首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. C. Cairns 《Oecologia》1982,55(1):62-68
Summary Life cycle energy budgets were constructed for the scarabaeid Rhopaea verreauxi. The acquisition and utilization of energy was most efficient in the early phases of the first larval instar; the cumulative conversion efficiencies (A c /C c , P c /C c andd P c /A c ) declining throughout the life cycle. The third larval instar dominated the energy budget. Production in this stage was mainly the accumulation of lipids. In terms of energetics, the reproductive effort of a female R. verreauxi was particularly high. The amount of production eliminated as exuviae was similar to that in other holometabolous insects and a negligible fraction of consumption and assimilation. The life cycle A c /C c of 31% for R. verreauxi was typical of nonspecialist herbivores and the life cycle P c /A c of 20% typical of relatively long-lived ectotherms.It was noted that the production of methane could represent a possible loss of up to 6% of the gross energy intake. Despite this, despite the use of constant temperatures and despite the fact that R was not corrected, the cummulative energy budgets constructed were considered to be reasonably accurate representations of the dimensional changes that occur in the energy budget of an individual R. verreauxi.  相似文献   

2.
Fundamental to our understanding of the ecology of animal communities in the tropics is knowledge of the effect of seasonal changes in the abundance of food sources in consumer diets. We determined stable‐isotope composition (13C/12C and 15N/14N) in whole blood of 14 resident avian species in a tropical dry forest to quantify the origin of their assimilated protein. We used a probabilistic approach (IsoSource) to estimate the relative contribution of C3 plants, CAM‐C4 plants, C3 insects, and CAM‐C4 insects during the dry and rainy seasons. IsoSource iteratively creates each possible combination of source contribution and produces a distribution of all feasible combinations that adequately predict the observed isotopic signature of the consumer. Granivore–frugivores and granivore–frugivore–insectivores were modeled as predominantly dependent upon plants whereas insectivorous birds were modeled to derive protein almost exclusively from insects. Between these extremes there were several species using mixed diets such as insectivore–frugivores or insectivore–granivores. In most species, virtually all assimilated food was of C3 origin with the exception of Ruddy Ground‐Doves (Columbina talpacoti) in which CAM or C4 plants contributed significantly. Seasonal changes in relative food source contribution were followed in eight species of birds. Of these species, White‐tipped Doves (Leptotila verreauxi), Grayish Saltators (Saltator coerulescens), and Social Flycatchers (Myiozetetes similis) increased their use of insects in the rainy season, in contrast to Great Kiskadees (Pitangus sulphuratus), which decreased their use of insects. Our study suggests that that diverse strategies are used by various avian species to obtain dietary proteins within seasonal habitats.  相似文献   

3.
Summary We measured meteorological conditions and estimated the energy costs of thermoregulation for young and adult Adélie Penguins (Pygoscelis adeliae) at a breeding colony near the Antarctic Peninsula. Air temperatures averaged < 5°C and strong winds were frequent. Operative temperatures (Te) for adults ranged from –8 to 28°C, averaging 5–6°C, for the period from courtship to fledging of chicks. The average energy cost of thermoregulation (Cth) for adult penguins was equivalent to 10–16% of basal metabolism. Cth comprised about 15% of the estimated daily energy budget (DEB) of incubating adults, but only about 1% of the DEB of adults feeding chicks. The Te's for chicks older than 14 days ranged from 0 to 31°C, averaging 8.0 C. The Cth for downy chicks ranged from about 31% of minimal metabolic rate (MMR) in 1 kg chicks to about 10% of MMR in 3 kg chicks. Between initial thermal independence (age 12–14 days) and the cessation of parental feeding (age 35–40 days), chicks use about 10–11% of assimilated energy for thermoregulation. Cth is equivalent to about 17% of the MMR of fledglings during their 2–3 week fast. We observed no indication of thermal stress (i.e., conditions in which birds cannot maintain stable Tb) in adults and no indication of cold stress in any age class. However, on clear, calm days when air temperature exceeds 7–10°C for several hours, downy chicks are vulnerable to lethal hyperthermia.  相似文献   

4.
Summary The energy budget for feeding activity and growth of larval Gynaephora groenlandica was investigated on the tundra and in the laboratory. Larvae fed only in June when the buds and young leaves of Salix arctica, its principal host plant, contained the highest concentrations of macro-nutrients and total nonstructural carbohydrates (TNC). The mid-summer hiatus in larval feeding was coincident with an abrupt decline in the TNC content of leaves and a buildup of plant secondary metabolites in the leaves of S. arctica. Following cessation of feeding, the larvae remained concealed from the sun within crevices and vegetation mats. Growth rates of larvae incubated at 15 and 30°C were similar (4.7–5.0 mg/larva/day), but the assimilation efficiency at 15°C was four times greater (40%) than at 30°C. Growth rates were lowest at 5°C (0.22mg/larva/day) as was the assimilation efficiency (6.6%), because of the extended residence time of food in the gut. The high rate of ingestion and excretion at 30°C was caused by elevated maintenance metabolism. Changes in metabolic state influenced oxygen consumption, which was highest for feeding larvae (0.29 ml/g/h) and significantly lower for each, digesting, moving, starved larvae, and lowest for inactive larvae (0.06 ml/g/h). An influence of temperature and leaf quality on digestion rate and maintenance metabolism is the most likely cause of the feeding behavior pattern in G. groenlandica. The larvae may undergo voluntary hypothermia in order to avoid an energy, deficit resulting from high maintenance metabolism during mid-season when the energy content and food quality declines. The restriction of growth and development to a very short period prior to mid-summer may have contributed, to the extended 14-year life cycle of this species.  相似文献   

5.
The effects of temperature and larval density on survival of larvae, growth rate, age at pupation, and adult size (measured as wing length and dry weight) of laboratory-reared Anopheles gambiae (Diptera: Culicidae) were studied. Larvae were reared at three temperatures (24, 27 and 30°C) and three densities (0.5, 1 and 2 larvae/cm2). The effects of density and temperature strongly interacted to determine the mosquitoes' life-history parameters. Survival was highest at the intermediate temperature of 27°C. The differences between the temperatures increased with increasing density. At 30°C survival decreased as density increased, but at 27°C increasing density led to higher survival. Age at pupation increased as temperature decreased from 30°C to 24°C and as density decreased from 2 to 0.5 larvae/cm2. Adult size also increased as temperature decreased, but showed a negative correlation with density only at 27°C. In contrast, at 24°C and 30°C a decrease in density led to a decrease in adult size. Growth rate showed a similar pattern. At 27°C growth rate decreased as density increased, but at other temperatures the opposite trend was observed.  相似文献   

6.
Microhabitat recordings suggest that the continental Antarctic mite Maudheimia petronia Wall-work experiences temperatures above 0°C for 60% of the time during summer (about 2 months). Summer daily maximum temperatures are, however, often relatively high (the highest recorded temperature was 27.7°C). Because the locomotor activity of this mite is suppressed at freezing temperatures, the time available for activity, and probably also feeding, is restricted. Temperature relations of potential locomotor activity rate suggest alleviation of this time constraint through the maximization of the rate. The locomotor activity rate of M. petronia is positively sensitive to the entire range of above-zero temperatures that it naturally experiences, being particularly accelerated at lower temperatures (Q100°–5°C values were above 13, whereas Q1025°–30°C values were below 2). Also, comparisons between mites acclimated at -15°C and 10°C suggest an inverse temperature acclimation of this rate. We hypothesize that potential feeding rate is similarly related to temperature. A relative enhancement of food intake would seem important, not only for the maintenance of a daily positive energy balance in summer, but also for the building up of energy reserves for the relatively long winter, when feeding is impossible.  相似文献   

7.
Larvae ofElminius modestus (Darwin) from four different populations (Portobello, Leigh, Doubtless Bay [New Zealand] and Helgoland [North Sea]) were reared at different salinity and temperature combinations. The larvae ofE. modestus from Helgoland developed successfully at a wide range of temperature (6° to 24 °C) and salinity (20 to 50 S). Mortality was highest at 10 S; only at 12° and 18 °C did a small percentage develop to the cypris. The larvae from New Zealand were reared at a temperature range of 12°–24 °C at 20, 30 and 40 S; mortality increased in all populations at all salinities with decreasing temperature and was extremely high at 12 °C and 40 S. The temperature influence on larval duration could be described in all cases by a power function. No significant differences in temperature influences on developmental times between the tested salinities were found, except for the Portobello population at 20 S. Significant differences were found in the temperature influence on larval development between the populations from Helgoland and the North Island of New Zealand (Leigh, Doubtless Bay). No differences were found between the Helgoland and Portobello population. The pooled data for the temperature influence on the larval development of the three tested New Zealand populations at 20, 30 and 40 S and the pooled Helgoland data at 20, 30 and 40 S show highly significant differences.Larval size (stage VI) was influenced by experimental conditions. The larvae grew bigger at low temperatures and attained their maximum size at 30 S (Helgoland). There was a strong reduction in larval size at temperatures from 18° to 24 °C. The larvae of the New Zealand populations were smaller than those from Helgoland. The greatest difference in size existed between the larvae from Portobello and Helgoland.  相似文献   

8.
Conversion of grasslands to woodlands may alter the sensitivity of CO2 exchange of individual plants and entire ecosystems to air temperature and precipitation. We combined leaf‐level gas exchange and ecosystem‐level eddy covariance measurements to quantify the effects of plant temperature sensitivity and ecosystem temperature responses within a grassland and mesquite woodland across seasonal precipitation periods. In so doing, we were able to estimate the role of moisture availability on ecosystem temperature sensitivity under large‐scale vegetative shifts. Optimum temperatures (Topt) for net photosynthetic assimilation (A) and net ecosystem productivity (NEP) were estimated from a function fitted to A and NEP plotted against air temperature. The convexities of these temperature responses were quantified by the range of temperatures over which a leaf or an ecosystem assimilated 50% of maximum NEP (Ω50). Under dry pre‐ and postmonsoon conditions, leaf‐level Ω50 in C3 shrubs were two‐to‐three times that of C4 grasses, but under moist monsoon conditions, leaf‐level Ω50 was similar between growth forms. At the ecosystems‐scale, grassland NEP was more sensitive to precipitation, as evidenced by a 104% increase in maximum NEP at monsoon onset, compared to a 57% increase in the woodland. Also, woodland NEP was greater across all temperatures experienced by both ecosystems in all seasons. By maintaining physiological function across a wider temperature range during water‐limited periods, woody plants assimilated larger amounts of carbon. This higher carbon‐assimilation capacity may have significant implications for ecosystem responses to projected climate change scenarios of higher temperatures and more variable precipitation, particularly as semiarid regions experience conversions from C4 grasses to C3 shrubs. As regional carbon models, CLM 4.0, are now able to incorporate functional type and photosynthetic pathway differences, this work highlights the need for a better integration of the interactive effects of growth form/functional type and photosynthetic pathway on water resource acquisition and temperature sensitivity.  相似文献   

9.
Summary Growth and bioenergetics of the last instar larvae of Achaea janata fed on a wide range of rations of leaves of Ricinus communis (ad libitum to 50 or 100 mg leaf per larva per day) at 22, 27, 32 and 35° C were studied. Increase in larval mortality, extension of larval duration and decrease in final body weight were some of the adverse effects of restricted rations. Whereas larval duration was influenced by ration level, pupal period was dependent on temperature. The larvae partially compensated for restricted rations by enhancing feeding rate over the limit expected in proportion to the ration offered. The level of compensation was higher at 27° C. Influence of temperature or its interaction with ration on assimilation efficiency was more significant than the independent influence of ration; the efficiency ranged from 57 to 67%. Restriction of ration below a critical level (300 mg/larva/day at 35° C and 200 mg/larva/day at other temperatures) significantly influenced the net conversion efficiency; the lowest efficiency of 1.3% was recorded for the larvae fed 100 mg leaf/day. Energy content of the terminal larva determined the percentage of energy transferred to the imago, which ranged from 37 to 55% of the terminal larval energy.  相似文献   

10.
Curt Nilsson 《Ecography》1986,9(4):267-271
During a six-day period the energetics of the suspension feeding larvae of the mosquito Culex torrentium were studied. An experimental assessment of ingestion, growth and respiration were made at near to field conditions. Assimilation and egestion were calculated and an energy budget for an average larva during the experimental period was established. Gut retention time was measured by marking the gut content with charcoal. Organic carbon in the gut contents, of larvae feeding on natural food, and in the tissues (i.e. to establish growth from 2nd and 4th instar) were measured by an elemental analyser. Oxygen consumption was measured as a decrease in volume of a closed system where the respired carbon dioxide was absorbed by KOH. Only 1.6% of ingested organic carbon was assimilated. The ratio between respiration and growth was 13.8. The high value of the ratio is suggested to occur because of the very active behaviour of the larvae. The results are discussed in relation to the energetics of other aquatic primary consumers (Simuliidae and Trichoptera).  相似文献   

11.
Factors affecting body temperatures of toads   总被引:3,自引:0,他引:3  
Cynthia Carey 《Oecologia》1978,35(2):197-219
Summary Factors influencing levels and rates of variation of body temperature (T b) in montane Bufo boreas boreas and in lowland Bufo boreas halophilus were investigated as an initial step toward understanding the role of natural thermal variation in the physiology and energetics of these ectothermic animals. Body temperatures of boreas can vary 25–30° C over 24-h periods. Such variation is primarily due to both nocturnal and diurnal activity and the physical characteristics of the montane environment. Bufo boreas halophilus are primarily nocturnal except during breeding and are voluntarily active at body temperatures ranging between 10 and 25° C. Despite variation in T b encountered in the field, boreas select a narrow range of T b in a thermal gradient, averaging 23.5 and 26.2° C for fasted individuals maintained under field conditions or acclimated to 20° C, respectively. In a thermal gradient the mean T b of fasted halophilus acclimated to 20° C is 23.9° C. Skin color of boreas varies in the field from very dark to light. The dark skins absorb approximately 4% more radiation than the light ones. Light colored boreas should absorb approximately 5% more radiation than similarly colored halophilus. Evaporative water losses increase directly with skin temperatures and vapor pressure deficit in both subspecies. Larger individuals heat and cool more slowly than smaller ones. Calculation of an enery budget for boreal toads suggests that they could sit in direct sunlight for long periods without fatally overheating, providing the skin was continually moist.  相似文献   

12.
Summary Ecological energetics of Chaoborus brasiliensis from Lake Valencia, Venezuela, were studied between February 1979 and February 1980. Direct measurements were made of the respiration rate, assimilation efficiency, and growth rate of all 4 larval instars and of the pupae. For the larval stages, respiration increased as the 0.67 power of body mass. Respiration rates of the larvae, when corrected for body size and temperature, were extraordinarily low by comparison with the rates for most aquatic insects. The respiration rates of pupae were 3 times as high as those of larvae the same size. Assimilation rates increased significantly with body size for the larvae and differed slightly but significantly among food types. Assimilation efficiencies fell within the expected range for carnivores. The growth efficiencies were exceptionally high for instars II-IV by comparison with other small aquatic organisms. High growth efficiency for Chaoborus brasiliensis, and possibly for Chaoborus generally, is explained by a very low maintenance cost and may be a significant explanation for the wide distribution and high degree of ecological success in this primary carnivore of plankton communities.  相似文献   

13.
We examined the energetics of the living fossil microbiotheriid Dromiciops gliroides, a nocturnal and rare small marsupial, endemic to the northern portion of the temperate forest of southern South America. We investigated the effects of changes at ambient temperature and food restriction on the energetics and patterns of torpor. We determined whether they exhibit shallow daily torpor or deep prolonged torpor like some Australian marsupials. Thermal conductance was 92.5% of the expected value for a similarly sized eutherian and basal metabolic rate was 82.9 and 58.6% of the predicted value for standard metatherians and eutherians, respectively. Euthermic D. gliroides showed daily fluctuations in body temperature, being significantly higher during the night. Dromiciops gliroides entered torpor and aroused spontaneously. The duration of torpor bouts increased in response to decreasing ambient temperature; torpor bout duration ranged from 10 h at 20 °C to 120 h at 12.5 °C. This study is the first record of deep torpor or hibernation for a South American mammal. Torpor in this species as well as in marsupials in general appears to be an opportunistic response to unpredictable biotic and abiotic conditions.Abbreviations VO2 metabolic rate - Tb body temperature - Ta ambient temperature - BMR basal metabolic rate - C thermal conductance - Tm temperature differentialCommunicated by I.D. Hume  相似文献   

14.
Cost and speed of locomotion for rotifers   总被引:9,自引:0,他引:9  
Summary The hypothesis that the ciliary locomotion of rotifers is size limited and that it accounts of a significant portion of the energy budget was investigated using the genera Brachionus and Asplanchna. Speed of movement was measured among clones of different size in Brachionus, which shows little size variation through development. The same tests were done among individuals of different size within a clone of Asplanchna, which shows significant postembryonic size increase. In both cases, relative speed (body lengths per second) decreased significantly as body size increased. On this basis, and ecologically limiting size for ciliary locomotion is proposed. The actual cost of locomotion was measured for Brachionus; it is 62% of total metabolism, even though the theoretical (calculated) power requirements are well below 1% of total metabolism. Ciliary locomotion in the Rotifera thus appears to be extremely inefficient (low ratio of theoretical to actual power requirements). This hypothesis is supported indirectly by the sensitivity of speed to total metabolic rate in Brachionus: both plateau over the temperature range 20–32°C and decline in parallel outside this range. Unexpectedly high actual cost of locomotion is proposed as an important disadvantage of the Rotifera, partly offsetting the advantages accruing to them from small body size.  相似文献   

15.
Summary The larvae of Megachile pacifica, the leafcutter bee, develop within a cell constructed of pieces of leaf by the adult female which also provides a plug of nectar and pollen, the sole source of nutrient for the larvae. In this study, eggs (1 per cell) hatched in 2–3 days and larvae were fully grown after a further 9 days at 28° C.The mean larval dry weight (dw) when fully grown (P L ) was 18.89 mg. Larvae ate 45.99 mg (dw) (C) of their food leaving 0.90 mg (dw) unconsumed. The faeces (FU) weighed an average of 5.62 mg (dw) and their cocoon weighed 2.68 mg (dw) (P E ). The components of their energy budget (C=(P L +P E )+R+FU) were C=1079.4 J, P L =569.1 J, P E =62.25 J, R (metabolic energy measured with a Gilson respirometer)=218.3 J and FU=134.4 J. R calculated by difference was 313.6 J.Full grown larvae contained 1.17 mg of nitrogen (N). They egested 0.19 mg N and incorporated 0.16 mg N in the cocoons. They ingested 1.51 mg N (measured) — the calculated consumption of nitrogen (by difference) was 1.52 mg.The ecological efficiencies showed that these larvae are among the most efficient invertebrate converters of energy and nitrogen yet recorded. The assimilation efficiencies (A·C -1 ) were 87.5% (energy), 87.2% (N), the net ecological efficiencies (P·A -1 ) were 66.8% (energy) and 100% (N) and the gross ecological efficiencies (P·C -1 ) were 58.5% (energy) and 87.6% (N). the production to respiration ratio (x100) was 201.5% using calculated R.  相似文献   

16.
We conducted a seasonal survey of the swimming behaviour of Chironomus acerbiphilus larvae in volcanic Lake Katanuma from April 1998 to December 2001. Swimming C. acerbiphilus density was much higher than other chironomid species in lakes. All C. acerbiphilus larvae (1st through 4th instars) swam, but the earlier instars (especially the 1st) had the greatest densities and fluctuations. First instars were never found in the benthic population. This result indicates that the 1st-instar larvae are planktonic. Low water temperature (below about 10 °C) resulted in the seasonal disappearance of swimming chironomid larvae. Chemical factors – oxygen depletion or presence of hydrogen sulfide – also restricted the distribution of swimming and benthic larvae. Larvae were distributed only in the oxygen-rich part of the lake bottom and swam only in the oxygen-rich layer of the water column. The density of older swimming C. acerbiphilus (3rd and 4th instars) tended to increase with increasing benthic larval densities. The chemical stress of oxygen depletion or presence of hydrogen sulfide during holomixis within and after the stratification period leads to conspicuous swimming behaviour of benthic C. acerbiphilus larvae. Almost all C. acerbiphilus larvae died on this occasion.  相似文献   

17.
The effect of various factors on the yield of Bacillus popilliae var. rhopaea spores formed in Rhopaea verreauxi larvae have been studied. Lack of adequate food, temperatures above and below 23°C, and infecting doses above 106 spore larva, all significantly lowered spore yield per larva. Larval age had a pronounced effect; second-instar and young third-instar larvae produ ed about 1 × 1010 spores while old third-instar larvae produced about 4 × 1010 spores. Incubation of larvae for longer than 4 weeks did not increase spore yield per larva. Yields were similar whether larvae were infected by injection or per os. Three other host species could be used to mass-produce B. popilliae var. rhopaea spores but all were less efficient than R. verreauxi. Milky third-instar R. verreauxi larvae, which were field collected, yielded 1.57 × 1010 spores per larva.  相似文献   

18.
As the earth's climate has warmed, many tropical species have expanded their ranges poleward and encountered high‐latitude seasonal temperature regimes, in which further permanent expansion is limited by physiological vulnerability to cold temperatures. The barnacle Megabalanus coccopoma is native to shorelines from Baja California to Peru and has been introduced to many locations worldwide, including the southeastern USA. The ability of larvae to develop successfully at local temperatures can be an important factor limiting the spread of invasive species. To determine if cold temperatures limited larval success near the northern range limit of M. coccopoma along the Atlantic southeastern USA coast, we measured lower temperature limits to larval development, examined the effects of temperature on larval growth and energy accumulation, and calculated a larval energy budget to estimate the extent of potential larval dispersal in this region. Larvae were able to develop through metamorphosis at 16°C, which is much colder than sea surface temperatures during the spawning season in their invasive range, making it unlikely northern range limits are set by a lower temperature limit to larval development. Energy budgets suggest that for larvae produced at the northern end of the invasive range, long distance dispersal to sites far poleward of the current range limit is possible. Similar to the findings of the handful of other studies on cold tolerances of tropical marine invertebrate larvae, larvae should be successful far poleward of current adult distributions.  相似文献   

19.
Infant development and parental care in two species of sifakas   总被引:3,自引:0,他引:3  
This paper reports the results of a three-month field study on parental care and infant development in the diademed sifaka (Propithecus diadema edwardsi) in the primary rain-forest of south-eastern Madagascar. They are compared with a three-and-a-half-month study of captive white sifaka (Propithecus verreauxi coquereli) in the Duke University Primate Centre. Records were taken by means of focal animal and instantaneous sampling. In both species the mother was the primary carrier and caretaker; theP. verreauxi father carried the infant significantly more than did any animal other than the mother in theP. diadema group. The infantP. verreauxi spent less time off the mother than didP. diadema from week 4 through week 10. It is concluded thatP. verreauxi shows more non-maternal care thanP. diadema and also develops at a slower rate. The difference in the two species' habitats is discussed as a possible cause.  相似文献   

20.
Starý  P. 《Oecologia》1970,4(4):374-380
Summary Larvae of Cerura vinula L. were raised at 18, 25 and 30°C in order to test the effect of temperature on the speed of the entire larval development. The time required decreases hyperbolically, with increasing temperature. The optimum temperature seems to be 25°C since all larvae raised at this temperature developed completely. In contrast, some of the larvae at 18 and at 30°C were unable to molt from instar 2 to instar 3, causing high loss of larvae. Further development and metamorphosis were normal. At 30°C, some of the larvae died before the pupal molt; the remaining larvae showed morphological deficiencies upon pupal molt.Mit dankenswerter Unterstützung der Deutschen Forschungsgemeinschaft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号