首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies.  相似文献   

2.
A notable inefficiency of shotgun proteomics experiments is the repeated rediscovery of the same identifiable peptides by sequence database searching methods, which often are time-consuming and error-prone. A more precise and efficient method, in which previously observed and identified peptide MS/MS spectra are catalogued and condensed into searchable spectral libraries to allow new identifications by spectral matching, is seen as a promising alternative. To that end, an open-source, functionally complete, high-throughput and readily extensible MS/MS spectral searching tool, SpectraST, was developed. A high-quality spectral library was constructed by combining the high-confidence identifications of millions of spectra taken from various data repositories and searched using four sequence search engines. The resulting library consists of over 30,000 spectra for Saccharomyces cerevisiae. Using this library, SpectraST vastly outperforms the sequence search engine SEQUEST in terms of speed and the ability to discriminate good and bad hits. A unique advantage of SpectraST is its full integration into the popular Trans Proteomic Pipeline suite of software, which facilitates user adoption and provides important functionalities such as peptide and protein probability assignment, quantification, and data visualization. This method of spectral library searching is especially suited for targeted proteomics applications, offering superior performance to traditional sequence searching.  相似文献   

3.
A key problem in computational proteomics is distinguishing between correct and false peptide identifications. We argue that evaluating the error rates of peptide identifications is not unlike computing generating functions in combinatorics. We show that the generating functions and their derivatives ( spectral energy and spectral probability) represent new features of tandem mass spectra that, similarly to Delta-scores, significantly improve peptide identifications. Furthermore, the spectral probability provides a rigorous solution to the problem of computing statistical significance of spectral identifications. The spectral energy/probability approach improves the sensitivity-specificity tradeoff of existing MS/MS search tools, addresses the notoriously difficult problem of "one-hit-wonders" in mass spectrometry, and often eliminates the need for decoy database searches. We therefore argue that the generating function approach has the potential to increase the number of peptide identifications in MS/MS searches.  相似文献   

4.
5.
With great biological interest in post-translational modifications (PTMs), various approaches have been introduced to identify PTMs using MS/MS. Recent developments for PTM identification have focused on an unrestrictive approach that searches MS/MS spectra for all known and possibly even unknown types of PTMs at once. However, the resulting expanded search space requires much longer search time and also increases the number of false positives (incorrect identifications) and false negatives (missed true identifications), thus creating a bottleneck in high throughput analysis. Here we introduce MODa, a novel "multi-blind" spectral alignment algorithm that allows for fast unrestrictive PTM searches with no limitation on the number of modifications per peptide while featuring over an order of magnitude speedup in relation to existing approaches. We demonstrate the sensitivity of MODa on human shotgun proteomics data where it reveals multiple mutations, a wide range of modifications (including glycosylation), and evidence for several putative novel modifications. Based on the reported findings, we argue that the efficiency and sensitivity of MODa make it the first unrestrictive search tool with the potential to fully replace conventional restrictive identification of proteomics mass spectrometry data.  相似文献   

6.
Spectral library searching is an emerging approach in peptide identifications from tandem mass spectra, a critical step in proteomic data analysis. In spectral library searching, a spectral library is first meticulously compiled from a large collection of previously observed peptide MS/MS spectra that are conclusively assigned to their corresponding amino acid sequence. An unknown spectrum is then identified by comparing it to all the candidates in the spectral library for the most similar match. This review discusses the basic principles of spectral library building and searching, describes its advantages and limitations, and provides a primer for researchers interested in adopting this new approach in their data analysis. It will also discuss the future outlook on the evolution and utility of spectral libraries in the field of proteomics.  相似文献   

7.
We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database(YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a singlelaboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography–tandem mass spectrometry(LC–MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring(MRM)/selective reaction monitoring(SRM) assay development. We have linked YPED's database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results.  相似文献   

8.
Robust statistical validation of peptide identifications obtained by tandem mass spectrometry and sequence database searching is an important task in shotgun proteomics. PeptideProphet is a commonly used computational tool that computes confidence measures for peptide identifications. In this paper, we investigate several limitations of the PeptideProphet modeling approach, including the use of fixed coefficients in computing the discriminant search score and selection of the top scoring peptide assignment per spectrum only. To address these limitations, we describe an adaptive method in which a new discriminant function is learned from the data in an iterative fashion. We extend the modeling framework to go beyond the top scoring peptide assignment per spectrum. We also investigate the effect of clustering the spectra according to their spectrum quality score followed by cluster-specific mixture modeling. The analysis is carried out using data acquired from a mixture of purified proteins on four different types of mass spectrometers, as well as using a complex human serum data set. A special emphasis is placed on the analysis of data generated on high mass accuracy instruments.  相似文献   

9.
We report a hybrid search method combining database and spectral library searches that allows for a straightforward approach to characterizing the error rates from the combined data. Using these methods, we demonstrate significantly increased sensitivity and specificity in matching peptides to tandem mass spectra. The hybrid search method increased the number of spectra that can be assigned to a peptide in a global proteomics study by 57-147% at an estimated false discovery rate of 5%, with clear room for even greater improvements. The approach combines the general utility of using consensus model spectra typical of database search methods with the accuracy of the intensity information contained in spectral libraries. A common scoring metric based on recent developments linking data analysis and statistical thermodynamics is used, which allows the use of a conservative estimate of error rates for the combined data. We applied this approach to proteomics analysis of Synechococcus sp. PCC 7002, a cyanobacterium that is a model organism for studies of photosynthetic carbon fixation and biofuels development. The increased specificity and sensitivity of this approach allowed us to identify many more peptides involved in the processes important for photoautotrophic growth.  相似文献   

10.
用于串联质谱鉴定多肽的计量方法   总被引:1,自引:0,他引:1  
目前已有多种对串联质谱与数据库中多肽的理论质谱的一致性进行评估的高通量计量算法用于鸟枪法蛋白质组学 (shotgunproteomics)研究。然而这些方法操作时存在大量错误的多肽鉴定。这里提出一种新的串联质谱识别多肽序列的计量算法。该算法综合考虑了串联质谱中不同离子出现的概率、多肽的酶切位点数、理论离子与实验离子的匹配程度和匹配模式。对大容量的串联质谱数据集的测试表明 ,根据算法开发的软件PepSearch比目前最常用的软件SEQUEST有更好的鉴定准确性。PepSearch可从http : compbio.sibsnet.org projects pepsearch下载。  相似文献   

11.
A major limitation in identifying peptides from complex mixtures by shotgun proteomics is the ability of search programs to accurately assign peptide sequences using mass spectrometric fragmentation spectra (MS/MS spectra). Manual analysis is used to assess borderline identifications; however, it is error-prone and time-consuming, and criteria for acceptance or rejection are not well defined. Here we report a Manual Analysis Emulator (MAE) program that evaluates results from search programs by implementing two commonly used criteria: 1) consistency of fragment ion intensities with predicted gas phase chemistry and 2) whether a high proportion of the ion intensity (proportion of ion current (PIC)) in the MS/MS spectra can be derived from the peptide sequence. To evaluate chemical plausibility, MAE utilizes similarity (Sim) scoring against theoretical spectra simulated by MassAnalyzer software (Zhang, Z. (2004) Prediction of low-energy collision-induced dissociation spectra of peptides. Anal. Chem. 76, 3908-3922) using known gas phase chemical mechanisms. The results show that Sim scores provide significantly greater discrimination between correct and incorrect search results than achieved by Sequest XCorr scoring or Mascot Mowse scoring, allowing reliable automated validation of borderline cases. To evaluate PIC, MAE simplifies the DTA text files summarizing the MS/MS spectra and applies heuristic rules to classify the fragment ions. MAE output also provides data mining functions, which are illustrated by using PIC to identify spectral chimeras, where two or more peptide ions were sequenced together, as well as cases where fragmentation chemistry is not well predicted.  相似文献   

12.
基于质谱的蛋白质组学快速发展,蛋白质质谱数据也呈指数式增长。寻找速度快、准确度高以及重复性好的鉴定方法是该领域的一项重要任务。谱图库搜索策略直接比较实验谱图与谱图库中的真实谱图,充分利用了谱图中的丰度、非常规碎裂模式和其他的一些特征,使得搜索更加快速和准确,成为蛋白质组学的主流鉴定方法之一。文中介绍基于谱图库的蛋白质组质谱数据鉴定策略,并针对其中两个关键步骤——谱图库构建方法和谱图库搜索方法进行深入介绍,探讨了谱图库策略的进展和挑战。  相似文献   

13.
Granholm V  Käll L 《Proteomics》2011,11(6):1086-1093
The peptide identification process in shotgun proteomics is most frequently solved with search engines. Such search engines assign scores that reflect similarity between the measured fragmentation spectrum and the theoretical spectra of the peptides of a given database. However, the scores from most search engines do not have a direct statistical interpretation. To understand and make use of the significance of peptide identifications, one must thus be familiar with some statistical concepts. Here, we discuss different statistical scores used to show the confidence of an identification and a set of methods to estimate these scores. We also describe the variance of statistical scores and imperfections of scoring functions of peptide-spectrum matches.  相似文献   

14.
In a typical shotgun proteomics experiment, a significant number of high‐quality MS/MS spectra remain “unassigned.” The main focus of this work is to improve our understanding of various sources of unassigned high‐quality spectra. To achieve this, we designed an iterative computational approach for more efficient interrogation of MS/MS data. The method involves multiple stages of database searching with different search parameters, spectral library searching, blind searching for modified peptides, and genomic database searching. The method is applied to a large publicly available shotgun proteomic data set.  相似文献   

15.
Clustering millions of tandem mass spectra   总被引:1,自引:0,他引:1  
Tandem mass spectrometry (MS/MS) experiments often generate redundant data sets containing multiple spectra of the same peptides. Clustering of MS/MS spectra takes advantage of this redundancy by identifying multiple spectra of the same peptide and replacing them with a single representative spectrum. Analyzing only representative spectra results in significant speed-up of MS/MS database searches. We present an efficient clustering approach for analyzing large MS/MS data sets (over 10 million spectra) with a capability to reduce the number of spectra submitted to further analysis by an order of magnitude. The MS/MS database search of clustered spectra results in fewer spurious hits to the database and increases number of peptide identifications as compared to regular nonclustered searches. Our open source software MS-Clustering is available for download at http://peptide.ucsd.edu or can be run online at http://proteomics.bioprojects.org/MassSpec.  相似文献   

16.
For bottom‐up proteomics, there are wide variety of database‐searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid‐search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection‐–referred to as STEPS‐–utilizes user‐defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal “parameter set” for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true‐positive identifications are demonstrated using datasets derived from immunoaffinity‐depleted blood serum and a bacterial cell lysate, two common proteomics sample types.  相似文献   

17.
A very popular approach in proteomics is the so-called "shotgun LC-MS/MS" strategy. In its mostly used form, a total protein digest is separated by ion exchange fractionation in the first dimension followed by off- or on-line RP LC-MS/MS. We replaced the first dimension by isoelectric focusing in the liquid phase using the Off-Gel device producing 15 fractions. As peptides are separated by their isoelectric point in the first dimension and hydrophobicity in the second, those experimentally derived parameters (pI and R(T)) can be used for the validation of potentially identified peptides. We applied this strategy to a cellular extract of Drosophila Kc167 cells and identified peptides with two different database search engines, namely PHENYX and SEQUEST, with PeptideProphet validation of the SEQUEST results. PHENYX returned 7582 potential peptide identifications and SEQUEST 7629. The SEQUEST results were reduced to 2006 identifications by validation with PeptideProphet. Validation of the PeptideProphet, SEQUEST and PHENYX results by pI and R(T) parameters confirmed 1837 PeptideProphet identifications while in the remainder of the SEQUEST results another 1130 peptides were found to be likely hits. The validation on PHENYX resulted in the fixation of a solid p-value threshold of <1 x 10(-04) that sets by itself the correct identification confidence to >95%, and a final count of 2034 highly confident peptide identifications was achieved after pI and R(T) validation. Although the PeptideProphet and PHENYX datasets have a very high confidence the overlap of common identifications was only at 79.4%, to be explained by the fact that data interpretation was done searching different protein databases with two search engines of different algorithms. The approach used in this study allowed for an automated and improved data validation process for shotgun proteomics projects producing MS/MS peptide identification results of very high confidence.  相似文献   

18.
Wagner C  Sefkow M  Kopka J 《Phytochemistry》2003,62(6):887-900
The non-supervised construction of a mass spectral and retention time index data base (MS/RI library) from a set of plant metabolic profiles covering major organs of potato (Solanum tuberosum), tobacco (Nicotiana tabaccum), and Arabidopsis thaliana, was demonstrated. Typically 300-500 mass spectral components with a signal to noise ratio > or =75 were obtained from GC/EI-time-of-flight (TOF)-MS metabolite profiles of methoxyaminated and trimethylsilylated extracts. Profiles from non-sample controls contained approximately 100 mass spectral components. A MS/RI library of 6205 mass spectral components was accumulated and applied to automated identification of the model compounds galactonic acid, a primary metabolite, and 3-caffeoylquinic acid, a secondary metabolite. Neither MS nor RI alone were sufficient for unequivocal identification of unknown mass spectral components. However library searches with single bait mass spectra of the respective reference substance allowed clear identification by mass spectral match and RI window. Moreover, the hit lists of mass spectral searches were demonstrated to comprise candidate components of highly similar chemical nature. The search for the model compound galactonic acid allowed identification of gluconic and gulonic acid among the top scoring mass spectral components. Equally successful was the exemplary search for 3-caffeoylquinic acid, which led to the identification of quinic acid and of the positional isomers, 4-caffeoylquinic acid, 5-caffeoylquinic acid among other still non-identified conjugates of caffeic and quinic acid. All identifications were verified by co-analysis of reference substances. Finally we applied hierarchical clustering to a complete set of pair-wise mass spectral comparisons of unknown components and reference substances with known chemical structure. We demonstrated that the resulting clustering tree depicted the chemical nature of the reference substances and that most of the nearest neighbours represented either identical components, as judged by co-elution, or conformational isomers exhibiting differential retention behaviour. Unknown components could be classified automatically by grouping with the respective branches and sub-branches of the clustering tree.  相似文献   

19.
Wenguang Shao  Kan Zhu  Henry Lam 《Proteomics》2013,13(22):3273-3283
Spectral library searching is a maturing approach for peptide identification from MS/MS, offering an alternative to traditional sequence database searching. Spectral library searching relies on direct spectrum‐to‐spectrum matching between the query data and the spectral library, which affords better discrimination of true and false matches, leading to improved sensitivity. However, due to the inherent diversity of the peak location and intensity profiles of real spectra, the resulting similarity score distributions often take on unpredictable shapes. This makes it difficult to model the scores of the false matches accurately, necessitating the use of decoy searching to sample the score distribution of the false matches. Here, we refined the similarity scoring in spectral library searching to enable the validation of spectral search results without the use of decoys. We rank‐transformed the peak intensities to standardize all spectra, making it possible to fit a parametric distribution to the scores of the nontop‐scoring spectral matches. The statistical significance of the top‐scoring match can then be estimated in a rigorous manner according to Extreme Value Theory. The overall result is a more robust and interpretable measure of the quality of the spectral match, which can be obtained without decoys. We tested this refined similarity scoring function on real datasets and demonstrated its effectiveness. This approach reduces search time, increases sensitivity, and extends spectral library searching to situations where decoy spectra cannot be readily generated, such as in searching unidentified and nonpeptide spectral libraries.  相似文献   

20.
数据非依赖采集(DIA)是蛋白质组学领域近年来快速发展的质谱采集技术,其通过无偏碎裂隔离窗口内的所有母离子采集二级谱图,理论上可实现蛋白质样品的深度覆盖,同时具有高通量、高重现性和高灵敏度的优点。现有的DIA数据采集方法可以分为全窗口碎裂方法、隔离窗口序列碎裂方法和四维DIA数据采集方法(4D-DIA)3大类。针对DIA数据的不同特点,主要数据解析方法包括谱库搜索方法、蛋白质序列库直接搜索方法、伪二级谱图鉴定方法和从头测序方法4大类。解析得到的肽段鉴定结果需要进行可信度评估,包括使用机器学习方法的重排序和对报告结果集合的假发现率估计两个步骤,实现对数据解析结果的质控。本文对DIA数据的采集方法、数据解析方法及软件和鉴定结果可信度评估方法进行了整理和综述,并展望了未来的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号