首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genome analysis of microbial pathogens has provided unique insights into their virulence, host adaptation and evolution. Common themes have emerged, including lateral gene transfer among enteric pathogens, genome decay among obligate intracellular pathogens and antigenic variation among mucosal pathogens. The advent of post-genomic approaches and the sequencing of the human genome will enable scientists to investigate the complex and dynamic interplay between host and pathogen. This wealth of information will catalyse the development of new intervention strategies to reduce the burden of microbial-related disease.  相似文献   

3.
A complex low-repetitive human DNA probe (BAC RP11-35B4) together with two microdissection-derived region-specific probes of the multicolor banding (MCB) probe-set for chromosome 1 were used to re-analyze the evolution of human chromosome 1 in comparison to four ape species. BAC RP11-35B4 derives from 1q21 and contains 143 kb of non-repetitive DNA; however, it produces three specific FISH signals in 1q21, 1p12 and 1p36.1 of Homo sapiens (HSA). Human chromosome 1 was studied in comparison to its homologues in Hylobates lar (HLA), Pongo pygmaeus (PPY), Gorilla gorilla (GGO) and Pan troglodytes (PTR). A duplication of sequences homologous to human 1p36.1 could be detected in PPY plus an additional signal on PPY 16q. The region homologous to HSA 1p36.1 is also duplicated in HLA, and split onto chromosomes 7q and 9p; the region homologous to HSA 1q21/1p12 is present as one region on 5q. Additionally, the breakpoint of a small pericentric inversion in the evolution of human chromosome 1 compared to other great ape species could be refined. In summary, the results obtained here are in concordance with previous reports; however, there is evidence for a deletion of regions homologous to human 1p34.2-->p34.1 during evolution in the Pongidae branch after separation of PPY.  相似文献   

4.
New insights into the immunology and evolution of HIV   总被引:6,自引:1,他引:5  
Fewer than one million HIV infected individuals are currently receiving anti-retroviral therapy.The limitations of such treatment have underscored the need to develop more effective strategies to control the spread and pathogenesis of HIV.Typically,naturally occurring protective immune responses provide the paradigm for such development.It is now clear however that HIV can utilise the millieu of and activated immune system to its own replicative advantage.Mobilisation of the immune response,intended to thwart the virus,may instead fuel its dissemination. ‘immune escape’and spread.The immense genetic variation of HIV contributes to lack of immune control and the development of progressive disease in the majority of infected,untreated individuals.Further delineation of the intimate interactions between the HIV and the immune system will be critical and recent advances in this direction are discussed.  相似文献   

5.
6.
New insights into the evolution of metazoan tyrosinase gene family   总被引:1,自引:0,他引:1  
Tyrosinases, widely distributed among animals, plants and fungi, are involved in the biosynthesis of melanin, a pigment that has been exploited, in the course of evolution, to serve different functions. We conducted a deep evolutionary analysis of tyrosinase family amongst metazoa, thanks to the availability of new sequenced genomes, assessing that tyrosinases (tyr) represent a distinctive feature of all the organisms included in our study and, interestingly, they show an independent expansion in most of the analyzed phyla. Tyrosinase-related proteins (tyrp), which derive from tyr but show distinct key residues in the catalytic domain, constitute an invention of chordate lineage. In addition we here reported a detailed study of the expression territories of the ascidian Ciona intestinalis tyr and tyrps. Furthermore, we put efforts in the identification of the regulatory sequences responsible for their expression in pigment cell lineage. Collectively, the results reported here enlarge our knowledge about the tyrosinase gene family as valuable resource for understanding the genetic components involved in pigment cells evolution and development.  相似文献   

7.

Background  

Subtilisin-like serine proteases play an important role in pathogenic fungi during the penetration and colonization of their hosts. In this study, we perform an evolutionary analysis of the subtilisin-like serine protease genes of subphylum Pezizomycotina to find if there are similar pathogenic mechanisms among the pathogenic fungi with different life styles, which utilize subtilisin-like serine proteases as virulence factors. Within Pezizomycotina, nematode-trapping fungi are unique because they capture soil nematodes using specialized trapping devices. Increasing evidence suggests subtilisin-like serine proteases from nematode-trapping fungi are involved in the penetration and digestion of nematode cuticles. Here we also conduct positive selection analysis on the subtilisin-like serine protease genes from nematode-trapping fungi.  相似文献   

8.
9.
Candidatus Liberibacter’ species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from ‘Candidatus Liberibacter asiaticus’ (Las). In order to gain greater insight into ‘Ca. Liberibacter’ biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse ‘Ca. Liberibacter’ species, including those that can infect citrus. Our phylogenetic analysis differentiates ‘Ca. Liberibacter’ species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic ‘Ca. Liberibacter’ species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of ‘Ca. Liberibacter’ species, the introduction of Las in the United States and identifies promising Las targets for disease management.  相似文献   

10.
Microbiology research has recently undergone major developments that have led to great progress towards obtaining an integrated view of microbial cell function. Microbial genetics, high-throughput technologies and systems biology have all provided an improved understanding of the structure and function of bacterial genomes and cellular networks. However, integrated evolutionary perspectives are needed to relate the dynamics of adaptive changes to the phenotypic and genotypic landscapes of living organisms. Here, we review evolution experiments, carried out both in vivo with microorganisms and in silico with artificial organisms, that have provided insights into bacterial adaptation and emphasize the potential of bacterial regulatory networks to evolve.  相似文献   

11.
The neuropeptides of the crustacean hyperglycaemic hormone (CHH) family are encoded by a multigene family and are involved in a wide spectrum of essential functions. In order to characterize CHH family peptides in one of the last groups of decapods not yet investigated, CHH was studied in two anomurans: the hermit crab Pagurus bernhardus and the squat lobster Galathea strigosa. Using RT-PCR and 3' and 5' RACE methods, a preproCHH cDNA was cloned from the major neuroendocrine organs (X-organs) of these two species. Hormone precursors deduced from these cDNAs in P. bernhardus and G. strigosa are composed of signal peptides of 29 and 31 amino acids, respectively, and CHH precursor-related peptides (CPRPs) of 50 and 40 amino acids, respectively, followed by a mature hormone of 72 amino acids. The presence of these predicted CHHs and their related CPRPs was confirmed by performing MALDI-TOF mass spectrometry on sinus glands, the main neurohaemal organs of decapods. These analyses also suggest the presence, in sinus glands of both species, of a peptide related to the moult-inhibiting hormone (MIH), another member of the CHH family. Accordingly, immunostaining of the X-organ/sinus gland complex of P. bernhardus with heterologous anti-CHH and anti-MIH sera showed the presence of distinct cells producing CHH and MIH-like proteins. A phylogenetic analysis of CHHs, including anomuran sequences, based on maximum-likelihood methods, was performed. The phylogenetic position of this taxon, as a sister group to Brachyura, is in agreement with previously reported results, and confirms the utility of CHH as a molecular model for understanding inter-taxa relationships. Finally, the paraphyly of penaeid CHHs and the structural diversity of CPRPs are discussed.  相似文献   

12.
13.
14.
Recent insights into R gene evolution   总被引:4,自引:1,他引:3  
  相似文献   

15.
16.
17.
18.
Anoles are a clade of iguanian lizards that underwent an extensive radiation between 125 and 65 million years ago. Their karyotypes show wide variation in diploid number spanning from 26 (Anolis evermanni) to 44 (A. insolitus). This chromosomal variation involves their sex chromosomes, ranging from simple systems (XX/XY), with heterochromosomes represented by either micro- or macrochromosomes, to multiple systems (X1X1X2X2/X1X2Y). Here, for the first time, the homology relationships of sex chromosomes have been investigated in nine anole lizards at the whole chromosome level. Cross-species chromosome painting using sex chromosome paints from A. carolinensis, Ctenonotus pogus and Norops sagrei and gene mapping of X-linked genes demonstrated that the anole ancestral sex chromosome system constituted by microchromosomes is retained in all the species with the ancestral karyotype (2n?=?36, 12 macro- and 24 microchromosomes). On the contrary, species with a derived karyotype, namely those belonging to genera Ctenonotus and Norops, show a series of rearrangements (fusions/fissions) involving autosomes/microchromosomes that led to the formation of their current sex chromosome systems. These results demonstrate that different autosomes were involved in translocations with sex chromosomes in closely related lineages of anole lizards and that several sequential microautosome/sex chromosome fusions lead to a remarkable increase in size of Norops sagrei sex chromosomes.  相似文献   

19.
  1. Download : Download high-res image (109KB)
  2. Download : Download full-size image
  相似文献   

20.
The mechanisms of stress-induced mutagenesis in prokaryotes and realization of reserved (preaccumulated) genetic variation in eukaryotes are considered. In prokaryotes, replication becomes error-prone in stress because of the induction of the SOS response and the inactivation of the mismatch repair system; stress also increases the transposition rate and the efficiency of interspecific gene transfer. In eukaryotes, chaperone HSP90, which restores the native folding of mutant proteins (e.g., signal transduction and morphogenetic proteins) in normal conditions, fails to do so in stress, which leads to abrupt expression of multiple mutations earlier reserved in the corresponding genes. The role of these mechanisms in the evolution of prokaryotes and eukaryotes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号