共查询到20条相似文献,搜索用时 15 毫秒
1.
In insects, farnesyl pyrophosphate (FPP) is converted to juvenile hormone (JH) via a conserved pathway consisting of isoprenoid-derived metabolites. The first step of this pathway is presumed to be hydrolysis of FPP to farnesol in the ring gland. Based on alignment of putative phosphatases from Drosophila melanogaster with the phosphatase domain of soluble epoxide hydrolase, Phos2680 and Phos15739 with conserved phosphatase motifs were identified, cloned and purified. Both D. melanogaster phosphatases hydrolyzed para-nitrophenyl phosphate, however, Phos15739 also hydrolyzed FPP with a Kcat/Km of 2.1 × 105 M−1 s−1. RT-PCR analysis revealed that Phos15739 was expressed in the ring gland and its expression was correlated with JHIII titer during development of D. melanogaster. N-acetyl-S-geranylgeranyl-l-cysteine was found to be a potent inhibitor of Phos15739 with an IC50 value of 4.4 μM. Thus, our data identify Phos15739 as a FPP phosphatase that likely catalyzes the hydrolysis of FPP to farnesol in D. melanogaster. 相似文献
2.
Morisseau C Schebb NH Dong H Ulu A Aronov PA Hammock BD 《Biochemical and biophysical research communications》2012,419(4):796-800
The EPXH2 gene encodes for the soluble epoxide hydrolase (sEH), which has two distinct enzyme activities: epoxide hydrolase (Cterm-EH) and phosphatase (Nterm-phos). The Cterm-EH is involved in the metabolism of epoxides from arachidonic acid and other unsaturated fatty acids, endogenous chemical mediators that play important roles in blood pressure regulation, cell growth, inflammation and pain. While recent findings suggested complementary biological roles for Nterm-phos, its mode of action is not well understood. Herein, we demonstrate that lysophosphatidic acids are excellent substrates for Nterm-phos. We also showed that sEH phosphatase activity represents a significant (20-60%) part of LPA cellular hydrolysis, especially in the cytosol. This possible role of sEH on LPA hydrolysis could explain some of the biology previously associated with the Nterm-phos. These findings also underline possible cellular mechanisms by which both activities of sEH (EH and phosphatase) may have complementary or opposite roles. 相似文献
3.
Suman Kundu Talat Roome Ashish Bhattacharjee Kevin A. Carnevale Valentin P. Yakubenko Renliang Zhang Sung Hee Hwang Bruce D. Hammock Martha K. Cathcart 《Journal of lipid research》2013,54(2):436-447
Monocyte chemoattractant protein-1 (MCP-1)-induced monocyte chemotaxis is a major event in inflammatory disease. Our prior studies have demonstrated that MCP-1-dependent chemotaxis requires release of arachidonic acid (AA) by activated cytosolic phospholipase A2 (cPLA2). Here we investigated the involvement of AA metabolites in chemotaxis. Neither cyclooxygenase nor lipoxygenase pathways were required, whereas pharmacologic inhibitors of both the cytochrome-P450 (CYP) and the soluble epoxide hydrolase (sEH) pathways blocked monocyte chemotaxis to MCP-1. To verify specificity, we demonstrated that the CYP and sEH products epoxyeiscosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs), respectively, restored chemotaxis in the presence of the inhibitors, indicating that sEH-derived products are essential for MCP-1-driven chemotaxis. Importantly, DHETs also rescued chemotaxis in cPLA2-deficient monocytes and monocytes with blocked Erk1/2 activity, because Erk controls cPLA2 activation. The in vitro findings regarding the involvement of CYP/sEH pathways were further validated in vivo using two complementary approaches measuring MCP-1-dependent chemotaxis in mice. These observations reveal the importance of sEH in MCP-1-regulated monocyte chemotaxis and may explain the observed therapeutic value of sEH inhibitors in treatment of inflammatory diseases, cardiovascular diseases, pain, and even carcinogenesis. Their effectiveness, often attributed to increasing EET levels, is probably influenced by the impairment of DHET formation and inhibition of chemotaxis. 相似文献
4.
5.
Decker M Adamska M Cronin A Di Giallonardo F Burgener J Marowsky A Falck JR Morisseau C Hammock BD Gruzdev A Zeldin DC Arand M 《Journal of lipid research》2012,53(10):2038-2045
Epoxide hydrolases are a small superfamily of enzymes important for the detoxification of chemically reactive xenobiotic epoxides and for the processing of endogenous epoxides that act as signaling molecules. Here, we report the identification of two human epoxide hydrolases: EH3 and EH4. They share 45% sequence identity, thus representing a new family of mammalian epoxide hydrolases. Quantitative RT-PCR from mouse tissue indicates strongest EH3 expression in lung, skin, and upper gastrointestinal tract. The recombinant enzyme shows a high turnover number with 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid (EET), as well as 9,10-epoxyoctadec-11-enoic acid (leukotoxin). It is inhibited by a subclass of N,N'-disubstituted urea derivatives, including 12-(3-adamantan-1-yl-ureido)-dodecanoic acid, 1-cyclohexyl-3-dodecylurea, and 1-(1-acetylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea, compounds so far believed to be selective inhibitors of mammalian soluble epoxide hydrolase (sEH). Its sensitivity to this subset of sEH inhibitors may have implications on the pharmacologic profile of these compounds. This is particularly relevant because sEH is a potential drug target, and clinical trials are under way exploring the value of sEH inhibitors in the treatment of hypertension and diabetes type II. 相似文献
6.
Jones PD Wolf NM Morisseau C Whetstone P Hock B Hammock BD 《Analytical biochemistry》2005,343(1):66-75
Inhibition of the mammalian soluble epoxide hydrolase (sEH) is a promising new therapy in the treatment of disorders resulting from hypertension and vascular inflammation. A spectrophotometric assay (4-nitrophenyl-trans-2,3-epoxy-3-phenylpropyl carbonate, NEPC) is currently used to screen libraries of chemicals; however this assay lacks the required sensitivity to differentiate the most potent inhibitors. A series of fluorescent alpha-cyanoester and alpha-cyanocarbonate epoxides that produce a strong fluorescent signal on epoxide hydrolysis by both human and murine sEH were designed as potential substrates for an in vitro inhibition assay. The murine enzyme showed a broad range of specificities, whereas the human enzyme showed the highest specificity for cyano(6-methoxy-naphthalen-2-yl)methyl trans-[(3-phenyloxiran-2-yl)methyl] carbonate. An in vitro inhibition assay was developed using this substrate and recombinant enzyme. The utility of the fluorescent assay was confirmed by determining the IC(50) values for a series of known inhibitors. The new IC(50) values were compared with those determined by spectrophotometric NEPC and radioactive tDPPO assays. The fluorescent assay ranked these inhibitors on the basis of IC(50) values, whereas the NEPC assay did not. The ranking of inhibitor potency generally agreed with that determined using the tDPPO assay. These results show that the fluorescence-based assay is a valuable tool in the development of sEH inhibitors by revealing structure-activity relationships that previously were seen only by using the costly and labor-intensive radioactive tDPPO assay. 相似文献
7.
EnayetAllah AE Luria A Luo B Tsai HJ Sura P Hammock BD Grant DF 《The Journal of biological chemistry》2008,283(52):36592-36598
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with two catalytic domains: a C-terminal epoxide hydrolase domain and an N-terminal phosphatase domain. Epidemiology and animal studies have attributed a variety of cardiovascular and anti-inflammatory effects to the C-terminal epoxide hydrolase domain. The recent association of sEH with cholesterol-related disorders, peroxisome proliferator-activated receptor activity, and the isoprenoid/cholesterol biosynthesis pathway additionally suggest a role of sEH in regulating cholesterol metabolism. Here we used sEH knock-out (sEH-KO) mice and transfected HepG2 cells to evaluate the phosphatase and hydrolase domains in regulating cholesterol levels. In sEH-KO male mice we found a approximately 25% decrease in plasma total cholesterol as compared with wild type (sEH-WT) male mice. Consistent with plasma cholesterol levels, liver expression of HMG-CoA reductase was found to be approximately 2-fold lower in sEH-KO male mice. Additionally, HepG2 cells stably expressing human sEH with phosphatase only or hydrolase only activity demonstrate independent and opposite roles of the two sEH domains. Whereas the phosphatase domain elevated cholesterol levels, the hydrolase domain lowered cholesterol levels. Hydrolase inhibitor treatment in sEH-WT male and female mice as well as HepG2 cells expressing human sEH resulted in higher cholesterol levels, thus mimicking the effect of expressing the phosphatase domain in HepG2 cells. In conclusion, we show that sEH regulates cholesterol levels in vivo and in vitro, and we propose the phosphatase domain as a potential therapeutic target in hypercholesterolemia-related disorders. 相似文献
8.
Davis BB Liu JY Tancredi DJ Wang L Simon SI Hammock BD Pinkerton KE 《Biochemical and biophysical research communications》2011,(3):494-500
Excess leukocyte recruitment to the lung plays a central role in the development or exacerbation of several lung inflammatory diseases including chronic obstructive pulmonary disease. Epoxyeicosatrienoic acids (EETs) are cytochrome P-450 metabolites of arachidonic acid reported to have multiple biological functions, including blocking of leukocyte recruitment to inflamed endothelium in cell culture through reduction of adhesion molecule expression. Inhibition of the EET regulatory enzyme, soluble epoxide hydrolase (sEH) also has been reported to have anti-inflammatory effects in vivo including reduced leukocyte recruitment to the lung. We tested the hypothesis that the in vivo anti-inflammatory effects of sEH inhibitors act through the same mechanisms as the in vitro anti-inflammatory effects of EETs in a rat model of acute inflammation following exposure to tobacco smoke. Contrary to previously published data, we found that sEH inhibition did not reduce tobacco smoke-induced leukocyte recruitment to the lung. Furthermore, sEH inhibition did not reduce tobacco smoke-induced adhesion molecule expression in the lung vasculature. Similarly, concentrations of EETs greater than or equal to their reported effective dose did not reduce TNFα induced expression of the adhesion molecules. These results suggest that the anti-inflammatory effects of sEH inhibitors are independent of leukocyte recruitment and EETs do not reduce the adhesion molecules responsible for leukocyte recruitment in vitro. This demonstrates that the widely held belief that sEH inhibition prevents leukocyte recruitment via EET prevention of adhesion molecule expression is not consistently reproducible. 相似文献
9.
10.
The EPXH2 gene encodes for the soluble epoxide hydrolase (sEH), a homodimeric enzyme with each monomer containing two domains with distinct activities. The C-terminal domain, containing the epoxide hydrolase activity (Cterm-EH), is involved in the metabolism of arachidonic acid epoxides, endogenous chemical mediators that play important roles in blood pressure regulation, cell growth, and inflammation. We recently demonstrated that the N-terminal domain contains a Mg2+-dependent lipid phosphate phosphatase activity (Nterm-phos). However, the biological role of this activity is unknown. The inability of known phosphatase inhibitors to inhibit the Nterm-phos constitutes a significant barrier to the elucidation of its function. We describe herein sulfate, sulfonate, and phosphonate lipids as novel potent inhibitors of Nterm-phos. These compounds are allosteric competitive inhibitors with K(I) in the hundred nanomolar range. These inhibitors may provide a valuable tool to investigate the biological role of the Nterm-phos. We found that polyisoprenyl phosphates are substrates of Nterm-phos, suggesting a possible role in sterol synthesis or inflammation. Furthermore, some of these compounds inhibit the C-terminal sEH activity through a noncompetitive inhibition mechanism involving a new binding site on the C-terminal domain. This novel site may play a role in the natural in vivo regulation of epoxide hydrolysis by sEH. 相似文献
11.
Inhibition of soluble epoxide hydrolase augments astrocyte release of vascular endothelial growth factor and neuronal recovery after oxygen‐glucose deprivation 下载免费PDF全文
Yue Zhang Gina Hong Kin Sing Stephen Lee Bruce D. Hammock Debebe Gebremedhin David R. Harder Raymond C. Koehler Adam Sapirstein 《Journal of neurochemistry》2017,140(5):814-825
12.
Sean D. Kodani Saavan Bhakta Sung Hee Hwang Svetlana Pakhomova Marcia E. Newcomer Christophe Morisseau Bruce D. Hammock 《Bioorganic & medicinal chemistry letters》2018,28(4):762-768
Multi-target inhibitors have become increasing popular as a means to leverage the advantages of poly-pharmacology while simplifying drug delivery. Here, we describe dual inhibitors for soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH), two targets known to synergize when treating inflammatory and neuropathic pain. The structure activity relationship (SAR) study described herein initially started with t-TUCB (trans-4-[4-(3-trifluoromethoxyphenyl-l-ureido)-cyclohexyloxy]-benzoic acid), a potent sEH inhibitor that was previously shown to weakly inhibit FAAH. Inhibitors with a 6-fold increase of FAAH potency while maintaining high sEH potency were developed by optimization. Interestingly, compared to most FAAH inhibitors that inhibit through time-dependent covalent modification, t-TUCB and related compounds appear to inhibit FAAH through a time-independent, competitive mechanism. These inhibitors are selective for FAAH over other serine hydrolases. In addition, FAAH inhibition by t-TUCB appears to be higher in human FAAH over other species; however, the new dual sEH/FAAH inhibitors have improved cross-species potency. These dual inhibitors may be useful for future studies in understanding the therapeutic application of dual sEH/FAAH inhibition. 相似文献
13.
Epoxyeicosatrienoic acids (EETs) are potent regulators of vascular homeostasis and are bound by cytosolic fatty acid-binding proteins (FABPs) with K(d) values of approximately 0.4 microM. To determine whether FABP binding modulates EET metabolism, we examined the effect of FABPs on the soluble epoxide hydrolase (sEH)-mediated conversion of EETs to dihydroxyeicosatrienoic acids (DHETs). Kinetic analysis of sEH conversion of racemic [(3)H]11,12-EET yielded K(m) = 0.45 +/- 0.08 microM and V(max) = 9.2 +/- 1.4 micromol min(-1) mg(-)(1). Rat heart FABP (H-FABP) and rat liver FABP were potent inhibitors of 11,12-EET and 14,15-EET conversion to DHET. The resultant inhibition curves were best described by a substrate depletion model, with K(d) = 0.17 +/- 0.01 microM for H-FABP binding to 11,12-EET, suggesting that FABP acts by reducing EET availability to sEH. The EET depletion by FABP was antagonized by the co-addition of arachidonic acid, oleic acid, linoleic acid, or 20-hydroxyeicosatetraenoic acid, presumably due to competitive displacement of FABP-bound EET. Collectively, these findings imply that FABP might potentiate the actions of EETs by limiting their conversion to DHET. However, the effectiveness of this process may depend on metabolic conditions that regulate the levels of competing FABP ligands. 相似文献
14.
Endang R. Purba Ami OguroSusumu Imaoka 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(7):954-962
Soluble epoxide hydrolase (sEH) contributes to cell growth, but the contribution of sEH to embryonic development is not well understood. In this study, Xenopus sEH cDNA was isolated from embryos of Xenopus laevis. The Xenopus sEH was expressed in Escherichia coli and was purified. The epoxide hydrolase and phosphatase activities of purified sEH were investigated. The Xenopus sEH did not show phosphatase activity toward 4-methylumbelliferyl phosphate or several lysophosphatidic acids although it had EH activity. The amino acid sequence of Xenopus sEH was compared with that reported previously. We found amino acid substitutions of the 29th Thr to Asn and the 146th Arg to His and prepared a sEH mutant (N29T/H146R), designed as mutant 1. Neither wild-type sEH nor mutant 1 had phosphatase activity. Additional substitution of the 11th Gly with Asp was found by comparison with human sEH which has phosphatase activity, but the Xenopus sEH mutant G11D prepared as mutant 2 did not have phosphatase activity. The epoxide hydrolase activity of sEH seemed to be similar to that of human sEH, while Xenopus sEH did not have phosphatase activity toward several substrates that human sEH metabolizes. 相似文献
15.
Hwang SH Morisseau C Do Z Hammock BD 《Bioorganic & medicinal chemistry letters》2006,16(22):5773-5777
A 192-member library of N,N'-disubstituted urea inhibitors was synthesized by a solid-phase method. The ureas were tested for their inhibitory activities against recombinant human soluble epoxide hydrolase. Simple carbocyclic or para/meta-substituted phenyl groups showed inhibition potencies that were equal to or greater than adamantane-based sEH inhibitors, while the presence of bulky or ionizable groups close to the urea group dramatically decreased their activities. 相似文献
16.
Christophe Morisseau Svitlana Pakhomova Sung Hee Hwang Marcia E. Newcomer Bruce D. Hammock 《Bioorganic & medicinal chemistry letters》2013,23(13):3818-3821
The soluble epoxide hydrolase (sEH) is a key enzyme in the metabolism of epoxy-fatty acids, signaling molecules involved in numerous biologies. Toward finding novel inhibitors of sEH, a library of known drugs was tested for inhibition of sEH. We found that fulvestrant, an anticancer agent, is a potent (KI = 26 nM) competitive inhibitor of sEH. From this observation, we found that alkyl-sulfoxides represent a new kind of pharmacophore for the inhibition of sEH. 相似文献
17.
Tanaka H Kamita SG Wolf NM Harris TR Wu Z Morisseau C Hammock BD 《Biochimica et biophysica acta》2008,1779(1):17-27
18.
Parrish AR Chen G Burghardt RC Watanabe T Morisseau C Hammock BD 《Cell biology and toxicology》2009,25(3):217-225
Cisplatin is a highly effective chemotherapeutic agent against many tumors; however, it is also a potent nephrotoxicant. Given
that there have been no significant advances in our ability to clinically manage acute renal failure since the advent of dialysis,
the development of novel strategies to ablate nephrotoxicity would represent a significant development. In this study, we
investigated the ability of an inhibitor of soluble epoxide hydrolase (sEH), n-butyl ester of 12-(3-adamantan-1-yl-ureiido)-dodecanoic acid (nbAUDA), to attenuate cisplatin-induced nephrotoxicity. nbAUDA
is quickly converted to AUDA and results in maintenance of high AUDA levels in vivo. Subcutaneous administration of 40 mg/kg
of nbAUDA to C3H mice every 24 h resulted in elevated blood levels of AUDA; this protocol was also associated with attenuation
of nephrotoxicity induced by cisplatin (intraperitoneal injection) as assessed by BUN levels and histological evaluation of
kidneys. This is the first report of the use of sEH inhibitors to protect against acute nephrotoxicity and suggests a therapeutic
potential of these compounds. 相似文献
19.
Morisseau C Bernay M Escaich A Sanborn JR Lango J Hammock BD 《Analytical biochemistry》2011,(1):154-162
The microsomal epoxide hydrolase (mEH) plays a significant role in the metabolism of numerous xenobiotics. In addition, it has a potential role in sexual development and bile acid transport, and it is associated with a number of diseases such as emphysema, spontaneous abortion, eclampsia, and several forms of cancer. Toward developing chemical tools to study the biological role of mEH, we designed and synthesized a series of absorbent and fluorescent substrates. The highest activity for both rat and human mEH was obtained with the fluorescent substrate cyano(6-methoxy-naphthalen-2-yl)methyl glycidyl carbonate (11). An in vitro inhibition assay using this substrate ranked a series of known inhibitors similarly to the assay that used radioactive cis-stilbene oxide but with a greater discrimination between inhibitors. These results demonstrate that the new fluorescence-based assay is a useful tool for the discovery of structure–activity relationships among mEH inhibitors. Furthermore, this substrate could also be used for the screening chemical library with high accuracy and with a Z′ value of approximately 0.7. This new assay permits a significant decrease in labor and cost and also offers the advantage of a continuous readout. However, it should not be used with crude enzyme preparations due to interfering reactions. 相似文献
20.
《Bioorganic & medicinal chemistry》2019,27(20):115078
Soluble epoxide hydrolase (sEH) inhibitors are potential drugs for several diseases. Adamantyl ureas are excellent sEH inhibitors but have limited metabolic stability. Herein, we report the effect of replacing the adamantane group by alternative polycyclic hydrocarbons on sEH inhibition, solubility, permeability and metabolic stability. Compounds bearing smaller or larger polycyclic hydrocarbons than adamantane yielded all good inhibition potency of the human sEH (0.4 ≤ IC50 ≤ 21.7 nM), indicating that sEH is able to accommodate inhibitors of very different size. Human liver microsomal stability of diamantane containing inhibitors is lower than that of their corresponding adamantane counterparts. 相似文献