首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
He H  Su J  Shu S  Zhang Y  Ao Y  Liu B  Feng D  Wang J  Wang H 《PloS one》2012,7(4):e34995
Protein phosphatases, together with protein kinases, regulate protein phosphorylation and dephosphorylation, and play critical roles in plant growth and biotic stress responses. However, little is known about the biological functions of plant protein tyrosine dual-specificity phosphatase (PFA-DSP) in biotic stresses. Here, we found that OsPFA-DSP2 was mainly expressed in calli, seedlings, roots, and young panicles, and localized in cytoplasm and nucleus. Ectopic overexpression of OsPFA-DSP2 in rice increased sensitivity to Magnaporthe grisea (M. grisea Z1 strain), inhibited the accumulation of hydrogen peroxide (H(2)O(2)) and suppressed the expression of pathogenesis-related (PR) genes after fungal infection. Interestingly, transgenic Arabidopsis plants overexpressing AtPFA-DSP4, which is homologous to OsPFA-DSP2, also exhibited sensitivity to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), reduced accumulation of H(2)O(2) and decreased photosynthesic capacity after infection compared with Col-0. These results indicate that OsPFA-DSP2 and AtPFA-DSP4 act as negative regulators of the pathogen response in transgenic plants.  相似文献   

2.
Zhang L  Xiao S  Li W  Feng W  Li J  Wu Z  Gao X  Liu F  Shao M 《Journal of experimental botany》2011,62(12):4229-4238
Harpin proteins are well known as eliciters that induce multiple responses in plants, such as systemic acquired resistance, hypersensitive response, enhancement of growth, resistance to the green peach aphid, and tolerance to drought. Overexpression of Harpin-encoding genes enhances plant resistance to diseases in tobacco, rice, rape, and cotton; however, it is not yet known whether the expression of Harpin-encoding genes in vivo improves plant tolerance to abiotic stresses. The results of this study showed that overexpression of a Harpin-encoding gene hrf1 in rice increased drought tolerance through abscisic acid (ABA) signalling. hrf1- overexpression induces an increase in ABA content and promotes stomatal closure in rice. The hrf1 transgenic rice lines exhibited a significant increase in water retention ability, levels of free proline and soluble sugars, tolerance to oxidative stress, reactive oxygen species-scavenging ability, and expression levels of four stress-related genes, OsLEA3-1, OsP5CS, Mn-SOD, and NM_001074345, under drought stress. The study confirmed that hrf1 conferred enhanced tolerance to drought stress on transgenic crops. These results suggest that Harpins may offer new opportunities for generating drought resistance in other crops.  相似文献   

3.
Drought is one of the major abiotic stresses that directly implicate plant growth and crop productivity. Although many genes in response to drought stress have been identified, genetic improvement to drought resistance especially in food crops is showing relatively slow progress worldwide. Here, we reported the isolation of abscisic acid, stress and ripening (ASR) genes from upland rice variety, IRAT109 (Oryza sativa L. ssp. japonica), and demonstrated that overexpression of OsASR5 enhanced osmotic tolerance in Escherichia coli and drought tolerance in Arabidopsis and rice by regulating leaf water status under drought stress conditions. Moreover, overexpression of OsASR5 in rice increased endogenous ABA level and showed hypersensitive to exogenous ABA treatment at both germination and postgermination stages. The production of H2O2, a second messenger for the induction of stomatal closure in response to ABA, was activated in overexpression plants under drought stress conditions, consequently, increased stomatal closure and decreased stomatal conductance. In contrast, the loss‐of‐function mutant, osasr5, showed sensitivity to drought stress with lower relative water content under drought stress conditions. Further studies demonstrated that OsASR5 functioned as chaperone‐like protein and interacted with stress‐related HSP40 and 2OG‐Fe (II) oxygenase domain containing proteins in yeast and plants. Taken together, we suggest that OsASR5 plays multiple roles in response to drought stress by regulating ABA biosynthesis, promoting stomatal closure, as well as acting as chaperone‐like protein that possibly prevents drought stress‐related proteins from inactivation.  相似文献   

4.
Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs.Gibberellic acid(CA) and abscisic acid(ABA) play critical roles in the developmental programs and environmental responses,respectively,through complex signaling and metabolism networks.However,crosstalk between the two phytohormones in stress responses remains largely unknown.In this study,we report that CIBBERELLIN-INSENSITIVE DWARF 1(GID1),a soluble receptor for GA,regulates stomatal development and patterning in rice(Oryza sativa L.).The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions,but it exhibited enhanced sensitivity to exogenous ABA.Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions.Interestingly,the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions,and showed enhanced reactive oxygen species(ROS)-scavenging ability and submergence tolerance compared with the wild-type.Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA,and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption.Taken together,these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice.  相似文献   

5.
6.
7.
Gao T  Wu Y  Zhang Y  Liu L  Ning Y  Wang D  Tong H  Chen S  Chu C  Xie Q 《Plant molecular biology》2011,76(1-2):145-156
Recent genomic and genetic analyses based on Arabidopsis suggest that ubiquitination plays crucial roles in the plant response to abiotic stress and the phytohormone abscisic acid (ABA). However, few such studies have been reported in rice as a monocotyledonous model plant. Taking advantage of strategies in biochemistry, molecular cell biology and genetics, the RING-finger containing E3 ligase OsSDIR1 (Oryza sativa SALT-AND DROUGHT-INDUCED RING FINGER 1) was found to be a candidate drought tolerance gene for engineering of crop plants. The expression of OsSDIR1 was detected in all tissues of rice and up-regulated by drought and NaCl, but not by ABA. In vitro ubiquitination assays demonstrated that OsSDIR1 is a functional E3 ubiquitin ligase and that the RING finger region is required for its activity. OsSDIR1 could complement the drought sensitive phenotype of the sdir1 mutant and overexpressing transgenic Arabidopsis were more sensitive to ABA, indicating that the OsSDIR1 gene is a functional ortholog of SDIR1. Upon drought treatment, the OsSDIR1-transgenic rice showed strong drought tolerance compared to control plants. Analysis of the stomata aperture revealed that there were more closed stomatal pores in transgenic plants than those of control plants. This result was also confirmed by the water loss assay and leaf related water content (RWC) measurements during drought treatment. Thus, we demonstrated that monocot- and dicot- SDIR1s are conserved yet have diverse functions.  相似文献   

8.
A full-length cDNA of a rice protein phosphatase 2C gene, OsBIPP2C1 , was cloned and identified. OsBIPP2C1 is predicted to encode a 569 amino acid protein that contains phosphatase domain at its C-terminal and a relatively long N-terminal extension. Expression profiles of OsBIPP2C1 in rice seedlings upon treatments with disease resistance inducers, pathogen infection, and mechanical wounding as well as various environmental stress conditions were analyzed. Expression of OsBIPP2C1 was activated upon treatments with benzothiadiazole (BTH), salicylic acid, and hydrogen peroxide, which are signal molecules in plant disease resistance responses, and was induced during the first 48 h after inoculation with Magnaporthe grisea in BTH-treated rice seedlings. OsBIPP2C1 was also upregulated upon mechanical wounding and treatments with abscisic acid, high salt, low temperature, and drought stress. Transgenic tobacco plants overexpressing OsBIPP2C1 gene showed enhanced disease resistance against tobacco mosaic virus and Phytophthora paratisca and increased tolerance against salt and osmotic stresses. These results suggest that OsBIPP2C1 may play important roles in responses to biotic and abiotic stresses.  相似文献   

9.
10.
11.
The rice Oryza sativa selenium-binding protein homologue (OsSBP) gene encodes a homologue of mammalian selenium-binding proteins, and it has been isolated as one of the genes induced by treating a plant with a cerebroside elicitor from rice blast fungus. The possible role of OsSBP in plant defense was evaluated by using a transgenic approach. Plants overexpressing OsSBP showed enhanced resistance to a virulent strain of rice blast fungus as well as to rice bacterial blight. The expression of defense-related genes and the accumulation of phytoalexin after infection by rice blast fungus were accelerated in the OsSBP overexpressors. A higher level of H(2)O(2) accumulation and reduced activity of such scavenging enzymes as ascorbate peroxidase and catalase were seen when the OsSBP-overexpressing plants were treated with the protein phosphatase 1 inhibitor, calyculin A. These results suggest that the upregulation of OsSBP expression conferred enhanced tolerance to different pathogens, possibly by increasing plant sensitivity to endogenous defense responses. Additionally, the OsSBP protein might have a role in modulating the defense mechanism to biotic stress in rice.  相似文献   

12.
13.
AtPUB18 and AtPUB19 are homologous U-box E3 ubiquitin ligases in Arabidopsis (Arabidopsis thaliana). AtPUB19 is a negative regulator of abscisic acid (ABA)-mediated drought responses, whereas the role of AtPUB18 in drought responses is unknown. Here, loss-of-function and overexpression tests identified AtPUB18 as a negative regulator in ABA-mediated stomatal closure and water stress responses. The atpub18-2atpub19-3 double mutant line displayed more sensitivity to ABA and enhanced drought tolerance than each single mutant plant; therefore, AtPUB18 and AtPUB19 are agonistic. Stomatal closure of the atpub18-2atpub19-3 mutant was hypersensitive to hydrogen peroxide (H(2)O(2)) but not to calcium, suggesting that AtPUB18 and AtPUB19 exert negative effects on the ABA signaling pathway downstream of H(2)O(2) and upstream of calcium. AtPUB22 and AtPUB23 are other U-box E3 negative regulators of drought responses. Although atpub22atpub23 was more tolerant to drought stress relative to wild-type plants, its ABA-mediated stomatal movements were highly similar to those of wild-type plants. The atpub18-2atpub19-3atpub22atpub23 quadruple mutant exhibited enhanced tolerance to drought stress as compared with each atpub18-2atpub19-3 and atpub22atpub23 double mutant progeny; however, its stomatal behavior was almost identical to the atpub18-2atpub19-3 double mutant in the presence of ABA, H(2)O(2), and calcium. Overexpression of AtPUB18 and AtPUB19 in atpub22atpub23 effectively hindered ABA-dependent stomatal closure, but overexpression of AtPUB22 and AtPUB23 in atpub18-2atpub19-3 did not inhibit ABA-enhanced stomatal closure, highlighting their ABA-independent roles. Overall, these results suggest that AtPUB18 has a linked function with AtPUB19, but is independent from AtPUB22 and AtPUB23, in negative regulation of ABA-mediated drought stress responses.  相似文献   

14.
15.
16.
硅和干旱胁迫对水稻叶片光合特性和矿质养分吸收的影响   总被引:3,自引:0,他引:3  
陈伟  蔡昆争  陈基宁 《生态学报》2012,32(8):2620-2628
硅被认为是植物生长的有益元素,它能增强植物对非生物逆境和生物逆境胁迫的抗性。以抗旱性不同的一对水稻近等基因系w-14-和w-20为实验材料,采用盆栽实验,研究了干旱胁迫下硅处理对水稻生长性状、光合生理特性和矿质养分吸收的影响。结果表明,在正常水分条件下硅处理对水稻的生长及生理特性没有明显影响。干旱胁迫显著降低水稻植株的生长,叶绿素含量、叶绿素荧光参数Fv/Fm及Fv/F0值显著降低,光合作用受到明显抑制。加硅能提高干旱胁迫条件下水稻植株的生物量、水分利用效率、叶片叶绿素含量、净光合速率和蒸腾速率,而气孔导度和细胞间隙CO2浓度则下降。无论干旱与否,施硅后水稻的叶片硅含量均显著上升。两个水稻品系叶片的无机离子含量在干旱胁迫条件下均呈显著增加的趋势,而硅处理后材料w-14的叶片K+、Na+、Ca2+、Mg2+、Fe3+含量分别降低16.38%,24.50%,19.70%,21.52%,18.58%,w-20则分别降低11.64%,12.11%,16.06%,11.11%和19.15%,并使之回复到与对照更接近的水平。研究结果表明了硅提高水稻植株的抗旱性与光合作用的改善和矿质养分的调节有关。  相似文献   

17.
Water deficit is a major environmental threat affecting crop yields worldwide. In this study, a drought stress‐sensitive mutant drought sensitive 8 (ds8) was identified in rice (Oryza sativa L.). The DS8 gene was cloned using a map‐based approach. Further analysis revealed that DS8 encoded a Nck‐associated protein 1 (NAP1)‐like protein, a component of the SCAR/WAVE complex, which played a vital role in actin filament nucleation activity. The mutant exhibited changes in leaf cuticle development. Functional analysis revealed that the mutation of DS8 increased stomatal density and impaired stomatal closure activity. The distorted actin filaments in the mutant led to a defect in abscisic acid (ABA)‐mediated stomatal closure and increased ABA accumulation. All these resulted in excessive water loss in ds8 leaves. Notably, antisense transgenic lines also exhibited increased drought sensitivity, along with impaired stomatal closure and elevated ABA levels. These findings suggest that DS8 affects drought sensitivity by influencing actin filament activity.  相似文献   

18.
19.
20.
干旱会直接影响水稻的生长发育,导致其产量和品质下降。在水稻中异源表达细菌RNA分子伴侣Csp能够显著提高水稻的耐旱能力,并且不影响水稻的正常生长。古菌中也发现具有类似细菌分子伴侣Csp功能的TRAM (TRM2 and MiaB)蛋白,且古菌的DNA复制、转录和翻译等过程与真核生物有着更为相似的调控方式,然而,古菌中RNA分子伴侣蛋白能否调控植物耐旱能力还未见报道。我们选取了嗜冷甲烷古菌Methanolobus psychrophilus R15中两个TRAM蛋白在水稻中进行研究,发现在水稻中过量表达Mpsy_3066和Mpsy_0643两个TRAM蛋白均能显著提高水稻苗期和成株期时对干旱胁迫的耐受能力。同时,我们在水稻原生质体中验证了TRAM蛋白可以发挥其分子伴侣的功能消除RNA的错误折叠对翻译的影响,这可能是TRAM转基因植物发挥其耐旱能力的作用机制。该工作初步展示了异源表达古菌TRAMs可以作为提高水稻耐旱能力的一种有效手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号