
Cisplatin is a chemotherapeutic agent used for treating solid tumors. However, nephrotoxicity is the dose-limiting factor in its clinical use. The present study was aimed to determine whether altered regulation of the local nitric oxide (NO) and natriuretic peptide (NP) systems is involved in the pathogenesis of cisplatin-induced nephropathy. Cisplatin (6 mg/kg) was injected intraperitoneally into male Sprague-Dawley rats. The control group was not treated with cisplatin. Expression levels of nitric oxide synthase (NOS), nitrotyrosine, soluble guanylyl cyclase and neutral endopeptidase (NEP) in the kidneys were determined 4 days after treatment by semiquantitative immunoblotting. mRNA expression of NPs and natriuretic peptide receptors (NPRs) was determined by real-time polymerase chain reaction. The activities of soluble and particulate guanylyl cyclase were determined by measuring the amount of cyclic 3',5'-guanosine monophosphate (cGMP) generated in responses to sodium nitroprusside and atrial natriuretic peptide (ANP), respectively. In the test rats, creatinine clearance was decreased, while sodium and water excretion were increased. The expression of inducible NOS (iNOS) and nitrotyrosine was increased in the cortex/outer stripe of outer medullar and inner medullar, while that of endothelial and neuronal NOS was decreased in the inner medullar. Excretion of NO metabolites was increased in these rats. The catalytic activity of soluble guanyly cyclase was blunted in the papilla after cisplatin was administered. The mRNA expression of ANP, brain natriuretic peptide, and C-type natriuretic peptide was increased, while that of NPR-A and NPR-C were decreased in the test rats. The catalytic activity of soluble and particulate guanylyl cyclase in the papilla was blunted after cisplatin was administered. In conclusion, increased production of NO by iNOS may contribute to cytotoxic injury, resulting in cisplatin-induced nephropathy, while the up-regulation of renal natriuretic peptide synthesis together with the down-regulation of NEP and NPR-C may contribute to the natriuresis and diuresis seen in cisplatin-induced nephropathy.  相似文献   

10.
The rise in cytosolic Ca(2+) concentration (Ca(2+)(i)) in vascular endothelial cells (ECs) activates the production and release of nitric oxide (NO). NO modifies Ca(2+)(i) homeostasis in many types of nonendothelial cells. However, its effect on endothelial Ca(2+)(i) homeostasis at basal and excited states remains unclear. In the present study, to elucidate the effect of NO on basal Ca(2+)(i), inositol 1,4,5-trisphosphate-induced Ca(2+)(i) release (IICR) was blocked by expressing an antisense against type-1 inositol 1,4,5-trisphosphate receptors or by microinjecting heparin to individual ECs, and the effects of NO that was released by and diffused from adjacent IICR-intact ECs were recorded. After ATP or bradykinin stimulation, IICR-inhibited ECs showed a marked reduction of basal Ca(2+)(i), which was abolished by N(G)-monomethyl-l-arginine monoacetate pretreatment. The reduction disappeared in sparsely seeded ECs. Exogenous NO gas mimicked the effect of ATP or bradykinin to reduce basal Ca(2+)(i). Blocking plasma membrane Ca(2+)-ATPase (PMCA), but not Na(+)-Ca(2+) exchange or sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase, suppressed the reduction, indicating that the reduction resulted from a NO-dependent potentiation of PMCA. To elucidate the effect of NO on elevated Ca(2+)(i), ATP-, bradykinin-, or thapsigargin-evoked Ca(2+)(i) response in the presence and absence of NO production was compared in adjacent IICR-intact ECs. NO was found to potentiate PMCA, which, in turn, greatly attenuated agonist-evoked Ca(2+)(i) elevation. NO also potentiated Ca(2+) influx, which markedly increased the sustained phase of Ca(2+)(i) elevation and possibly NO production. NO did not affect other Ca(2+)(i)-elevating and Ca(2+)(i)-sequestrating components. Thus, NO-dependent potentiation of PMCA is crucial for Ca(2+)(i) homeostasis over a wide Ca(2+)(i) range.  相似文献   

11.
The roles that nitric oxide (NO) plays in the cardiovascular system of reptiles are reviewed, with particular emphasis on its effects on central vascular blood flows in the systemic and pulmonary circulations. New data is presented that describes the effects on hemodynamic variables in varanid lizards of exogenously administered NO via the nitric oxide donor sodium nitroprusside (SNP) and inhibition of nitric oxide synthase (NOS) by l-nitroarginine methyl ester (l-NAME). Furthermore, preliminary data on the effects of SNP on hemodynamic variables in the tegu lizard are presented. The findings are compared with previously published data from our laboratory on three other species of reptiles: pythons (), rattlesnakes () and turtles (). These five species of reptiles possess different combinations of division of the heart and structural complexity of the lungs. Comparison of their responses to NO donors and NOS inhibitors may reveal whether the potential contribution of NO to vascular tone correlates with pulmonary complexity and/or with blood pressure. All existing studies on reptiles have clearly established a potential role for NO in regulating vascular tone in the systemic circulation and NO may be important for maintaining basal systemic vascular tone in varanid lizards, pythons and turtles, through a continuous release of NO. In contrast, the pulmonary circulation is less responsive to NO donors or NOS inhibitors, and it was only in pythons and varanid lizards that the lungs responded to SNP. Both species have a functionally separated heart, so it is possible that NO may exert a larger role in species with low pulmonary blood pressures, irrespective of lung complexity.  相似文献   

12.
Pomegranate juice (PJ), which is a rich source of potent flavonoid antioxidants, was tested for its capacity to protect nitric oxide (NO) against oxidative destruction and enhance the biological actions of NO. Employing chemiluminescence headspace analysis, PJ was found to be a potent inhibitor of superoxide anion-mediated disappearance of NO. PJ was much more potent than Concord grape juice, blueberry juice, red wine, ascorbic acid, and DL-alpha-tocopherol. As little as 3 microl of a 6-fold dilution of PJ, in a reaction volume of 5000 microl, produced a marked antioxidant effect, whereas 300 microl of undiluted blueberry juice or nearly 1000 microl of undiluted Concord grape juice were required to produce similar effects. PJ and other antioxidant-containing products were found to augment the anti-proliferative action of NO (DETA/NO) on vascular smooth muscle cell (rat aorta) proliferation. PJ was much more effective than the other products tested and elicited no effects when tested alone in the absence of added NO. Similarly, neither PJ nor the other products enhanced the anti-proliferative action of alpha-difluoromethylornithine, a stable substance that inhibits cell growth by NO-independent mechanisms. In order to determine whether PJ is capable of increasing the production of NO by vascular endothelial cells, PJ was tested for its capacity to upregulate and/or activate endothelial NO synthase (eNOS) in bovine pulmonary artery endothelial cells. PJ elicited no effects on eNOS protein expression or catalytic activity. Moreover, PJ did not enhance promoter activity in the eNOS gene (COS-7 cells transfected with eNOS). These observations indicate that PJ possesses potent antioxidant activity that results in marked protection of NO against oxidative destruction, thereby resulting in augmentation of the biological actions of NO.  相似文献   

13.
Concomitant production of nitric oxide and superoxide in biological systems has been proposed to generate numerous reactive oxygen and nitrogen species that cause oxidative and nitrosative stress. Thiols, especially glutathione, play an important role in cellular defense against radical species. In the present study, we investigated and compared the anti-nitrosative activity of a wide range of thiols in a simplified chemical system of co-generated nitric oxide and superoxide. Of the 13 thiols studied, three groups of thiols are distinguishable: (i) Group I includes cysteine and its four congeners (cysteine methyl ester, cysteine ethyl ester, homocysteine, cysteamine); they are subject to rapid oxidative decomposition and have the least anti-nitrosative activity. (ii) Group II consists of glutathione, penicillamine, tiopronin and mesna; they have the greatest effect on delaying the nitrosation reaction. (iii) Group III comprises N-acetylcysteine, N-acetylpenicillamine, captopril, and thioglycolate; they all have high pKa for the mercapto group and show the strongest inhibitory effect on the rate and extent of nitrosation in the system studied.  相似文献   

14.
Abstract. The snail Helix lucorum has been used as a model to study the adaptation of a nitric oxide (NO)‐forming enteric neural network to the long‐term resting period of summer estivation or winter hibernation. Quantification of the NO‐derived nitrite established that NO formation is confined to the nitric oxide synthase (NOS)‐containing myenteric network of the mid‐intestine. In active snails but not in resting snails, NO production could be enhanced by the NOS substrate l ‐arginine (l ‐ARG, 1 mM). We followed the enteric NO synthesis in a snail population kept at natural conditions for 1 year. Our findings indicate that NO synthesis was depressed in July during entry to the estivation, had a peak in autumn before hibernation, and finally was reduced during hibernation. Monoamines (histamine, serotonin, and adrenalin) could inhibit the NO liberation in active snails. Cofactors of NOS (β‐NADPH, β‐NAD, FAD, FMN, Ca2+, TH4) did not alter the low nitrite production in hibernating snails. We conclude that enteric NO synthesis in H. lucorum has a regular seasonal periodicity following the annual physiological cycles of terrestrial snails. During estivation or hibernation, NOS activity is blocked. Monoamines, the levels of which are elevated during hibernation, can trigger decreased NOS activity. The reduced activity of NOS cannot be restored by the administration of NOS cofactors; therefore, their absence cannot be the cause of the temporarily blocked L‐ARG/NO conversion ability of NOS.  相似文献   

15.
Nitric oxide (NO) can modulate red blood cell (RBC) glycolysis by translocation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPD) (EC 1.2.1.12) from the cytosolic domain of the membrane protein band 3 (cdb3) in the cytosol. In this study we have investigated which NO-reactive thiols might be influencing GAPD translocation and the specific role of glutathione. Two highly reactive Cys residues were identified by transnitrosylation with nitrosoglutathione (GSNO) of cdb3 and GAPD (K(2) = 73.7 and 101.5 M(-1) s(-1), respectively). The Cys 149 located in the catalytic site of GAPD is exclusively involved in the GSNO-induced nitrosylation. Reassociation experiments carried out at equilibrium with preparations of RBC membranes and GAPD revealed that different NO donors may form -SNO on, and decrease the affinity between, GAPD and cdb3. In intact RBC, the NO donors 3-morpholinosydnonimine (SIN-1) and peroxynitrite (ONOO(-)) significantly increased GAPD activity in the cytosol, glycolysis measured as lactate production, and energy charge levels. Our data suggest that ONOO(-) is the main NO derivative able to cross the RBC membrane, leading to GAPD translocation and -SNO formation. In cell-free experiments and intact RBC, diamide (a thiol oxidant able to inhibit GAPD activity) was observed to reverse the effect of SIN-1 on GAPD translocation. The results demonstrate that cdb3 and GAPD contain reactive thiols that can be transnitrosylated mainly by means of GSNO; these can ultimately influence GAPD translocation/activity and the glycolytic flux.  相似文献   

16.
Excessive production of nitric oxide (NO) and its peroxidant product, peroxynitrite, has been implicated in the pathology of acute and chronic renal failure, and inhibitors of NO production have been shown to exert protective and ameliorative effects against renal epithelial cell damage mediated by enhanced generation of NO. Salviae Miltiorrhizae Radix has exhibited a beneficial effect in the improvement of renal failure. In order to clarify the mechanism responsible, we investigated whether Salviae Miltiorrhizae Radix extract and several of its related compounds, including caffeic acid and its polymers which were isolated by our research group, can regulate the generation and release of NO. The results demonstrated that Salviae Miltiorrhizae Radix extract and these compounds suppressed NO effectively in the systems employing activated macrophages and the arginine-hydrogen peroxide, and that, furthermore, the activity shown by the compounds was higher than that shown by the extract. In addition, direct scavenging of NO was also observed. The present findings suggest that Salviae Miltiorrhizae Radix extract and its compounds are potent NO inhibitors, and that their inhibitory effect on the generation and release of NO may contribute to the previously reported pharmacological effect of Salviae Miltiorrhizae Radix in improving renal function.  相似文献   

17.
Previous studies have focused on the immunohistochemical detection of a nitric oxide (NO)-cyclic 3',5'-monophosphate (cGMP) pathway in the brain and pituitary of the aquatic toad Xenopus laevis. We here investigate the endogenous production and possible involvement of NO signaling in the regulation of melanotrope cell activity in the pituitary pars intermedia of this amphibian. Using immunohistochemical staining of cultured cells with a polyclonal antiserum against inducible NO synthase (iNOS), immunoreactivity was observed both in melanotropes and in stellate-shaped cells. Part of these stellate-shaped cells is characterized as folliculo-stellate cells by their capacity of beta-Ala-Lys-N(epsilon)-AMCA uptake. Using chemiluminescence detection we demonstrate the presence of NO and reaction products like nitrite (NO(-)(2)) or peroxynitrite (ONOO(-)) in the incubation medium of cultured melanotropes. Bacterial lipopolysaccharide (LPS) stimulates the generation of NO and reaction products, the effect of which was blocked by S-methyl-l-thiocitrulline hydrochloride, a potent general NOS inhibitor. With [(3)H]lysine incorporation and a superfusion technique, it is shown that peptide release from melanotropes is stimulated by administration of superoxide dismutase (SOD), which was added to the superfusion medium to prevent scavenging of NO by superoxide anions. Pretreating the cells with the general NOS inhibitor l-nitroarginine methyl ester for 48 h attenuated the SOD-induced stimulation, but did not affect the stimulation by sodium nitroprusside (SNP) or 3-morpholinylsydnoneimine chloride (SIN-1), whereas hemoglobin blocked the combined effect of SOD plus NO donors. The soluble guanylate cyclase inhibitor 1H-[1,2, 4]oxadiazolo[4,3a]-quinoxaline-1-one did not inhibit but even significantly potentiated the effect of NO donors on peptide release without affecting the SOD-induced stimulation of peptide release. In addition to the previously described neuronal NOS (nNOS) immunoreactivity in nerve fibers in the pars intermedia of Xenopus, the present data reveal iNOS and nNOS as potential sources of endogenous NO production in cultured cells of the pars intermedia. Our study shows that also in nonmammalian vertebrates endogenous NO production may be physiologically relevant under conditions where protection against oxidative damage is needed. The endocrine cells of the pars intermedia themselves, as well as the folliculo-stellate cells, under such conditions may dispose of a protective mechanism against oxidative stress. The sensitivity of the endogenous NO production to LPS suggests that NO may also play a role during systemic inflammation.  相似文献   

18.
19.
20.
The activity of arginase converting arginine into ornithine and urea is of particular interest among many factors regulating NO production in the cells. It is known that by competing with NO-synthase for common substrate, arginase can affect the NO synthesis. In the present work, the properties of arginase from the frog Rana temporaria L. urinary bladder epithelial cells possessing the NO-synthase activity were characterized, and possible contribution of arginase to regulation of NO production by epithelial cells was studied. It has been shown that the enzyme had the temperature optimum in the range of 55-60 degrees C, K(m) for arginine 23 mM, and V(max) about 10 nmol urea/mg protein/min, and its activity was effictively inhibited by (S)-(2-boronoethyl)-L-cysteine (BEC), an inhibitor of arginase, at concentrations from 10(-6) to 10(-4) M. The comparison of arginase activity in various frog tissues revealed the following pattern: liver > kidney > brain > urinary bladder (epithelium) > heart > testis. The arginase activity in the isolated urinary bladder epithelial cells was 3 times higher than that in the intact urinary bladder. To evaluate the role of arginase in the regulation of NO production, epithelial cells were cultivated in the media L-15 or 199 containing different amounts of arginine; the concentration of NO2-, the stable NO metabolite, was determined in the culture fluid after 18-20 h of cells incubation. The vast majority of the produced nitrites are associated with the NOS activity, as L-NAME, the NOS-inhibitor, decreased their accumulation by 77.1% in the L-15 medium and by 80% in 199 medium. BEC (10(-4) M) increased the nitrite production by 18.0 % +/- 2.7 in the L-15 medium and by 24.2 +/- 3.5 in the 199 medium (p < 0.05). The obtained data indicate a relatively high arginase activity in the frog urinary bladder epithelium and its involvement in regulation of NO production by epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号