首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor for advanced glycation end products (RAGE) has been proposed as a signal transduction receptor to promote neurite outgrowth and cell migration, by its interaction with a neurite outgrowth promoting protein, Amphoterin. Amphoterin has been shown to interact with sulfoglucuronyl carbohydrate (SGC). The developmental expression of RAGE, Amphoterin and SGC was studied in pre-natal and post-natal mouse cerebellum to establish their cellular and subcellular localization and function. The amount of RAGE in the cerebellum increased with age. RAGE was expressed pre-natally in the external germinal layer and post-natally in the plasma membranes of the granule neurons of the external and internal granule cell layers and in Purkinje cells. Immunocytochemical analysis by high magnification confocal microscopy showed that RAGE was co-expressed with Amphoterin and SGC in the cell surfaces of granule neurons. This co-localization of RAGE, Amphoterin, and SGC was confirmed in isolated and cultured granule neurons and in migrating granule neurons in explant cultures. Anti-RAGE antibodies inhibited neurite outgrowth and cell migration in explant and slice cultures, similar to anti-Amphoterin and anti-SGC antibodies shown previously. The results suggest that RAGE could act as a signaling molecule for neurite outgrowth and cell migration by its interaction with Amphoterin and that of Amphoterin with SGC.  相似文献   

2.
Sulfoglucuronyl carbohydrate (SGC), reactive with HNK-1 antibody, is expressed in several glycolipids, glycoproteins and proteoglycans of the nervous system. The interaction of SGC with SGC-binding protein, SBP-1 has been implicated in cell-cell recognition, neurite outgrowth and neuronal migration during development. In sulfotransferase (ST) null mutant mice, which lack SGC, synaptic transmission in pyramidal cells of the hippocampus was increased and long-term potentiation was reduced. However, ST null mice are viable, fertile and have wild type anatomy of all major brain areas and many non-neural organs. Failure to observe severe phenotype in the ST null mice prompted us to determine the compensatory molecular replacement of SGC by analyzing the carbohydrate of glycolipids and glycoprotefins of the mutant nervous system. In the ST null mice, SGC containing molecules were absent and they were replaced by the precursor glucuronyl carbohydrate (GC) containing molecules. Other relevant glycolipids and proteins were not affected. The GC molecules in the mutant were localized at the same anatomical sites as the SGC molecules in the wild type. In vitro binding studies showed that similar to sulfoglucuronyl glycolipids, glucuronyl glycolipids interacted with SBP-1, but with a lower binding capacity. In vitro studies with explant cultures of cerebellum indicated that neurite outgrowth and cell migration were not significantly affected, possibly due to interaction of SBP-1 with the GC molecules. The results indicated that in vivo SBP-1–GC interaction was sufficient enough for normal neurite outgrowth and cell migration in the mutant and thus having a minimal abnormal phenotype.  相似文献   

3.
4.
Sulfoglucuronyl carbohydrate (SGC), reactive with HNK‐1 antibody, is expressed in several glycolipids, glycoproteins and proteoglycans of the nervous system. The interaction of SGC with SGC‐binding protein, SBP‐1 has been implicated in cell‐cell recognition, neurite outgrowth and neuronal migration during development. In sulfotransferase (ST) null mutant mice, which lack SGC, synaptic transmission in pyramidal cells of the hippocampus was increased and long‐term potentiation was reduced. However, ST null mice are viable, fertile and have wild type anatomy of all major brain areas and many non‐neural organs. Failure to observe severe phenotype in the ST null mice prompted us to determine the compensatory molecular replacement of SGC by analyzing the carbohydrate of glycolipids and glycoprotefins of the mutant nervous system. In the ST null mice, SGC containing molecules were absent and they were replaced by the precursor glucuronyl carbohydrate (GC) containing molecules. Other relevant glycolipids and proteins were not affected. The GC molecules in the mutant were localized at the same anatomical sites as the SGC molecules in the wild type. In vitro binding studies showed that similar to sulfoglucuronyl glycolipids, glucuronyl glycolipids interacted with SBP‐1, but with a lower binding capacity. In vitro studies with explant cultures of cerebellum indicated that neurite outgrowth and cell migration were not significantly affected, possibly due to interaction of SBP‐1 with the GC molecules. The results indicated that in vivo SBP‐1–GC interaction was sufficient enough for normal neurite outgrowth and cell migration in the mutant and thus having a minimal abnormal phenotype.  相似文献   

5.
Sulfoglucuronyl carbohydrate (SGC), reactive with antibody against human natural killer cell antigen, is expressed in several glycolipids, glycoproteins and proteoglycans of the nervous system and has been implicated in cell-cell recognition, neurite outgrowth and neuronal migration during development, through its interaction with SGC-binding protein (SBP) 1. However, sulfotransferase (ST) null mutant mice, which lack SGC, were shown to have normal development with usual gross anatomy of the nervous system and other organs. Failure to observe a severe phenotype in the ST null mice prompted us to determine the compensatory molecular replacement of SGC by analyzing the carbohydrate of glycolipids and glycoproteins of the ST mutant nervous system. In the ST null mice, SGC-containing molecules were absent; instead the precursor glucuronyl carbohydrate (GC)-containing molecules accumulated. Other relevant glycolipids and proteins were not affected. The GC molecules in the mutant were localized at the same anatomical sites in the nervous system as the SGC molecules in the wild type. In vitro binding studies showed that, similar to sulfoglucuronyl glycolipids, glucuronyl glycolipids interacted with SBP-1, but with a lower binding capacity. In vitro studies with explant cultures of cerebellum indicated that neurite outgrowth and cell migration were not significantly affected in the mutant, possibly owing to interaction of SBP-1 with GC molecules. The results suggested that in vivo SBP-1-GC interaction was sufficient to allow normal neurite outgrowth and cell migration in the mutant, giving rise to a wild-type phenotype. However, the role of other compensatory molecules involved in these processes cannot be completely ruled out.  相似文献   

6.
HNK-1 antibody reactive carbohydrate epitope carried by glycolipids and glycoproteins has been shown to be involved in cell to cell interactions. It has been proposed that the HNK-1 reactive 3-sulfoglucuronyl carbohydrate epitope in glycolipids may interact with a cell surface receptor to promote the biological response in the developing nervous system. The possible occurrence of such a receptor was examined in rat nervous system. A specific binding of sulfoglycolipids to a 30 kD protein from adult rat cerebellum is described. Little binding was found with neutral glycolipids and gangliosides. The 30 kD protein from cerebellum was partially purified on a sulfatide-octyl-Sepharose affinity column. Binding of sulfoglucuronyl glycolipids to a similar 30 kD protein from forebrain previously identified as amphoterin is also shown. Amphoterin is developmentally regulated and is involved in neural cell adhesion and neurite extension.  相似文献   

7.
Monoclonal antibody HNK-1-reactive carbohydrate epitope is expressed on proteins, proteoglycans, and sulfoglucuronyl glycolipids (SGGLs). The developmental expression of these HNK-1-reactive antigens was studied in rat cerebellum. The expression of sulfoglucuronyl lacto-N-neotetraosylceramide (SGGL-1) was biphasic with an initial maximum at postnatal day one (PD 1), followed by a second rise in the level at PD 20. The level of sulfoglucuronyl lacto-N-norhexaosyl ceramide (SGGL-2) in cerebellum was low until PD 15 and then increased to a plateau at PD 20. The levels of SGGLs increased during postnatal development of the cerebellum, contrary to their diminishing expression in the cerebral cortex. The expression of HNK-1-reactive glycoproteins decreased with development of the rat cerebellum from PD 1. Several HNK-1-reactive glycoproteins with apparent molecular masses between 150 and 325 kDa were visualized between PD 1 and PD 10. However, beyond PD 10, only two HNK-1-reactive bands at 160 and 180 kDa remained. The latter appeared to be neural cell adhesion molecule, N-CAM-180. A diffuse HNK-1-reactive band seen at the top of polyacrylamide electrophoretic gels was due mostly to proteoglycans. This band increased in its reactivity to HNK-1 between PD 15 and PD 25 and then decreased in the adult cerebellum. The lipid antigens were shown by two complementary methodologies to be localized primarily in the molecular layer and deep cerebellar nuclei as opposed to the granular layer and white matter. A fixation procedure which eliminates HNK-1-reactive epitope on glycoproteins and proteoglycans, but does not affect glycolipids, allowed selective immunoreactivity in the molecular layer and deep cerebellar nuclei.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A new monoclonal antibody (NS24) directed to the N-acetylneuraminyl alpha 2-3Gal beta 1-4GlcNAc residue in type II sugar chain of N-acetylneuraminyllactoneotetraosylceramide [sialylparagloboside, IV3(NeuAc)nLc4Cer] was prepared by hybridoma technique. Liposomes composed of dipalmitoylphosphatidylcholine, cholesterol, IV3(NeuAc)nLc4Cer, and lipopolysaccharides from Salmonella minnesota R595 were used for immunization with IV3(NeuAc)nLc4Cer isolated from human erythrocytes. This method allowed the fusion of spleen cells of immunized mouse with myeloma cells only three days after immunization. NS24 reacted specifically to both naturally occurring and chemically synthesized IV3-(NeuAc)nLc4Cer, whereas it has no reactivity to structurally related gangliosides, such as IV6(NeuAc)nLc4Cer, N-glycolylneuraminyl alpha 2-3lactoneotetraosylceramide [IV3(NeuGc)-nLc4Cer], i-active ganglioside [VI3(NeuAc)nLc6Cer], I-active ganglioside [VIII3(NeuAc)-VI3(NeuAc)IV6kladoLc8Cer], GM4(NeuAc), GM3(NeuAc), GM3(NeuGc), GM1b(NeuAc), GD3-(NeuAc), other ganglio-series gangliosides, sulfatide, and paragloboside (nLc4Cer). Synthetic N-acetylneuraminyl alpha 2-3lactotetraosylceramide [IV3(NeuAc)Lc4Cer] and its asialo-derivative (Lc4Cer) carrying type I sugar chain also showed no reaction with NS24. One to 100 pmol of IV3(NeuAc)nLc4Cer was detected dose-dependently by a thin-layer chromatography/enzyme immunostaining procedure. Human gastric carcinomas showed positive reactions with NS24 immunochemically and histochemically. NS24 reacted preferentially with poorly differentiated adenocarcinomas rather than well differentiated ones.  相似文献   

9.
Receptor for advanced glycation end products (RAGE) mediates neurite outgrowth and cell migration upon stimulation with its ligand, amphoterin. We show here that RAGE-dependent changes in cell morphology are associated with proliferation arrest and changes in gene expression in neuroblastoma cells. Chromogranin B, a component of secretory vesicles in endocrine cells and neurons, was found to be up-regulated by RAGE signaling during differentiation of neuroblastoma cells along with the two other members of the chromogranin family, chromogranin A and secretogranin II. Ligation of RAGE by amphoterin lead to rapid phosphorylation and nuclear localization of cyclic AMP response element-binding protein (CREB), a major regulator of chromogranin expression. Furthermore, inhibition of ERK1/2-Rsk2-dependent CREB phosphorylation efficiently inhibited up-regulation of chromogranin gene expression upon RAGE activation. To further study the effects of RAGE and amphoterin on cellular differentiation, we stimulated embryonic stem cells expressing RAGE or a signaling-deficient mutant of RAGE with amphoterin. Amphoterin was found to promote RAGE-dependent neuronal differentiation of embryonic stem cells characterized by up-regulation of neuronal markers light neurofilament protein and beta-III-tubulin, activation of CREB, and increased expression of chromogranins A and B. These data suggest that RAGE signaling is capable of driving neuronal differentiation involving CREB activation and induction of chromogranin expression.  相似文献   

10.
Sulfoglucuronyl Glycolipids Bind Laminin   总被引:5,自引:1,他引:4  
Previous studies have shown that HNK-1 antibody reactive glycoconjugates, including the glycolipids 3-sulfoglucuronylneolactotetraosylceramide (SGGL-1) and 3-sulfoglucuronylneolactohexaosylceramide (SGGL-2), are temporally and spatially regulated antigens in the developing mammalian cortex. Extracellular matrix glycoprotein laminin is involved in cell adhesion by interacting with cell surface components and also promotes neurite outgrowth. Laminin has been shown to bind sulfatide. The interaction of sulfated glycolipids SGGL-1 and SGGL-2 with laminin was studied by employing a solid-phase radioimmunoassay and by HPTLC-immunoblotting. Laminin binding was detected with anti-laminin antibodies followed by 125I-labelled Protein A and autoradiography. Laminin binds SGGL-1 and SGGL-2, besides sulfatide, but does not bind significantly gangliosides and neutral glycolipids. The binding of SGGLs to laminin was two to three times less compared to sulfatide when compared on a molar basis. Desulfation of SGGLs and sulfatide by mild acid treatment resulted in abolition of laminin binding. On the other hand, chemical modification of glucuronic acid moiety by either esterification or reduction of the carboxyl group had no effect. This showed that the sulfate group was essential for laminin binding. Of the various glycosaminoglycans tested, only heparin inhibited the binding of laminin to SGGLs and sulfatide in a dose-dependent manner. This indicated that SGGLs and sulfatide bind to the heparin binding site present in the laminin molecule. The availability of HNK-1 reactive glycolipids and glycoproteins such as SGGLs and several neural cell adhesion molecules to bind laminin at critical stages of neural development may serve as important physiological signals.  相似文献   

11.
In this study we show that embryonic neurite growth-promoting protein amphoterin binds to carboxylated N -glycans previously identified on mammalian endothelial cells. Since amphoterin is a ligand for the receptor for advanced glycation end products (RAGE), and the ligand-binding V-domain of the receptor contains two potential N -glycosylation sites, we hypothesized that N -glycans on RAGE may mediate its interactions with amphoterin. In support of this, anti-carboxylate antibody mAbGB3.1 immunoprecipitates bovine RAGE, and PNGase F treatment reduces its molecular mass by 4.5 kDa, suggesting that the native receptor is a glycoprotein. The binding potential of amphoterin to RAGE decreases significantly in presence of soluble carboxylated glycans or when the receptor is deglycosylated. Oligosaccharide analysis shows that RAGE contains complex type anionic N -glycans with non-sialic acid carboxylate groups, but not the HNK-1 (3-sulfoglucuronyl beta1-3 galactoside) epitope. Consistent with the functional localization of RAGE and amphoterin at the leading edges of developing neurons, mAbGB3.1 stains axons and growth cones of mouse embryonic cortical neurons, and inhibits neurite outgrowth on amphoterin matrix. The carboxylated glycans themselves promote neurite outgrowth in embryonic neurons and RAGE-transfected neuroblastoma cells. This outgrowth requires full-length, signalling-competent RAGE, as cells expressing cytoplasmic domain-deleted RAGE are unresponsive. These results indicate that carboxylated N -glycans on RAGE play an important functional role in amphoterin-RAGE-mediated signalling.  相似文献   

12.
A significant reduction in the content of two members of the sulfoglucuronyl-neolacto series of glycolipids (SGGLs), 3-sulfoglucuronyl-lacto-N-neotetraosylceramide (SGGL-1) and 3-sulfoglucuronyl lacto-N-norhexaosylceramide (SGGL-2), in the cerebellum of the Purkinje cell abnormality mutants, Purkinje cell degeneration (pcd/pcd), lurcher (Lc/+), and staggerer (sg/sg), was also confirmed in the mildly affected nervous (nr/nr) mutant. The expression of SGGLs was studied during development of the pcd/pcd mutant cerebellum, and it was shown that the rate of decline in the level of SGGLs practically coincided with the loss of Purkinje cell perikarya. This indicated that SGGLs are primarily localized in Purkinje cells and that initially, at least, there is no genetic defect in the biosynthesis of SGGLs in the mutant. The precursors of SGGLs, viz., lacto-N-neotetraosylceramide (paragloboside) and lacto-N-norhexaosylceramide, as well as other glycolipids derived from these precursors, such as X-determinant fucoglycolipids and disialosyllacto-N-neotetraosylceramide, were also present in normal cerebellum. Levels of paragloboside and its other derivatives, similar to SGGLs, were also significantly reduced in the Purkinje cell abnormality mutants pcd/pcd, sg/sg, Lc/+, and nr/nr but were normal in other cerebellar mutants, such as quaking (qk/qk), weaver (wv/wv), and reeler (rl/rl), where Purkinje cells are not involved. Thus, the entire paragloboside family of glycolipids is primarily associated with Purkinje cells in the cerebellum. Although levels of monoclonal antibody HNK-1-reactive glycolipids were reduced in the Purkinje cell abnormality mutants, HNK-1-reactive glycoproteins were not affected in these mutants.  相似文献   

13.
Mannose-binding protein was purified from human serum to apparent homogeneity by affinity chromatography on mannose-Sepharose, followed by affinity chromatography on underivatized Sepharose. Approximately 0.4 mg protein was obtained from 1 liter serum. The glycosphingolipid-binding specificity of the purified protein was examined by chromatogram overlay and solid phase assays. It binds with high affinity to Lc-3Cer (GlcNAc beta 1-3Gal beta 1-4Glc beta 1-1ceramide) and n-Lc5Cer (GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-1ceramide). It does not bind to many other glycosphingolipids without terminal N-acetylglucosamine residues that were tested. Thus, these data suggest that N-acetylglucosamine-terminated glycosphingolipids may serve as cell-surface attachment sites for mannose-binding protein in vivo. In addition, the binding specificity of the protein can be used as a sensitive probe for determining the levels of Lc3Cer and nLc5Cer in tissues, as it exhibits half-maximal binding to about 10 pmol of these lipids in solid phase assays, and detects less than 20 pmol of Lc3Cer in chromatogram overlay assays. This technique was utilized to demonstrate that one sample of chronic myeloid leukemia cells contains both Lc3Cer and nLc5Cer.  相似文献   

14.
Sulfoglucuronyl carbohydrate linked to neolactotetraose reacts with HNK-1 antibody. The HNK-1 carbohydrate epitope is found in two major glycolipids, several glycoproteins and in some proteoglycans of the nervous system. Most of the HNK-1 reactive glycoproteins so far identified are neural cell adhesion molecules and/or are involved in cell-cell interactions. HNK-1 carbohydrate is highly immunogenic. Several HNK-1-like antibodies, including IgM of some patients with plasma cell abnormalities and having peripheral neuropathy, have been described. This article summarizes published work mainly on sulfoglucuronyl glycolipids, SGGLs and covers: structural requirements of the carbohydrate epitope for binding to HNK-1 and human antibodies, expression of the lipids in various neural areas, stage and region specific developmental expression in CNS and PNS, immunocytochemical localization, loss of expression in Purkinje cell abnormality murine mutations, biosynthetic regulation of expression by a single enzyme N-acetylglucosaminyl transferase, identification of receptor-like carbohydrate binding neural proteins (lectins), and perceived role of the carbohydrate in physiological functions. The latter includes role in: pathogenesis of certain peripheral neuropathies, in migration of neural crest cells, as a ligand in cell-cell adhesion/interaction and as a promoter of neurite outgrowth for motor neurons. Multiple expression of HNK-1 carbohydrate in several molecules and in various neural cell types at specific stages of nervous system development has puzzled investigators as to its specific biological function, but this may also suggest its importance in multiple systems during cell differentiation and migration processes.Special issue dedicated to Dr. Marjorie B. Lees.  相似文献   

15.
Human meconium was found to contain two kinds of gangliosides with the same carbohydrate sequence belonging to the lacto-series. They were detected by TLC-immunostaining with monoclonal antibodies directed to the NeuAc alpha 2-6Gal and Lc4Cer structures. One of these two gangliosides, a major one, which migrated on TLC to a position below that of standard IV3NeuAcnLc4Cer from human erythrocytes, reacted with the antibody to NeuAc alpha 2-6Gal. The other minor one, which migrated on TLC to a position corresponding to standard IV3NeuAcnLc4Cer, was detected with the antibody to Lc4Cer only when the plate, on which the individual gangliosides were separated, was subjected to prior treatment with Vibrio cholerae sialidase. The structures of the gangliosides, each identified by means of permethylation anaylsis with Vibrio cholerae sialidase. The structures of the gangliosides, each identified by means of permethylation anaylsis and enzyme treatment after isolation with antibody monitoring, were shown to be IV6NeuAcnLc4Cer for the former and IV3NeuAcLc4Cer for the latter, indicating that the lacto-series type 2 (nLc4Cer) and 1 (Lc4Cer) chains are sialylated at different linkages, alpha 2-6 and alpha 2-3, respectively. IV6NeuAcLc4Cer and IV3NeuAcnLc4Cer were not detected, even in trace amounts, on TLC-immunostaining with the monoclonal antibodies. The concentrations of IV6NeuAcnLc4Cer and IV3NeuAcLc4Cer were 448 and 18 nmol/g dry wt of human meconium.  相似文献   

16.
Prominent neurite outgrowth induced by genipin, a plant-derived iridoid, was substantially inhibited by addition of NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide (NO) synthase (NOS) inhibitor, and carboxy-PTIO, an NO scavenger, in PC12h cells. Increases of the NADPH-diaphorase activity and neuronal and inducible NOS proteins in cells preceded the neurite outgrowth after addition of genipin to medium. NO donors could induce the neurite outgrowth dose-dependently in the cells. On the other hand, an inhibitor of soluble guanylate cyclase (SGC), which is known to be a stimulatory target of NO, abolished greatly the genipin-induced neurite outgrowth. Addition of extracellular signal-regulated kinase (ERK) kinase inhibitors could almost completely abolish the neurite induction. L-NAME remarkably depressed genipin-stimulated phosphorylation of ERK-1 and -2. A neuritogenic effect of nerve growth factor (NGF) in PC12h cells was also remarkably inhibited by the NOS inhibitor, NO scavenger and SGC inhibitor. These findings suggest that induced NO production followed by cyclic GMP-mediated stimulation of the mitogen-activated protein kinase (MAPK) cascade is implicated in the neuritogenesis by genipin and NGF in PC12h cells.  相似文献   

17.
Retinoic acid (RA) treatment of embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) induces growth arrest and terminal differentiation along the neuronal pathway. In the present study, we provide a functional link between RA and p27 function in the control of neuronal differentiation in NT2/D1 cells. We report that RA enhances p27 expression, which results in increased association with cyclin E/cyclin-dependent kinase 2 complexes and suppression of their activity; however, antisense clones, which have greatly reduced RA-dependent p27 inducibility (NT2-p27AS), continue to synthesize DNA and are unable to differentiate properly in response to RA as determined by lack of neurite outgrowth and by the failure to modify surface antigens. As to the mechanism involved in RA-dependent p27 upregulation, our data support the concept that RA reduces p27 protein degradation through the ubiquitin/proteasome-dependent pathway. Taken together, these findings demonstrate that in embryonal carcinoma cells, p27 expression is required for growth arrest and proper neuronal differentiation.  相似文献   

18.
A simple, sensitive, and specific assay method for glycosyltransferase and glycosidase activities has been established by means of an enzyme-linked immunosorbent assay (ELISA) using monoclonal antibody, H-11 directed to lactoneotetraosylceramide (nLc4Cer). Enzyme activity was determined by assaying the amount of reaction product, nLc4Cer with the ELISA method. For the assay of galactosyltransferase activity, lactotriaosylceramide (Lc3Cer) immobilized on a 96-well microtiter plate was incubated with bovine milk galactosyltransferase in cacodylate buffer (pH 6.8) containing Triton CF-54, Mn2+, and UDP-galactose. Optimum incubation conditions for the enzyme were determined. Glycosidase activity was also assayed by the ELISA method by using Clostridium perfringens sialidase and neolacto-series gangliosides as substrates, and the substrate specificities towards the gangliosides were examined. By this method, 3-100 pmol of reaction product could be determined. The assay method has several advantages as follows: 1, the method is simple; 2, separation of the reaction product is not required; 3, quantification and identification of the reaction product were done simultaneously; 4, naturally occurring substrates are available (especially for glycosidase); 5, many samples can be assayed in one microplate; 6, sensitivity is very high. The present method was applied for the detection of galactosyltransferase in human sera. Significant elevations of the galactosyltransferase levels were observed in the sera from cancer patients. The formation of nLc4Cer was confirmed by employing the TLC-immunostaining method for bands of Lc3Cer after incubation of the bands with serum and cofactors on an HPTLC plate.  相似文献   

19.
20.
The distinction between the different classes of glycolipids is conditioned by the action of specific core transferases. The entry point for lacto-series glycolipids is catalyzed by the beta1,3 N-acetylglucosaminyltransferase GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (Lc3) synthase enzyme. The Lc3 synthase activity has been shown to be regulated during development, especially during brain morphogenesis. Here, we report the molecular cloning of a mouse gene encoding an Lc3 synthase enzyme. The mouse cDNA included an open reading frame of 1131 base pairs encoding a protein of 376 amino acids. The Lc3 synthase protein shared several structural motifs previously identified in the members of the beta1,3 glycosyltransferase superfamily. The Lc3 synthase enzyme efficiently utilized the lactosyl ceramide glycolipid acceptor. The identity of the reaction products of Lc3 synthase-transfected CHOP2/1 cells was confirmed by thin-layer chromatography immunostaining using antibodies TE-8 and 1B2 that recognize Lc3 and Gal(beta1,4)GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (nLc4) structures, respectively. In addition to the initiating activity for lacto-chain synthesis, the Lc3 synthase could extend the terminal N-acetyllactosamine unit of nLc4 and also had a broad specificity for gangliosides GA1, GM1, and GD1b to generate neolacto-ganglio hybrid structures. The mouse Lc3 synthase gene was mainly expressed during embryonic development. In situ hybridization analysis revealed that that the Lc3 synthase was expressed in most tissues at embryonic day 11 with elevated expression in the developing central nervous system. Postnatally, the expression was restricted to splenic B-cells, the placenta, and cerebellar Purkinje cells where it colocalized with HNK-1 reactivity. These data support a key role for the Lc3 synthase in regulating neolacto-series glycolipid synthesis during embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号