首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most mistletoe–host ecophysiological studies have paid attention to the influence of parasites on host performance. This paper explored the impact of varying hosts on the photosynthesis of a single mistletoe species. Here, we studied an obligate xylem‐tapping tropical mistletoe (Dendrophthoe curvata (Blume) Miquel) parasitizing four different hosts (Acacia auriculiformis A. Cunn. Ex Benth, Andira inermis (W. Wright) DC., Mangifera indica L. and Vitex pinnata L.) in a homo geneous tropical heath forest patch in Brunei Darussalam. We compared photosynthetic capacity and photosynthesis‐related characteristics of the mistletoe on four different hosts to evaluate the overall impact of hosts on the parasite. Results showed that the mistletoe–host patterns of CO2 assimilation rates, transpiration rates and water use efficiency varied significantly based on the host. In the D. curvata–Vitex pinnata association, the mistletoe exhibited significantly lower CO2 assimilation rates but showed no significant variations in transpiration rates and water use efficiency when compared to the host. In D. curvata–Andira inermis and D. curvata–Mangifera indica associations, the mistletoe showed significantly higher photosynthetic rates than the hosts, whereas in the D. curvata–Acacia auriculiformis association, there was no significant difference in photosynthetic rates between the counterparts. Host specificity also significantly influenced some mistletoe photosynthetic parameters such as light saturated photosynthesis, specific leaf area, leaf chlorophyll content, CO2 assimilation rates, stomatal conductance, transpiration rates and water use efficiency. Different tree hosts intrinsically offer different resources to their obligate mistletoe parasites based on their physiology and environmental parameters. We argue that host‐specific responses have driven these intra‐specific variations in mistletoe physiology. This study provides background for future investigation on potential host‐regulated mechanisms that drive functional changes in host‐dependent mistletoes.  相似文献   

2.
The carbon isotope ratio ('13C) of New Zealand mistletoes (-29.51ǂ.10‰) and their hosts (-28.89ǂ.12‰) is generally more negative, and shows less difference between mistletoes and their hosts, than found in previous studies. In 37% of the examined pairs, the '13C of mistletoes was less negative than that of their hosts. These reversals were not associated with the relative position (proximal or distal) of the host material with regard to the mistletoe. Differences between host and mistletoe tended to be greater on hosts with less negative '13C. Both nitrogen content and isotope ratio ('15N) of the mistletoe leaves were strongly correlated with those of their hosts. Nitrogen contents of mistletoe leaves were similar to those of their hosts at low nitrogen contents but proportionately less on hosts with a high nitrogen content, whereas '15N of mistletoes was consistently similar to that of their hosts. The '13C of mistletoes was related to both host nitrogen content and '15N, but '13C in host tissue was related to neither, suggesting that the mistletoes derived both nitrogen and carbon from their hosts. The '13C of both hosts and mistletoes were significantly related to leaf conductance and carbon dioxide concentration but relationships with transpiration and water use efficiency were not significant. In all cases there was no clear separation between the responses of hosts and mistletoes. This may be related to the similarity of stomatal conductance, transpiration and photosynthesis in the studied mistletoes and their hosts and is consistent with the small differences in '13C between mistletoes and hosts found in this study. Consequently, the estimation of mistletoe heterotrophy from carbon discrimination is confounded, as the small difference between host and mistletoe carbon discrimination could equally well result from either similarities in photosynthesis and water relations or heterotrophic assimilation of host-derived carbon. The differences between our study and previous studies (which are mostly from seasonally dry or semi-arid to arid environments) may be related to the temperate environment in which these mistletoes grow. Water is freely available so that the mistletoe is able to obtain sufficient water and dissolved nutrients without having to maintain the high transpiration rate and low water potentials that are needed to extract water from a water-stressed host. Similarly, mistletoe photosynthesis is less inhibited by water stress. The physiological similarities between mistletoe and hosts from a temperate environment are reflected in their similar '13C values.  相似文献   

3.
Summary The impact of the xylem-tapping mistletoe Phoradendron juniperinum on the nitrogen and water relations of its host Juniperus osteosperma was investigated under natural field conditions. Leaf conductance, leaf water potential, and leaf Kjeldahl nitrogen contents were followed through the growing season on mistletoes, infected junipers (separating infected from uninfected stems) and uninfected junipers. Infected trees experienced lower leaf water potentials than uninfected trees and also had lower leaf conductances and lower leaf nitrogen contents. Infected juniper stems had higher conductances than uninfected stems. Mistletoes had higher leaf nitrogen contents than their hosts and much of this nitrogen appeared as arginine, a potential nitrogen storage compound. Photosynthetic rates (per unit leaf area) were significantly higher in junipers than in the mistletoe, and higher in the uninfected than infected junipers. Water use efficiencies as estimated by carbon isotope ratios were significantly lower in mistletoes than in their hosts. Increased mistletoe infestation appeared to increase absolute water use efficiency of both host and mistletoe.Dedicated to Professors D. Wiens (Salt Lake City) and H. Ziegler (München) for initiating our curiosity in mistletoes  相似文献   

4.
Summary The gas exchange and water relations of the hemiparasite Pthirusa maritima and two its mangrove host species, Conocarpus erectus and Coccoloba uvifera, were studied in an intertidal zone of the Venezuelan coast. Carbon uptake and transpiration, leaf osmotic and total water potential, as well as nutrient content in the xylem sap and leaves of mistletoes and hosts were followed through the dry and wet season. In addition, carbon isotope ratios of leaf tissue were measured to further evaluate water use efficiency. Under similar light and humidity conditions, mistletoes had higher transpiration rates, lower leaf water potentials, and lower water use efficiencies than their hosts. Potassium content was much higher in mistletoes than in host leaves, but mineral nutrient content in the xylem sap of mistletoes was relatively low. The resistance of the liquid pathway from the soil to the leaf surface of mistletoes was larger than the total liquid flow resistance of host plants. Differences in the daily cycles of osmotic potential of the xylem sap also indicate the existence of a high resistance pathway along the vascular connection between the parasite pathway along the vascular connection between the parasite and its host. P. maritima mistletoes adjust to the different physiological characteristics of the host species which it parasitizes, thus ensuring an adequate water and carbon balance.  相似文献   

5.
 Chlorophyll a fluorescence parameters showing the instantaneous performance and carbon-isotope ratios reflecting long-term behaviour of leaves were determined for a large number of mistletoe/host-pairs in the cerrado belt of Brazil. Study sites were a very exposed rupestrian field, a semi-exposed savanna and a highly shaded gallery forest. The major question asked was if photosynthetic capacity of mistletoe leaves differed from that of the leaves of their respective hosts. It is shown that except for the very exposed rupestrian field site, photosynthetic capacity appeared to be similar in mistletoes and host leaves. The superior behaviour of host leaves in the rupestrian field was due to particularly expressed sun-plant characteristics of the host. However, mistletoes always had higher average stomatal conductances, lower leaf temperatures at similar or even higher irradiance and higher intercellular CO2-partial pressures than hosts. Photosynthetic performance of mistletoe leaves was independent of whether a given mistletoe species parasitized aluminium-accumulating or non-accumulating host species in the cerrados with their aluminium-rich soils. Received: 7 April 1997 / Accepted: 20 August 1997  相似文献   

6.
Xylem-tapping mistletoes are known to have normally a higher rate of transpiration and lower water-use efficiency than their hosts. The relationships between water relations, nutrients and growth were investigated for Phoradendron juniperinum growing on Juniperus osteosperma (a non-nitrogen-fixing tree) and for Phoradendron californicum growing on Acacia greggii (a nitrogen-fixing tree). Xylem sap nitrogen contents were approximately 3.5 times higher in the nitrogen-fixing host than in the non-nitrogen-fixing host. The results of the present study show that mistletoe growth rates were sevenfold greater on a nitrogen-fixing host. At the same time, however, the differences in water-use efficiency between mistletoes and their hosts, which were observed on the non-nitrogen-fixing host did not exist when mistletoes were grown on hosts with higher nitrogen contents in their xylem sap. Growth rates and the accumulation of N, P, K, and Ca as well as values for carbon-isotope ratios of mistletoe tissues support the hypothesis that the higher transpiration rates of mistletoes represent a nitrogen-gathering mechanism.Abbreviation 13C carbon-isotope ratio Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

7.
孙谷畴  林植芳  林桂珠  王伟  莫熙穆   《广西植物》1990,10(3):215-222
比较了绢毛相思和大叶相思的叶特性,旱季的田间光合速率和供水短缺对光合速率、气孔传导率和蒸腾速率的影响。绢毛相思的比叶重、单位叶面积的叶绿素含量和叶绿素a/b均较大叶相思高,但叶片含水量略低。绢毛相思的中午时叶片水势为-0.6±0.05MPa,而大叶相思则为-1.18±0.07MPa。绢毛相思叶片水势降低时,叶片鲜重的变化较大叶相思大。旱季10月,两种相思的日平均光合速率相近似,但绢毛相思有较高的气孔传导率和蒸腾速率。干旱处理引起大叶相思叶片水势降低较绢毛相思大。当绢毛相思叶片水势从-0.76MPa降至-1.35MPa,日平均光合速率降低49.4%;而大叶相思,叶片水势从-1.22MPa降低至-2.2MPa,日平均光合速率降低55.0%。大叶相思叶片水势降低的幅度比较大,光合速率降低亦大。  相似文献   

8.
Summary Carbon isotope ratios, photosynthesis, and transpiration were measured on a xylem-tapping mistletoe (Phoradendron juniperinum) and its host (Juniperus osteosperma) in southern Utah, USA. For host tissues, the carbon isotope ratios agreed with theoretical values predicted from gas exchange observations. However, for mistletoe tissues, carbon isotope ratios deviated significantly from values predicted by gas exchange observations. This apparent discrepancy in mistletoe carbon isotope ratios can be resolved if one assumes that organic carbon dissolved in host xylem water was assimilated by the parasite. The mistletoes' high transpiration rates and low photosynthetic rates contributed to their heavy dependence on host xylem carbon. Two lines of evidence suggest that 62±2% of the carbon in the Utah mistletoe is derivated from the host and not from mistletoe autotrophic activities. Whereas xylem-tapping mistletoes have previously been characterized as wholly autotrophic parasites, we suggest that they may instead derive significant amounts of carbon from their hosts.  相似文献   

9.
The mistletoe, Viscum album, living on Scots pine (Pinus sylvestris) has been reported barely to regulate its transpiration and thus heavily to affect the gas exchange of its host. The extent of this mistletoe effect and its underlying mechanism has, so far, only been partially analysed. In this study, pine branches with different mistletoe infestation levels were investigated by sap flow gauges and analysed with a modelling approach to identify the mistletoe-induced stomatal regulation of pine and its consequences for the water and carbon balances of the tree. It was found that Viscum album barely regulates its stomata and that pines consequently compensate for the additional water loss of mistletoes by closing their own stomata. Despite the reduced stomatal aperture of the needles, the total water loss of branches with mistletoes increased. Furthermore, the increasingly closed stomata reduced carbon assimilation for the pine. Such a negative effect of the mistletoes on pine's stomatal conductance and carbon gain was particularly strong during dry periods. Our study therefore suggests that mistletoe-induced stomatal closure is a successful mechanism against dying from hydraulic failure in the short term but increases the risk of carbon starvation in the long term. With the current conditions in Valais, Switzerland, a tree with more than about 10-20% of its total leaf area attributable to mistletoes is at the threshold of keeping a positive carbon balance. The currently increasing mistletoe abundance, due to increasing mean annual temperatures, is therefore accelerating the ongoing pine decline in many dry inner-Alpine valleys.  相似文献   

10.
Abstract. The carbon, water and nutrient relations of the xylem parasites Loranthus europaeus and Viscum laxum and their respective hosts. Quercus robur and Pinus sylvestris, were followed throughout clear days in July in order to study water and nutrient interactions in a simple system in which the plant growth depends on the host for its water and nutrients. At similar quantum flux densities, temperatures and vapour pressure deficits, the mistletoes had higher rates of transpiration and lower leaf water potentials than their hosts, but similar rates of CO2 assimilation. Based on measurements of the nutrient content of the xylem and on seasonal measurements of the biomass and the tissue nutrient content, the present study suggests that the high rates of transpiration may be necessary for the parasites to take up sufficient nitrogen from the xylem of the host for production of biomass (leaves, fruits and stems).  相似文献   

11.
Summary Under conditions where both plants had permanently low water status, the mistletoe, Amyema miquelii (Lehm. ex Miq.) Tiegh., had lower nitrogen contents in leaf tissue than its host, Eucalyptus behriana F. Muell. The parasite transpired less than its host which is consistent with the hypothesis that mistletoe transpiration acts as a nitrogen gathering mechanism. Nitrogen and phosphorus contents were generally low in both plants; they were positively correlated, and mistletoes reduced nutrient contents of infested hosts. The carbon discrimination ratio, 13C (a measure of water-use efficiency) of each plant was within the range reported for other mistletoes and their hosts. Although it did not differ significantly between host and parasite it indicated lower water-use efficiency in the mistletoe. For the nitrogen content of host leaves the gradient within the pair, (13C), is much lower compared to the correlation given by Ehleringer et al. (1985). It is concluded that at permanently low water status on nitrogen and phosphorus deficient soils a water-saving strategy accompanied with slow growth is more appropriate for both mistletoe and host.  相似文献   

12.
Infestation of Acacia acuminata by the xylem-tapping mistletoe Amyema preissii invariably results in inhibition of growth, defoliation and eventual death of host branch parts distal to the mistletoe. Branch sectional areas proximal (P) and distal (D) to mistletoes are used to classify stages of parasitism, with P:D area ratios of 5–6 invariably associated with distal branch senescence. As monopolization of the branch proceeds, mistletoe leaf area increases in parallel with declining host foliage area, and the specific hydraulic conductivity of distal host wood declines sharply relative to that of proximal wood, mineral composition and concentrations of nitrogenous solutes in xylem sap are at no stage appreciably different from those of proximal wood. After the demise of the distal branch parts, the transectional area of the host branch stump increases linearly with increasing mistletoe leaf area, the branch area supporting a unit of mistletoe leaf area always being about 3 times greater than that supporting a unit of host foliage area on unparasitized branches. This differential, compounded with high transpiration rates and selective uptake of host xylem solutes by the haustorium, fosters substantial mineral enrichment of the mistletoe relative to its host. The study provides a background for future investigation of possible cellular mechanisms continuously driving structural and functional changes in favour of the mistletoe.  相似文献   

13.
The present study explores the xylem‐tapping parasitism by mistletoe (Tapinanthus oleifolius) on native tree species along the Kalahari Transect (KT) using the stable isotopes of carbon and nitrogen. Mistletoe‐host pairs were collected at three geographical locations along the KT rainfall gradient in the 2005 and 2006 wet seasons. Foliar total carbon, total nitrogen and their stable isotope compositions (δ13C and δ15N) were measured. Heterotrophy (H) was calculated using foliar δ13C values of mistletoes and their hosts as an indicator of proportion of carbon in the mistletoes derived from host photosynthate. Based on the mistletoe H‐value and relationship between the mistletoe foliar δ15N and their host foliar δ15N, the results showed that mistletoes along the KT derived both nitrogen and carbon from their hosts. Mistletoes may regulate water use in relation to nitrogen supply. The proportion of carbon in the mistletoes derived from host photosynthate was between 35% and 78%, and the degree of heterotrophy was species‐specific with only limited annual variation. The study emphasizes the importance of incorporating parasitic associations in future studies on studying carbon, water and nutrient cycling along the Kalahari.  相似文献   

14.
Leaves of the mistletoe Viscum album (L.) show a high rate of transpiration, even when the host is under severe drought stress. The hypothesis that a strong control of ABA influx from the xylem sap of the host into the mistletoe prevents stomatal closure in mistletoe leaves was tested under the following conditions: sections of poplar twigs carrying a mistletoe were perfused with artificial xylem sap that contained different ABA concentrations and both transpiration and ABA levels were analysed in mistletoe leaves. Despite variation by a factor of 10(4), the ABA content of the host xylem did not affect ABA levels, leaf transpiration, CO(2) assimilation, WUE, or the degree of stomatal aperture in mistletoe leaves. These observations support the hypothesis of a strong control of ABA influx from the host of the xylem into the mistletoe, although degradation of ABA before it enters the mistletoe leaves cannot be excluded. This mechanism may ensure a water and nutritional status favourable for the mistletoe, even if the water status of the host is impaired. Despite the lack of short-term sensitivity of ABA levels in mistletoe leaves to even strong changes of ABA levels in the xylem sap of the host, ABA levels in mistletoe leaves were relatively high compared to ABA levels in the leaves of several tree species including poplar. Since significant transpiration of the mistletoe leaves was observed despite high ABA levels, a diminished sensitivity of the stomata of mistletoe leaves to ABA has to be concluded. The stomatal density of adaxial Viscum leaves of 89+/-23 stomata per mm is lower than those reported in a study performed at the end of the 19th century.  相似文献   

15.
Abstract For 150 years mistletoe host-resemblance has been an unsolved puzzle. Mimicry, camouflage, host protection and shape modification by the host tree have all been advanced as possible solutions. No extended examination of herbivory of host-parasite pairs has ever been done, however, to put these explanations to the test. The study was carried out in northeastern Australia from March to July 1994. Rates of leaf herbivory were estimated for seven individuals of Amyema biniflora Barlow (a cryptic mistletoe species), Dendrophthoe glabrescens (Blakely) Barlow (a non-cryptic mistletoe species) and their host trees (Eucalyptus tessellaris F. Muell. and Eucalyptus platyphylla F. Muell., respectively). In addition three measures of leaf palatability–nitrogen content, moisture content and toughness–were also assessed. Variability in mistletoe leaf shape was quantified by measuring the leaf widths of mistletoes on a variety of host tree species. Mistletoes sustained greater levels of herbivory compared to their host trees, but herbivory did not differ between mistletoe species. The non-cryptic mistletoe had lower levels of nitrogen compared to its host tree, but there was no difference in nitrogen levels between the cryptic mistletoe and its host. The moisture content of mistletoe leaves was greater than that of their hosts but not between mistletoe or host species. The mistletoe species had tougher leaves than their host trees. Leaf shape was different for one species of mistletoe growing on different host trees, but constant for another species of mistletoe. The results contradict, in some crucial aspect, all of the mimicry hypotheses currently on offer.  相似文献   

16.
Sap flow rate was measured in the crown of a solitary specimen of downy oak (Quercus pubescens) infested by mistletoe (Loranthus europaeus). Five oak branches and two mistletoe plants were selected for analysis. The seasonal sum of transpired water expressed per leaf area unit was five times higher in the mistletoe than in the oak. In addition, the diurnal curves of sap flow were different between the plants. In the morning, the sap flow measured in the mistletoe lagged one hour behind the sap flow measured in an oak branch unencumbered by mistletoe. In contrast, no time lag was observed in the evening. The proportion of water transpired at night relative to the total transpiration was 7% in both species. The stomatal conductances derived from the inverted Penman-Monteith equation and their dependence on global radiation and the vapour pressure deficit (D) revealed that D exerts a different behaviour in stomatal control of transpiration in the mistletoe. We also determined that the concentration of calcium in the leaf mass could serve as a proxy for transpiration rate, however the relationship was not proportional.  相似文献   

17.

Background and Aims

Potassium, sulphur and zinc contents of mistletoe leaves are generally higher than in their hosts. This is attributed to the fact that chemical elements which are cycled between xylem and phloem in the process of phloem loading of sugars are trapped in the mistletoe, because these parasites do not feed their hosts. Here it is hypothesized that mutant albino shoots on otherwise green plants should behave similarly, because they lack photosynthesis and thus cannot recycle elements involved in sugar loading.

Methods

The mineral nutrition of the mistletoe Scurrula elata was compared with that of albino shoots on Citrus sinensis and Nerium oleander. The potential for selective nutrient uptake by the mistletoe was studied by comparing element contents of host leaves on infected and uninfected branches and by manipulation of the haustorium–shoot ratio in mistletoes. Phloem anatomy of albino leaves was compared with that of green leaves.

Key Results

Both mistletoes and albino leaves had higher contents of potassium, sulphur and zinc than hosts or green leaves, respectively. Hypothetical discrimination of nutrient elements during the uptake by the haustorium is not supported by our data. Anatomical studies of albino leaves showed characteristics of release phloem.

Conclusions

Both albino shoots and mistletoes are traps for elements normally recycled between xylem and phloem, because retranslocation of phloem mobile elements into the mother plant or the host is low or absent. It can be assumed that the lack of photosynthetic activity in albino shoots and thus of sugars needed in phloem loading is responsible for the accumulation of elements. The absence of phloem loading is reflected in phloem anatomy of these abnormal shoots. In mistletoes the evolution of a parasitic lifestyle has obviously eliminated substantial feeding of the host with photosynthates produced by the mistletoe.  相似文献   

18.
Summary Leaves from many misletoe species in Australia strongly resemble those of their hosts. This cryptic mimicry has been hypothesized to be a means of reducing the likelihood of mistletoe herbivory by vertebrates. Leaf Kjeldahl nitrogen contents (a measure of reduced nitrogen and thus amines, amino acids and protein levels) of mistletoes and their hosts were measured on 48 mimetic and nonmimetic host-parasite pairs to evaluate hypotheses concerning the significance of crysis versus noncrypsis. The hypothesis that mistletoes mimicking host leaves should have higher leaf nitrogen levels than their hosts is supported; they may be gaining a selective advantage through crypsis (reduced herbivory). The second hypothesis that mistletoes which do not mimic their hosts should have lower leaf nitrogen levels than their hosts is also supported; they may be gaining a selective advantage through noncrypsis (reduced herbivory resulting from visual advertisement of their reduced nutritional status).  相似文献   

19.
March WA  Watson DM 《Oecologia》2007,154(2):339-347
The importance of litter in regulating ecosystem processes has long been recognised, with a growing appreciation of the differential contribution of various functional plant groups. Despite the ubiquity of mistletoes in terrestrial ecosystems and their prominence in ecological studies, they are one group that have been overlooked in litter research. This study evaluated the litter contribution from a hemiparasitic mistletoe, Amyema miquelii (Lehm. ex Miq.) Tiegh., in an open eucalypt forest (Eucalyptus blakelyi, E. dwyeri and E. dealbata), at three scales; the forest stand, single trees and individual mistletoes. Litter from mistletoes significantly increased overall litterfall by up to 189%, the amount of mistletoe litter being proportional to the mistletoe biomass in the canopy. The high litter input was due to a much higher rate of mistletoe leaf turnover than that of host trees; the host litterfall and rate of leaf turnover was not significantly affected by mistletoe presence. The additional litter from mistletoes also affected the spatial and temporal distribution of litterfall due to the patchy distribution of mistletoes and their prolonged period of high litterfall. Associated with these changes in litterfall was an increase in ground litter mass and plant productivity, which reflects similar findings with root-parasitic plants. These findings represent novel mechanisms underlying the role of mistletoes as keystone resources and provide further evidence of the importance of parasites in affecting trophic dynamics.  相似文献   

20.
Xylem-tapping mistletoes transpire large volumes of water (E) while conducting photosynthesis (A) at low rates, thus maintaining low instantaneous wateruse efficiency (A/E). These gas-exchange characteristics have been interpreted as a means of facilitating assimilation of nitrogen dissolved at low concentration in host xylem water; however, low A/E also results in substantial heterotrophic carbon gain. In this study, host trees (Juniperus osteosperma) were fertilized and gas exchange of mistletoe (Phoradendron juniperinum) and host were monitored to determine whether mistletoe A/E would approach that of the host if mistletoes were supplied with abundant nitrogen. Fertilization significantly increased foliar N concentrations (N), net assimilation rates, and A/E in both mistletoe and host. However, at any given N concentration, mistletoes maintained lower A and lower A/E than their hosts. On the other hand, when instantaneous water-use efficiency and A/N were calculated to include heterotrophic assimilation of carbon dissolved in the xylem sap of the host, both water-use efficiency and A/N converged on host values. A simple model of Phoradendron carbon and nitrogen budgets was constructed to analyze the relative benefits of nitrogen- and carbonparasitism. The model assumes constant E and includes feedbacks of tissue nitrogen concentration on photosyn-thesis. These results, combined with our earlier observation that net assimilation rates of mistletoes and their hosts are approximately matched (Marshall et al. 1994), support part of the nitrogen-parasitism hypothesis: that high rates of transpiration benefit the mistletoe primarily through nitrogen gain. However, the low ratio of A/E is interpreted not as a means of acquiring nitrogen, but as an inevitable consequence of an imbalance in C and N assimilation.This research was supported by the National Science Foundation (grants BSR-8706772 and 8847942).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号