首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Work by other investigators has shown that an increase in dietary content of monounsaturated fatty acids can result in a decreased plasma low density lipoprotein (LDL) cholesterol concentration. This observation, combined with the epidemiologic evidence that monounsaturated fat-rich diets are associated with decreased rates of death from coronary heart disease, suggests that inclusion of increased amounts of mono-unsaturated fat in the diet may be beneficial. The present study was carried out in a primate model, the African green monkey, to evaluate the effects of dietary monounsaturated fat on plasma lipoprotein cholesterol endpoints. Two study periods were carried out in which the fatty acid compositions of the experimental diets were varied. All diets contained 35% of calories as fat. In the first experimental period, a mixture of fats was used to set the dietary fatty acid composition to be approximately 50-60% of the desired fatty acid, either saturated, monounsaturated, or polyunsaturated (n-6). In the second experimental period, pure fats were used (palm oil, oleic acid-rich safflower oil, and linoleic acid-rich safflower oil) to maximize the difference in fatty acid composition. The effects of the more exaggerated dietary fatty acid differences of period 2 were similar to those that have been reported in humans. For the group fed the diet enriched in monounsaturated fat compared to saturated fat, whole plasma and LDL cholesterol concentrations were significantly lower while high density lipoprotein (HDL) cholesterol concentrations were not affected. For the group fed the diet enriched in polyunsaturated fat compared to saturated fat, both LDL and HDL cholesterol concentrations were significantly lower than in the group fed saturated fat. LDL cholesterol concentrations were comparable in the monounsaturated and polyunsaturated fat groups and the percentage of cholesterol in LDL was lowest in the monounsaturated fat fed group. Trends were similar for the mixed fat diets, although no statistically significant differences in plasma lipoprotein endpoints could be attributed to monounsaturated fatty acids in this dietary comparison. Since effects on plasma lipoproteins similar to those seen in humans were identified in this primate model, relevant mechanisms for the effects of dietary fatty acids on lipoprotein endpoints related to coronary artery atherosclerosis, per se, can subsequently be examined.  相似文献   

2.
Adjusting ω-3/ω-6 polyunsaturated fatty acids (PUFAs) ratio in high-fat diet is one potential mean to improve metabolic syndrome; however, underlying mechanisms remain unclear. Four groups of mice were fed 60% kcal diets with saturated fatty acids, three different ω-3/ω-6 PUFAs ratios (low, middle and high) for 12 weeks, respectively. Body weight, atherosclerosis marker, insulin signal index and level of lipid accumulation in liver were significantly lowered in High group compared with saturated fatty acids group and Low group at week 12. Expressions of p-mTOR and raptor were inhibited by high ω-3 PUFAs. Importantly, ω-3 PUFAs intake up-regulated mitochondrial electron transport chain and tricarboxylic acid cycle pathway through metabolomics analysis in liver. Mitochondrial complexes activities were raised, fumaric acid was reduced and oxidative stress was alleviated in High group. We conclude that consuming long-term high-fat diet with same calories but high ω-3/ω-6 PUFAs ratio relieves metabolic syndrome by regulating mTORC1 pathway to enhance mitochondrial function.  相似文献   

3.
To measure the effects of dietary n-3 polyunsaturated fatty acid (PUFA) supplementation on the reproductive capacity of adult male turkeys in industrial flocks, the males of 22 commercial farms were fed either a standard diet or a fish oil diet enriched in n-3 PUFAs. The fatty acid composition of the spermatozoa and reproductive performance were measured throughout the reproductive period. The fish oil diet very effectively increased the percentage of n-3 fatty acids (FA) (22:5n-3 and 22:6n-3) in spermatozoa and correspondingly decreased the percentage of n-6 PUFAs (20:4-6 and 22:4n-6): the n-3/n-6 ratio in spermatozoa fatty acids were 0.04-0.07 with the standard diet and 0.32-0.4 with the fish oil diet. These changes did not affect the spermatozoa content of n-9 PUFAs, particularly of 22:3n-9 which is abundant in turkey spermatozoa (9-12% of the total fatty acids). The supplementation was effective in the middle as at the end of the reproductive period. The reproductive capacity of males was modified by the diet and the positive effect of the n-3 supplemented diet increased with age (increase in hatching rates of nearly 2 points at 48-58 weeks for males fed fish oil diet). These results indicate that an increase in the dietary ratio of n-3/n-6 PUFAs is valuable to sustain the reproductive capacity of male turkeys especially when they are getting older.  相似文献   

4.
This study has been undertaken to determine the effect of a diet enriched with olive oil (OO) and high-oleic sunflower oil (HOSO) on fatty acid composition of erythrocyte membrane phospholipids and blood pressure in healthy women. OO and HOSO were used as natural sources of monounsaturated fatty acids (MUFAs) in a random-order sequence over two 4-week periods with a 4-week washout period between both MUFA diets. HOSO diet resulted in significant increases in oleic [(18:1n-9) 8.6%, P < 0.001], eicosenoic [(20:1n-9) 33.3%, P < 0.05], arachidonic [(20:4n-6) 6.2%, P < 0.05], and docosapentaenoic [(22:5n-6) 56.0%, P < 0.001] acids, whereas OO diet besides increased the content of stearic acid [(18:0) 13.6%, P < 0.01] and long-chain polyunsaturated fatty acids (PUFAs) of the n-3 family (22:5n-3 and 22:6n-3), when compared with the baseline [a diet high in saturated fatty acids (SFAs) and low in MUFAs]. In contrast, there was a significant decrease in linoleic acid [(18:2n-6) 21.8%, P < 0.001] for both MUFA diets. Consistent with these data, dietary intake of OO significantly raised total PUFAs (7.2%, P < 0.05), the n-3 fatty acids (22.2%, P < 0.01) and the PUFAs/SFAs ratio (9.3%, P < 0.01), as well as decreased the ratio of cholesterol to phospholipids (26,1%, P < 0.001) versus HOSO-based diet. Interestingly, dietary OO, but not HOSO, was able to significantly reduce the systolic (3%, P < 0.05) and diastolic (4%, P < 0.05) blood pressures. Although both vegetable oils provided a similar content of MUFAs (mainly oleic acid), our findings rather indicate that OO has important benefits to modulate the fatty acid composition of membranes and the mechanisms involved in the regulation of blood pressure in human.  相似文献   

5.
Effects of fatty acids on the growth of Caco-2 cells   总被引:14,自引:0,他引:14  
Epidemiological studies suggest that polyunsaturated fatty acids may protect against colorectal neoplasia. In order to explore this observation, cell proliferation and viability, lipid composition, membrane fluidity, and lipid peroxidation were measured in Caco-2 cells after 48h incubation with various fatty acids. Saturated and monounsaturated fatty acids incorporated less well in the membranes than polyunsaturated fatty acids (PUFAs). All of the PUFAs tested had an inhibitory effect on cell proliferation/viability whereas the saturated and monounsaturated fatty acids did not. Addition of palmitic acid had no significant effect on membrane fluidity whereas unsaturated fatty acids increased membrane fluidity in a dose-dependent manner. PUFAs strongly increased tumor cell lipid peroxidation in a dose-dependent manner. Saturated and monounsaturated fatty acids increased lipid peroxidation in this cell line only at high concentration. Preincubation of Caco-2 cells with vitamin E prevented the inhibition of proliferation/viability, the elevation of the MDA concentration and the increased membrane fluidity induced by PUFAs. Our data indicate that PUFAs are potent inhibitors of the growth of colon cancer cells in vitro.  相似文献   

6.
It is commonly accepted that brain phospholipids are highly enriched with long-chain polyunsaturated fatty acids (PUFAs). However, the evidence for this remains unclear. We used HPLC–MS to analyze the content and composition of phospholipids in rat brain and compared it to the heart, kidney, and liver. Phospholipids typically contain one PUFA, such as 18:2, 20:4, or 22:6, and one saturated fatty acid, such as 16:0 or 18:0. However, we found that brain phospholipids containing monounsaturated fatty acids in the place of PUFAs are highly elevated compared to phospholipids in the heart, kidney, and liver. The relative content of phospholipid containing PUFAs is ~ 60% in the brain, whereas it is over 90% in other tissues. The most abundant species of phosphatidylcholine (PC) is PC(16:0/18:1) in the brain, whereas PC(18:0/20:4) and PC(16:0/20:4) are predominated in other tissues. Moreover, several major species of plasmanyl and plasmenyl phosphatidylethanolamine are found to contain monounsaturated fatty acid in the brain only. Overall, our data clearly show that brain phospholipids are the least enriched with PUFAs of the four major organs, challenging the common belief that the brain is highly enriched with PUFAs.  相似文献   

7.
LDL enriched with either saturated, monounsaturated, n-6 polyunsaturated, or n-3 polyunsaturated fatty acids were used to study the effects of dietary fatty acids on macrophage cholesteryl ester (CE) accumulation, physical state, hydrolysis, and cholesterol efflux. Incubation of THP-1 macrophages with acetylated LDL (AcLDL) from each of the four diet groups resulted in both CE and triglyceride (TG) accumulation, in addition to alterations of cellular CE, TG, and phospholipid fatty acyl compositions reflective of the individual LDLs. Incubation with monounsaturated LDL resulted in significantly higher total and CE accumulation when compared with the other groups. After TG depletion, intracellular anisotropic lipid droplets were visible in all four groups, with 71% of the cells incubated with monounsaturated AcLDL containing anisotropic lipid droplets, compared with 30% of cells incubated with n-3 AcLDL. These physical state differences translated into higher rates of both CE hydrolysis and cholesterol efflux in the n-3 group. These data suggest that monounsaturated fatty acids may enhance atherosclerosis by increasing both cholesterol delivery to macrophage foam cells and the percentage of anisotropic lipid droplets, while n-3 PUFAs decrease atherosclerosis by creating more fluid cellular CE droplets that accelerate the rate of CE hydrolysis and the efflux of cholesterol from the cell.  相似文献   

8.
杨阳  罗坤  江超  吴建伟  朱贵明 《昆虫学报》2019,62(5):578-585
【目的】阐明家蝇 Musca domestica 幼虫对食物中各种多不饱和脂肪酸的富集能力以及代谢转化情况,并探究各种多不饱和脂肪酸对家蝇幼虫生长的影响。【方法】在基础饲料中添加不同浓度(3%, 6%和12%)的多不饱和脂肪酸(亚油酸、α-亚麻酸、花生四烯酸和二十二碳六烯酸)饲养经过脱脂传代培养的家蝇幼虫;提取家蝇幼虫的总脂肪酸,利用气相色谱仪进行检测和分析;测定统计幼虫体重,以分析多不饱和脂肪酸对家蝇幼虫生长的影响。【结果】亚油酸、α-亚麻酸和花生四烯酸在家蝇幼虫体内均能被富集,且它们的富集程度随着食物中多不饱和脂肪酸的添加浓度的升高而增加,其中亚油酸、α-亚麻酸和花生四烯酸在幼虫体内富集的最高含量(占体内总脂肪酸的比例)分别为21.93%, 16.13%和9.68%,而二十二碳六烯酸不能在家蝇幼虫体内富集,提示家蝇幼虫食物中添加的各种多不饱和脂肪酸经过代谢后并没有在其体内产生新的脂肪酸,而食物中添加的二十二碳六烯酸在家蝇幼虫体内被分解代谢后消除。饲喂α-亚麻酸及花生四烯酸后家蝇幼虫体重增长较为明显,其中6%α-亚麻酸添加组的幼虫体重显著高于对照组(取食脱脂饲料)和3%和12%α-亚麻酸添加组,3%和6%花生四烯酸添加组的幼虫体重显著高于对照组和12%花生四烯酸添加组。【结论】家蝇幼虫体内能够从食物中富集部分多不饱和脂肪酸,多不饱和脂肪酸碳链越长其富集程度越低直至不能富集,富集的多不饱和脂肪酸对家蝇幼虫生长有不同程度的影响。  相似文献   

9.
ACAT2, the enzyme responsible for the formation of cholesteryl esters incorporated into apolipoprotein B-containing lipoproteins by the small intestine and liver, forms predominantly cholesteryl oleate from acyl-CoA and free cholesterol. The accumulation of cholesteryl oleate in plasma lipoproteins has been found to be predictive of atherosclerosis. Accordingly, a method was developed in which fatty acyl-CoA subspecies could be extracted from mouse liver and quantified. Analyses were performed on liver tissue from mice fed one of four diets enriched with one particular type of dietary fatty acid: saturated, monounsaturated, n-3 polyunsaturated, or n-6 polyunsaturated. We found that the hepatic fatty acyl-CoA pools reflected the fatty acid composition of the diet fed. The highest percentage of fatty acyl-CoAs across all diet groups was in monoacyl-CoAs, and values were 36% and 46% for the n-3 and n-6 polyunsaturated diet groups and 55% and 62% in the saturated and monounsaturated diet groups, respectively. The percentage of hepatic acyl-CoA as oleoyl-CoA was also highly correlated to liver cholesteryl ester, plasma cholesterol, LDL molecular weight, and atherosclerosis extent. These data suggest that replacing monounsaturated with polyunsaturated fat can benefit coronary heart disease by reducing the availability of oleoyl-CoA in the substrate pool of hepatic ACAT2, thereby reducing cholesteryl oleate secretion and accumulation in plasma lipoproteins.  相似文献   

10.
Serum lipoprotein[a] (Lp[a]) is a strong risk factor for coronary heart disease. We therefore examined the effect of dietary fatty acid composition on serum Lp[a] levels in three strictly controlled experiments with healthy normocholesterolemic men and women. In Expt. I, 58 subjects consumed a control diet high in saturated fatty acids for 17 days. For the next 36 days, 6.5% of total energy intake from saturated fatty acids was replaced by monounsaturates plus polyunsaturates (monounsaturated fatty acid diet; n = 29) or by polyunsaturates alone (polyunsaturated fatty acid diet; n = 29). Both diets caused a slight, nonsignificant, increase in median Lp[a] levels, with no difference between diets. In Expt. II, 10% of energy from the cholesterol-raising saturated fatty acids (lauric, myristic, and palmitic acid) was replaced by oleic acid or by trans-monounsaturated fatty acids. Each of the 59 participants received each diet for 3 weeks in random order. The median level of Lp[a] was 26 mg/l on the saturated fatty acid diet; it increased to 32 mg/l (P less than 0.020) on the oleic acid diet and to 45 mg/l (P less than 0.001) on the trans-fatty acid diet. The difference in Lp[a] between the trans-fatty acid and the oleic acid diets was also highly significant (P less than 0.001). Expt. III involved 56 subjects; all received 8% of energy from stearic acid, from linoleic acid, or from trans-monounsaturates, for 3 weeks each. All other nutrients were equal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The fatty acid profile of hepatocytes and adipocytes is determined by the composition of the dietary lipids. It remains unclear which fatty acid components contribute to the development or reduction of insulin resistance. The present work examined the fatty acid composition of both tissues in sucrose-induced obese rats receiving fish oil to determine whether the effect of dietary (n-3) polyunsaturated fatty acids (PUFAs) on the reversion of metabolic syndrome in these rats is associated to changes in the fatty acid composition of hepatocyte and adipocyte membrane lipids. Animals with metabolic syndrome were divided into a corn–canola oil diet group and a fish oil diet group, and tissues fatty acids composition were analyzed after 6 weeks of dietary treatment. Fatty acid profiles of the total membrane lipids were modified by the fatty acid composition of the diets fed to rats. N-3 PUFAs levels in animals receiving the fish oil diet plus sucrose in drinking water were significantly higher than in animals under corn–canola oil diets. It is concluded that in sucrose-induced obese rats, consumption of dietary fish oil had beneficial effects on the metabolic syndrome and that such effects would be conditioned by the changes in the n-3 PUFAs composition in hepatic and adipose tissues because they alter membrane properties and modify the type of substrates available for the production of active lipid metabolites acting on insulin resistance and obesity.  相似文献   

12.
The effect of dietary lipid on the fatty acid composition of muscle, testis and ovary of cultured sweet smelt, Plecoglossus altivelis, was investigated and compared with that of wild sweet smelt. Cultured fish were fed three different diets for 12 weeks: a control diet rich in docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) (CO group); a diet deficient in DHA and EPA (DP group); and a diet rich in alpha-linolenic acid (ALA, 18:3n-3), but deficient in DHA and EPA (LP group). The fatty acid composition of muscle and gonad lipids was related with dietary fatty acids. Despite the difference in DHA and EPA content in the diets, muscles and gonads, respectively, contained almost equal levels of DHA and EPA in each CO and DP group. However, the muscle and gonad of the LP group showed a lower level of DHA than other groups, due to having the highest level of ALA. In the wild fish muscle, the DHA content was similar to that of CO and DP groups, but the EPA content showed the highest level in all groups. There was no difference in the muscle fatty acid proportions between male and female. On the other hand, the testes of cultured and wild fish were rich in DHA, EPA, docosapentaenoic acid and arachidonic acid, while ovaries were rich in oleic, palmitoleic, linoleic acids and ALA. Moreover, of all the groups, the fish fatty acid composition of the LP group was closest to that of wild fish. These results indicate that in the sweet smelt, tissue n-3 polyunsaturated fatty acids (PUFAs) greater than C20 can be synthesized from dietary precursors and special fatty acids are preferentially accumulated to the testis or ovary, respectively, to play different physiological functions.  相似文献   

13.
Atherosclerotic cardiovascular disease is one of the major leading global causes of death. Growing evidence has demonstrated that gut microbiota (GM) and its metabolites play a pivotal role in the onset and progression of atherosclerosis (AS), now known as GM-artery axis. There are interactions between dietary lipids and GM, which ultimately affect GM and its metabolites. Given these two aspects, the GM-artery axis may play a mediating role between dietary lipids and AS. Diets rich in saturated fatty acids (SFAs), omega-6 polyunsaturated fatty acids (n-6 PUFAs), industrial trans fatty acids (TFAs), and cholesterol can increase the levels of atherogenic microbes and metabolites, whereas monounsaturated fatty acids (MUFAs), ruminant TFAs, and phytosterols (PS) can increase the levels of antiatherogenic microbes and metabolites. Actually, dietary phosphatidylcholine (PC), sphingomyelin (SM), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been demonstrated to affect AS via the GM-artery axis. Therefore, that GM-artery axis acts as a communication bridge between dietary lipids and AS. Herein, we will describe the molecular mechanism of GM-artery axis in AS and discuss the complex interactions between dietary lipids and GM. In particular, we will highlight the evidence and potential mechanisms of dietary lipids affecting AS via GM-artery axis.  相似文献   

14.
This study investigates the effects of monounsaturated and polyunsaturated fatty acids from different fat sources (High Oleic Canola, Canola, Canola–Flaxseed (3:1 blend), Safflower, or Soybean Oil, or a Lard-based diet) on adipose tissue function and markers of inflammation in Obese Prone rats fed high-fat (55% energy) diets for 12 weeks. Adipose tissue fatty acid composition reflected the dietary fatty acid profiles. Protein levels of fatty acid synthase, but not mRNA levels, were lower in adipose tissue of all groups compared to the Lard group. Adiponectin and fatty acid receptors GPR41 and GPR43 protein levels were also altered, but other metabolic and inflammatory mediators in adipose tissue and serum were unchanged among groups. Overall, rats fed vegetable oil- or lard-based high-fat diets appear to be largely resistant to major phenotypic changes when the dietary fat composition is altered, providing little support for the importance of specific fatty acid profiles in the context of a high-fat diet.  相似文献   

15.
PURPOSE OF REVIEW: The purpose is to evaluate recent findings concerning dietary fats and the risk of coronary heart disease. Monounsaturated fatty acids are often regarded as healthy, and many have recommended their consumption instead of saturated fatty acids and polyunsaturated fatty acids. Support for the benefits of monounsaturated fatty acids comes largely from epidemiological data, but they have not been an isolated, single variable in such studies. Beneficial effects on the plasma lipid profile and LDL oxidation rates have also been identified. More recent findings have questioned the impact of suspected beneficial effects on coronary heart disease, indicating that studies with more conclusive endpoints are needed. RECENT FINDINGS: Human dietary studies often produce conflicting results regarding the effects of monounsaturated and polyunsaturated fatty acids on the plasma lipid profile. Monounsaturated and polyunsaturated fatty acids both appear to reduce total and LDL-cholesterol compared with saturated fatty acids; however, the effect on HDL is less clear. Lowered HDL levels in response to low-fat or polyunsaturated fatty acid diets and the decreased protection from oxidation of polyunsaturated fatty acid-enriched LDL may not indicate increased coronary heart disease risk. Several lines of evidence also suggest that polyunsaturated fatty acids may protect against atherosclerosis. SUMMARY: Recommendations to substitute monounsaturated fatty acids for polyunsaturated fatty acids or a low-fat carbohydrate diet seem premature without more research into the effects on the development of atherosclerosis. Current opinions favoring monounsaturated fatty acids are based on epidemiological data and risk factor analysis, but are questioned by the demonstrated detrimental effects on atherosclerosis in animal models.  相似文献   

16.
Intrauterine growth retardation (IUGR) induced by ligation of one uterine artery on day 17 of pregnancy in the rat lead to major abnormalities in the fatty acid content of neurons and oligodendrocytes but not in astrocytes. In neurons from IUGR rats, monounsaturated fatty acids were decreased; in the polyunsaturated series, ω-3 fatty acids were increased and Ω-6 fatty acids were decreased. In oligodendrocytes, monounsaturated fatty acids were also decreased, but the modifications in polyunsaturated fatty acids were the opposite of those in neurons: Ω-3 being decreased and w-6 increased. Although the animals received a normal diet after birth, the alterations were still present in adulthood. In addition, fatty acid composition of brain cells is a very indicative criterion of brain maturation.  相似文献   

17.
Changes in microsomal fatty acid composition, delta 9- and delta 6-desaturase activities and cholesterol and phosphorus liver content were studied in dogs fed olive and sunflower oil diets. No changes were observed in the saturated fatty acids between dietary groups. The level of monounsaturated fatty acids was more elevated in animals fed the OO diet, because of its high relative content in this diet although the in vitro delta 9-desaturase activity was similar in microsomes from the two groups. The proportion of arachidonic acid was similar in SO and OO fed animals. This similar level occurred despite a significant increase in the level of linoleic acid in membrane lipids as a result of feeding the SO supplement. The in vitro delta 6-desaturase activity in liver microsomes showed no differences between dogs fed the two diets. Thus, the higher desaturation presented in vivo by microsomes from OO group may be related to the inhibition by linoleic acid of delta 6-desaturase in dogs fed the SO diet. The polyunsaturated fatty acids (PUFA) from the n-3 series were higher in microsomal phosphatidylcholine and phosphatidylethanolamine from animals fed the OO supplemented diet. The cholesterol/phosphorus molar ratio was higher in the SO group in which the unsaturation index was only slightly affected in phospholipids.  相似文献   

18.
Liu T  Hougen H  Vollmer AC  Hiebert SM 《Anaerobe》2012,18(3):331-337
BackgroundMammalian gut microbiota have been implicated in a variety of functions including the breakdown of ingested nutrients, the regulation of energy intake and storage, the control of immune system development and activity, and the synthesis of novel chemicals. Previous studies have shown that feeding mammalian hosts a high-fat diet shifts gut bacteria at the phylum level to reduce the ratio of Bacteroidetes-to-Firmicutes, while feeding hosts a fat-restricted diet increases this ratio. However, few studies have investigated the differential effects of fatty acid type on gut bacterial profile.MethodsOver a 14-week period, Mus musculus were fed a diet rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs), omega-6 polyunsaturated fatty acids (n-6 PUFAs), or saturated fatty acids (SFAs). Fecal pellets were collected before and after the treatment period from 12 randomly selected mice (4 per treatment group). Bacterial DNA was extracted from the pellets and characterized by analysis of the hypervariable V3 region of the 16S rRNA. Nominal logistic regression models were used to assess shifts in microbial profile at the phylum and family levels in response to diet.ResultsA significant decrease in the proportion of phylum Bacteroidetes species was observed for mice fed any of the three diets over time. However, the SFA-rich diet group showed a significantly greater decrease in Bacteroidetes proportion (?28%) than did either the n-3 PUFA group (?10%) or the n-6 PUFA group (?12%). At the family level, a significant decrease in proportion of Porphyromonadaceae was observed for mice fed the n-6 PUFA-rich diet, and a significant decrease in proportion of Lachnospiraceae was observed for mice fed the SFA-rich diet. There was no significant effect of diet type on body mass change.ConclusionOur results indicate that SFAs have stronger effects than PUFAs in shifting gut microbiota profiles toward those typical of obese individuals, and that dietary fatty acid saturation influences shifts in gut microbiota independently of changes in body mass.  相似文献   

19.
We evaluated the influence of a diet supplemented with olive oil (20% by weight) (OO) on the activity of glutamyl aminopeptidase (GluAP) and aspartyl aminopeptidase (AspAP), which are involved in angiotensin metabolism. Serum concentrations of total cholesterol and fatty acids were also measured. Animals fed on the OO diet gained significantly more weight than did controls from the second week until the end of the feeding period. Serum total cholesterol concentration was significantly higher in the OO group than in control mice. Total monounsaturated fatty acids increased in OO-fed animals, but total saturated fatty acids decreased. No differences between the two groups were observed for total polyunsaturated fatty acids. Serum from animals fed on the OO diet contained significantly lower proportions of myristic, pentadecanoic, palmitic, palmitoleic, vaccenic, alpha-linolenic, gamma-linolenic, and 11,14-eicosadienoic acids than did serum from control animals. In contrast, the OO group had higher levels of oleic, stearic, and gondoic acids. GluAP activity decreased significantly in the serum of OO-fed animals. In these animals soluble AspAP activity was significantly higher in the testis, and significantly lower in the lung and adrenal, in comparison to controls. Membrane-bound AspAP activity was higher in the testis and atrium, and lower in lung, in the OO group. Soluble GluAP activity was significantly lower in the testis of OO-fed animals. Membrane-bound GluAP activity did not differ between the two groups in any of the tissues analyzed. Serum AspAP and GluAP activities correlated negatively with palmitoleic and vaccenic acid respectively in the OO group. However, no significant correlations were found in the control group. These results may reflect functional changes in the renin-angiotensin system in the serum, adrenal, testis, lung and atrium after feeding with a diet enriched in olive oil.  相似文献   

20.
Two bivalve species Crassostrea gigas and Ruditapes philippinarum were fed eight weeks with three mono-specific algae diets: T-Isochrysis galbana, Tetraselmis suecica, Chaetoceros calcitrans, selected on the basis of their polyunsaturated fatty acid (PUFA) composition. The incorporation and the modification of dietary fatty acids in C. gigas and R. philippinarum gill lipids were analysed and compared. Essential PUFA (20:4n-6, 20:5n-3 and 22:6n-3) and non-methylene interrupted PUFAs (known to be synthesised from monounsaturated precursors) contents of gill polar lipid of both species were greatly influenced by the dietary conditioning. Interestingly, oysters and clams responded differentially to the mono-specific diets. Oysters maintained higher 20:5n-3 level and higher 22:2j/22:i and n-7/n-9 ratio in gill polar lipids than clams. To better discriminate dietary and species influences on the fatty acid composition, a Principal Component Analysis followed by a MANOVA on the two most explicative components was performed. These statistical analyses showed that difference in fatty acid compositions attributable to species were just as significant as the diet inputs. The differences of gill fatty acid compositions between oysters and clams are speculated to result of an intrinsic species characteristic and perhaps of a group characteristic: Fillibranch vs. Eulamellibranch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号