首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SV40-transformed tumor cells in hamsters have been found to have cell surface antigens cross-reactive with antigens temporally expressed on fetal tissues. Adoptive transfer assays performed in this laboratory have shown that peritoneal exudate cells from 10-day primiparous hamsters are cytotoxic to SV40-transformed sarcoma cells (WF5-1) carrying fetal antigen, whereas peritoneal exudate cells from multiparous hamsters are less cytotoxic. This suggests a suppressor activity might be present during subsequent pregnancies that reduces the responsiveness of lymphocytes from pregnant hamsters to stimulation by fetal antigens on tumor cells. Using a lymphocyte transformation assay, spleen cells from pregnant hamsters were found to be incapable of responding to preparations of either hamster fetal tissue or SV40-transformed cells. However, a suppressor component can be demonstrated in spleen cell populations of both primi- and multiparous hamsters during pregnancy that is capable of reducing the response of lymphocytes sensitized against SV40 tumor-associated antigens. The degree of suppression is proportional to the ratio of responder cells to spleen cells from pregnant animals. These results suggest there is a subpopulation of spleen cells involved in immunoregulation during pregnancy that has the ability to suppress the reactivity of lymphocytes sensitized against SV40-associated oncofetal antigens.  相似文献   

2.
D I Linzer  A J Levine 《Cell》1979,17(1):43-52
SV40 infection or transformation of murine cells stimulated the production of a 54K dalton protein that was specifically immunoprecipitated, along with SV40 large T and small t antigens, with sera from mice or hamsters bearing SV40-induced tumors. The same SV40 anti-T sera immunoprecipitated a 54K dalton protein from two different, uninfected murine embryonal carcinoma cell lines. These 54K proteins from SV40-transformed mouse cells and the uninfected embryonal carcinomas cells had identical partial peptide maps which were completely different from the partial peptide map of SV40 large T antigen. An Ad2+ND4-transformed hamster cell line also expressed a 54K protein that was specifically immunoprecipitated by SV40 T sera. The partial peptide maps of the mouse and hamster 54K protein were different, showing the host cell species specificity of these proteins. The 54K hamster protein was also unrelated to the Ad2+ND4 SV40 T antigen. Analogous proteins immunoprecipitated by SV40 T sera, ranging in molecular weight from 44K to 60K, were detected in human and monkey SV40-infected or -transformed cells. A wide variety of sera from hamsters and mice bearing SV40-induced tumors immunoprecipitated the 54K protein of SV40-transformed cells and murine embryonal carcinoma cells. Antibody produced by somatic cell hybrids between a B cell and a myeloma cell (hybridoma) against SV40 large T antigen also immunoprecipitated the 54K protein in virus-infected and -transformed cells, but did not do so in the embryonal carcinoma cell lines. We conclude that SV40 infection or transformation of mouse cells stimulates the synthesis or enhances the stability of a 54K protein. This protein appears to be associated with SV40 T antigen in SV40-infected and -transformed cells, and is co-immunoprecipitated by hybridomas sera to SV40 large T antigen. The 54K protein either shares antigenic determinants with SV40 T antigen or is itself immunogenic when in association with SV40 large T antigen. The protein varies with host cell species, and analogous proteins were observed in hamster, monkey and human cells. The role of this protein in transformation is unclear at present.  相似文献   

3.
Summary Cells derived from HSV-induced tumour lines were attenuated by X-irradiation (15,000 rads) and used to immunize groups of hamsters prior to challenge with homologous tumour cells. The results indicate that the three HSV tumours studied possess a weak transplantation antigen(s). Some cross-immunity between these tumours was observed, although the rejection antigen(s) were distinct from those of a SV40-induced hamster tumour line.Bacillus Calmétte-Guérin (BCG) inoculated in admixture with X-irradiated tumour cells or given 7 days prior to immunization with X-irradiated tumour cells increased host immunocompetence to subsequent tumour cell challenge. Thus, immunization with BCG was shown to induce a higher level of immunity than immunization with attenuated tumour cells alone, as demonstrated on re-challenge of hamsters with homologous tumour cells.  相似文献   

4.
The nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), does not induce heat-labile SV40 T antigen but does induce a previously uncharacterized heat-stable SV40 antigen-the SV40 "U" antigen. This antigen is detectable by both immunofluorescence and complement fixation by using sera from hamsters with SV40 tumors. Sera from hamsters bearing SV40 tumors can be divided into two groups, those that react with both SV40 T and U antigens (T(+)U(+) sera) and those that react with SV40 T antigen only (T(+)U(-) sera). SV40 U-specific sera from monkeys immunized with Ad2(+)ND(1)-infected cells do not react with SV40 T antigen by immunofluorescence but do react with an antigen in the nucleus of SV40-transformed cells and with an early, cytosine arabinoside-resistant antigen present in the nucleus of SV40-infected cells. A heat-stable SV40 antigen detectable by complement fixation with T(+)U(+) hamster sera is present in extracts of SV40-induced hamster tumors and in cell packs of SV40-infected or -transformed cells. SV40 U-antigen synthesis by Ad2(+)ND(1) virus is partially sensitive to inhibitors of deoxyribonucleic acid synthesis, whereas U-antigen synthesis by SV40 virus is an early cytosine arabinoside-resistant event. As an early SV40 antigen differing from SV40 T antigen, U antigen may play a role in malignant transformation mediated by SV40.  相似文献   

5.
The simian virus 40 (sv40) tumor antigen (T-antigen) and tumor-specific transplantation antigen (TSTA) have been partially purified and studied to clarify their relationship. The T-antigen and the TSTA were partially purified from nuclei of SV AL/N cells, and SV40-transformed mouse embryo fibroblast line, by precipitation with ammonium sulfate and chromatography on DEAE- and DNA-cellulose. The T-antigen was assayed by complement fixation, and the TSTA was assayed by its ability to immunize mice against SV40-containing ascites tumor cells. When T-antigen- and TSTA-containing preparations were sedimented through sucrose gradients, each antigen had a major peak of activity at a sedimentation coefficient of 6.7 and minor peaks in other regions. Antiserum against T-antigen (from tumor-bearing hamsters) immunoprecipitated the TSTA activity. A preparation of T-antigen from human SV80 cells, which exhibited only one protein band after sodium dodecylsulfate-polyacrylamide gel electrophoresis, had TSTA activity when as little as 0.6 microgram of protein per mouse was used for immunization. These experiments demonstrate that the T-antigen, the product of the SV40 early A gene is capable of inducing specific immunity against transplantation of SV40-transformed tumor cells in mice.  相似文献   

6.
The in vivo interaction between the chemical carcinogen ethylnitrosourea (ENU) and the oncogenic simian virus 40 (SV40) was studied. Inbred newborn Syrian golden hamsters were injected subcutaneously with SV40 (5 x 10(6) plaque-forming units), ENU (0.5% solution, 125 or 25 mg/kg body wt), or equal mixtures of the two. Animals that received SV40 and ENU developed more tumors (100% vs 52%) within a shorter latent period (10 weeks vs 18 weeks) than animals that received SV40 alone. Animals given SV40 and ENU showed increased mortality and increased metastatic tumors (54.2% vs 30.8%) compared with those given SV40 alone. The SV40 and ENU group also exhibited multiple (greater than 10 nodules) pulmonary metastases (33.3% vs 7.7%) and metastases in multiple organs (12.5% vs 0%) compared with animals injected with SV40 alone. No difference in primary tumor size, histology, and SV40 T-antigen content was detected between SV40- and SV40/ENU-induced tumors. Four weeks after SV40 or SV40 plus ENU treatment, animals were challenged intradermally with 2.7 x 10(6) SV40-transformed hamster cells. Five weeks after challenge, 89.5% of the animals treated with SV40 and ENU and 45.4% of animals treated with SV40 developed tumors at the challenge site. Newborn animals given SV40 and ENU developed larger tumors at the challenge site (P less than 0.002) than newborns treated with SV40 alone. Thus, administration of ENU to hamsters during the neonatal stage of development produced a long-lasting systemic effect that enhanced tumor development by transplanted SV40-transformed hamster cells.  相似文献   

7.
The association between the level of class I major histocompatibility (MHC) antigen expression and the tumorigenic phenotype was determined for cells from a series of 15 lines of adenovirus type 2 (Ad2)-, Ad12-, and simian virus 40 (SV40)-transformed hamster cells and 16 lines of cells established from hamster tumors induced by SV40 mutants. These cells range from nontumorigenic to highly tumorigenic in both syngeneic and allogeneic adult hamsters. The Ad2-transformed cells--cells that were nontumorigenic in syngeneic adult hamsters--expressed either high levels or low levels of class I MHC antigens. The SV40-transformed cells--cells transformed in vitro that produced tumors with equal efficiency in both syngeneic and allogeneic adult hamsters--or cells derived from SV40-induced tumors expressed very high levels of class I MHC antigens. The Ad12-transformed cells uniformly expressed low levels of class I MHC antigens; these cells produced tumors 200- to 1,000-fold less efficiently in allogeneic adult hamsters than in syngeneic adult hamsters and produced tumors with about the same efficiency in immunoimmature newborns and immunocompetent syngeneic adult hamsters. We conclude that the expression of either high levels or low levels of class I MHC antigens is, at most, a minor factor in the differences observed among these adenovirus- and SV40-transformed cells in their tumor-inducing capacity in naive, immunocompetent hamsters.  相似文献   

8.
9.
Treatment of specifically sensitized MHA hamster lymphoid cells with rabbit antisera specific for hamster thymus-derived lymphocytes, in the presence of C, eliminated those cells capable of inhibiting the growth of syngeneic SV40 and methylcholanthrene tumors in vivo. Thymectomized, lethally-irradiated, bone marrow-reconstituted hamsters, shown to be devoid to T cell function, were, after attempted specific sensitization to the two syngeneic tumor cell lines, unable to reject either tumor by direct challenge in vivo. In addition, lymphocytes from such animals were incapable of inhibiting the growth of either tumor cell line in normal syngeneic recepients in the tumor cell neutralization assay. These data strongly support the conclusion that specifically sensitized thymus-derived lymphocytes are required for the rejection of syngeneic SV40 and methylcholanthrene tumors in inbred hamsters.  相似文献   

10.
Three isolates of PARA (particle aiding replication of adenovirus)-adenovirus 7 out of a total of 112 clonal progeny derived by two successive plaque purifications in green monkey kidney cells (GMK) were found to induce the synthesis of simian papovavirus40 (SV 40) tumor (T) antigen in the cytoplasm of infected cells. The variant viruses induced plaque formation in human embryonic kidney cells which followed one-hit kinetics. In GMK cells, plaque formation followed two-hit kinetics which converted to first-order kinetics in the presence of additional helper adenovirus type 7. Analysis of plaque progeny from human cells showed that the progeny could replicate only in human cells, whereas progeny from monkey cells could multiply in both human and monkey cells. Heterologous human adenoviruses were able to enhance plaque formation by the variant viruses in monkey kidney cells. Neutralization tests indicated that both components of the populations had a type 7 adenovirus capsid. All three viruses were capable of inducing SV40 transplantation immunity in weanling hamsters. These results indicate the three variants are PARA-adenovirus 7 populations. Response of the induction of the synthesis of the cytoplasmic antigen to metabolic inhibitors was the same as for the synthesis of the nuclear SV40 T antigen. Different pools of sera which reacted with the intranuclear SV40 T antigen also detected the cytoplasmic antigen induced by the variant viruses. An adsorption experiment with cells containing either nuclear or cytoplasmic T antigen to remove tumor antibody from hamster sera also indicated that it is probably SV40 T antigen which is responsible for the cytoplasmic reaction. The species of the host cell-human, simian, or rabbit-appeared to play no role in the altered localization of this antigen. It is postulated that these PARA variants are further defective in some virus-mediated transport mechanism which shifts the T antigen from the cytoplasm to the nucleus.  相似文献   

11.
One hundred and twelve progeny from double plaque-purified clones were derived from the original PARA (defective simian papovavirus 40)-adenovirus 7 population. These progeny were found to differ in their oncogenic potential in newborn hamsters with progeny from 20 clones not inducing any tumors during 1 year of observation. The varying tumorigenicity of the individual clonal progeny was not related to the titer of PARA (particle aiding replication of adenovirus) in the inoculum. There was a perfect correlation between the tumor antigen content of the tumor cells and the antibody response of the tumor-bearing host. The tumors containing both adenovirus and simian papovavirus 40 (SV40) tumor antigens appeared earlier than those carrying only SV40 tumor antigen. Progeny from clones which induced mixed tumors also produced tumors which contained only SV40 tumor antigen. Three variants of PARA were isolated which induced the synthesis of SV40 tumor antigen in the cytoplasm of infected simian cells; all other clones yielded progeny which induced synthesis of SV40 tumor antigen in the nucleus.  相似文献   

12.
A mechanistic analysis of tumor immunity directed toward the viral oncoprotein simian virus 40 (SV40) large tumor antigen (Tag) has previously been described by our laboratory for scenarios of recombinant Tag immunization in BALB/c mice. In the present study, we performed a preliminary characterization of the immune components necessary for systemic tumor immunity induced upon immunization with plasmid DNA encoding SV40 Tag as a transgene (pCMV-Tag). Antibody responses to SV40 Tag were observed via indirect enzyme-linked immunosorbent assay following three intramuscular (i.m.) injections of pCMV-Tag and were typified by a mixed Th1/Th2 response. Complete tumor immunity within a murine model of pulmonary metastasis was achieved upon two i.m. injections of pCMV-Tag, as assessed by examination of tumor foci in mouse lungs, without a detectable antibody response to SV40 Tag. Induction-phase and effector-phase depletions of T cell subsets were performed in vivo via administration of depleting rat monoclonal antibodies, and these experiments demonstrated that CD4(+) T lymphocytes are required in both phases of the adaptive immune response. Conversely, depletion of CD8(+) T lymphocytes did not impair tumor immunity in either immune phase and resulted in the premature production of antibodies to SV40 Tag. Our findings are unique in that a dominant role could be ascribed to CD4(+) T lymphocytes within a model of DNA vaccine-induced tumor immunity to Tag-expressing tumor cells. Additionally, our findings provide insight into the general mechanisms of vaccine-induced tumor immunity directed toward tumors bearing distinct tumor-associated antigens.  相似文献   

13.
Newborn hamsters were inoculated with human adenovirus type 12 (Ad12) within 24 hr of birth for tumor induction, and 15 days later, intercurrently immunized with Ad12-infected cells (KB; HeLa; FL; HEK; MoE; HaE). Tumor development was then observed for 75 days thereafter. Tumor formation was prevented at a statistically significant level by immunization with any of the above-mentioned infected cells. The immunization was effective even with abortively infected cells (HaE; MoE) or with cells infected in the presence of 5-fluorodeoxyuridine. The induced immunity was Ad12-specific, since neither cells infected with Ad2, Ad7 or Ad18 nor CV-1 cells infected with SV40 were able to prevent tumor formation. The most plausible explanation to these findings could be that Ad12-specific tumor-specific transplantation antigen is induced on the surface of freshly virus-infected cells and it is responsible for induction of specific cellular immunity. This gives an experimental support to our hypothesis on the mechanism of induction of cellular immunity against virus infections and to the hypothesis proposed by Habel and by Sjögren to explain the immunoresistance against tumor cells induced following viral immunization.  相似文献   

14.
Clones were isolated from hamster cells transformed by the adenovirus 2-SV40 and adenovirus 12-SV40 transcapsidant hybrid viruses. The clones were characterized with respect to their cytomorphology, virus and antigen content, and the histomorphology of tumors induced by transplantation of the clonal sublines to hamsters. Three different cellular and colonial morphologies were observed. Clones with an SV40 morphology gave rise to tumors predominantly with an SV40 histology, whereas clones with an adenovirus morphology produced typical adenovirus tumors upon transplantation of the transformed cells. Clones which had features of both SV40 and adenovirus transformed cells gave rise to "intermediate" and adenovirus tumors. The results indicate that multiple events occur during transformation and tumorigenesis by the transcapsidant virus populations and provide an explanation for the multiplicity of findings which have been reported with these virus populations.  相似文献   

15.
An in vitro method for the quantitative measurement of transformation in hamster embryo fibroblasts by the PARA [defective simian virus 40 (SV40)]-adenovirus 7 hybrid has been developed. Transformation by PARA particles followed one-hit kinetics with a ratio of 1 focus-forming unit per 250 plaque-forming units. The method of viral adsorption had a direct effect upon the total number of foci which developed but not on the quantitative aspects of this assay. A fluorescent-focus assay was developed which provided a direct correlation of the observed morphological transformation and the presence of the PARA genome. This fluorescent-focus assay utilized detection of the SV40 tumor antigen, which was present in all foci transformed by PARA. Single foci induced by PARA were isolated and grown into cell lines. Two types of foci were observed and isolated; the first contained cells having a cuboidal or SV40-type morphology, and the second consisted of epithelial or adenovirus-type transformed cells. Both types contained the SV40 tumor and SV40 surface antigens as determined by the indirect fluorescence technique; however, only the epithelial cells contained the adenovirus 7 tumor antigen. All five cell lines which were injected into weanling Syrian hamsters were found to be oncogenic. These cell lines induced antibodies to both SV40 and adenovirus 7 tumor antigens in tumor-bearing animals.  相似文献   

16.
In this report we examine the ability of a recombinant tumor antigen preparation to prevent the establishment of experimental pulmonary metastasis. Baculovirus-derived recombinant simian virus 40 (SV40) large tumor antigen (T-Ag) was injected into BALB/c mice followed by challenge with an intravenous injection of syngeneic SV40-transformed tumorigenic cells. The experimental murine pulmonary metastasis model allows for the accurate measurement of metastatic lessions in the lungs at various times after the challenge, using computer-assisted video image analysis. Following challenge, lung metastasis and survival data for the groups of mice were obtained. Animals immunized with recombinant SV40 T-Ag showed no detectable sign of lung metastasis and survived for more than 120 days after challenge. Antibodies specific for SV40 T-Ag were detected in the serum of immunized mice by enzyme-linked immunosorbent assay. Splenocytes obtained from mice immunized with recombinant SV40 T-Ag did not lyse syngeneic tumor cells, indicating that no cytotoxic T lymphocyte response was induced. Control mice developed extensive lung metastasis and succumbed to lethal tumor within 4 weeks after challenge. These data indicate that immunization with the recombinant SV40␣T-Ag induces protective, T-Ag-specific immunity in an experimental pulmonary tumor metastasis model. Received: 20 August 1998 / Accepted: 25 November 1998  相似文献   

17.
Simian adenovirus, SV11, readily transformed hamster embryo cell cultures in vitro and produced tumors in vivo when inoculated into newborn hamsters. Foci consisting of small, loosely attached, rounded cells could be seen as early as 7 days postinoculation. Many of these cells contained several nuclei or the nucleus was multilobed. The cells grew without extensive cell to cell contact or formed small chains or clusters when passaged in vitro. This pattern of cell morphology and growth has not been reported with other simian or human adenovirus-transformed cells. Linearity of foci formation with virus dilution was observed when the virus multiplicity was less than 3 plaque-forming units (PFU)/cell. The PFU to focus-forming units ratio for SV11 was found to be 2 x 10(4) to 4 x 10(4), which is approximately 5- to 10-fold and 50- to 100-fold lower than those reported for simian adenovirus, SA7, and human adenovirus type 12, respectively. Cells transformed by SV11: (i) produced tumors when inoculated into young hamsters, (ii) contained tumor antigen which reacts with serum obtained from hamsters bearing SV11 passaged tumors, and (iii) could be propagated in vitro through an indefinite number of generations.  相似文献   

18.

• Induction of gene mutations by SV40 was studied in aneuploid human and Chinese hamster cells. In Chinese hamster cells SV40-induced chromosome aberrations were also studied.

• SV40 penetrated into the cells of both lines and induced synthesis of the T antigen. The efficiency of infection in Chinese hamster cells was tested additionallby their ability to form colonies in medium lacking the serum growth factor. The maximal number of cells with growth factor independence was observed on the first day after infection. When hamster cells had been maintained in “factor-free medium” for the first two passages after infection a sub-line was isolated, which synthesized T antigen 60 days after exposure to SV40. This was considered to be an indirect proof of the integration of viral genome into host chromosome.

• A significant increase in the frequency of chromosomal aberrations was detected in SV40-infected Chinese hamster cells. It was observed on the first and second days after treatment. The most numerous were the chromosome and chromatid breaks, which were distributed randomly in 5 morphological groups according to the chromosome length.

• SV40-induced mutations of resistance to 8-AG and 6-MP in human and Chinese hamster cells respectively were detected, when cells were plated in selective medium one to five days after infection. Induction was detected in all the 4 experiments with human cells and in 9 out of 11 experiments with Chinese hamsters cells. Induction was highly significant according to the Wilcoxon test (P>0.99), when the results of all experiments carried out in human and Chinese hamster cells were summarized. Resistance was stable after prolonged cultivation of 13 isolated clones under non-selective conditions.

• It is suggested that viral genome integration, gene mutations and chromosomal aberrations may have common molecular mechanisms. The role of gene mutations in virus-induced carcinogenesis is discussed.

Abbreviations: 8-AG, 8-azaguanine; FFM, factor-free medium; 6-MP, mercaptopurine; HGRT, hypoxantine-guanine phosphoribosyltransferase  相似文献   


19.
Most of the simian virus 40 (SV40) genome is conserved among isolates, but the noncoding regulatory region and the genomic region encoding the large T-antigen C terminus (T-ag-C) may exhibit considerable variation. We demonstrate here that SV40 isolates differ in their oncogenic potentials in Syrian golden hamsters. Experimental animals were inoculated intraperitoneally with 107 PFU of parental or recombinant SV40 viruses and were observed for 12 months to identify genetic determinants of oncogenicity. The viral regulatory region was found to exert a statistically significant influence on tumor incidence, whereas the T-ag-C played a minor role. Viruses with a single enhancer (1E) were more oncogenic than those with a two-enhancer (2E) structure. Rearrangements in the 1E viral regulatory region were detected in 4 of 60 (6.7%) tumors. Viral loads in tumors varied, with a median of 5.4 SV40 genome copies per cell. Infectious SV40 was rescued from 15 of 37 (40%) cell lines established from tumors. Most hamsters with tumors and many without tumors produced antibodies to T antigen. All viruses displayed similar transforming frequencies in vitro, suggesting that differences in oncogenic potential in vivo were due to host responses to viral infection. This study shows that SV40 strains differ in their biological properties, suggests that SV40 replicates to some level in hamsters, and indicates that the outcome of an SV40 infection may depend on the viral strain present.  相似文献   

20.
Feldman, Lawrence A. (Baylor University College of Medicine, Houston, Tex.), Janet S. Butel, and Fred Rapp. Interaction of a simian papovavirus and adenoviruses. I. Induction of adenovirus tumor antigen during abortive infection of simian cells. J. Bacteriol. 91:813-818. 1966.-Adenovirus types 2, 7, and 12 undergo an abortive growth cycle in green monkey kidney cells; they induce the formation of adenovirus tumor antigen, but synthesis of adeno capsid antigen and infectious adenovirus was observed only when cultures were concomitantly infected with a simian papovavirus (SV40). Several other viruses, including herpes simplex and measles which replicate in monkey cells, and rabbit papilloma and human wart papovaviruses which do not, failed to stimulate adenovirus replication in the monkey cells. Adenovirus tumor antigen was detected 8 to 10 hr postinfection by immunofluorescent techniques. The antigen induced by adenovirus types 2 and 7 appeared as intranuclear masses; adenovirus type 12 tumor antigen also appeared as cytoplasmic and nuclear flecks. Sera from hamsters bearing tumors induced by adenovirus type 12 cross-reacted with tumor antigens induced by types 2 and 7 but not with antigens induced by SV40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号