首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hyperglycemia is involved in the diabetic complication of different organs and can elevate serum osmolarity. Here, we tested whether hyperosmolarity promoted by high glucose levels induces cellular senescence in renal cells. We treated Wistar rats with streptozotocin to induce diabetes or with consecutive daily injections of mannitol to increase serum osmolarity and analyzed p53 and p16 genes in renal cortex by immunohistochemistry. Both diabetic and mannitol treated rats showed a significant increase in serum osmolarity, without significant signs of renal dysfunction, but associated with increased staining for p53 and p16 in the renal cortex. An increase in p53 and p16 expression was also found in renal cortex slices and glomeruli isolated from healthy rats, which were later treated with 30 mM glucose or mannitol. Intracellular mechanisms involved were analyzed in cultured human glomerular mesangial cells treated with 30 mM glucose or mannitol. After treatments, cells showed increased p53, p21 and p16 expression and elevated senescence-associated β-galactosidase activity. Senescence was prevented when myo-inositol was added before treatment. High glucose or mannitol induced constitutive activation of Ras and ERK pathways which, in turn, were activated by oxidative stress. In summary, hyperosmolarity induced renal senescence, particularly in glomerular mesangial cells, increasing oxidative stress, which constitutively activated Ras-ERK 1/2 pathway. Cellular senescence could contribute to the organ dysfunction associated with diabetes.  相似文献   

3.
Li XH  Ha CT  Fu D  Xiao M 《PloS one》2012,7(5):e36604
Radiotherapy is commonly used for cancer treatment. However, it often results in side effects due to radiation damage in normal tissue, such as bone marrow (BM) failure. Adult hematopoietic stem and progenitor cells (HSPC) reside in BM next to the endosteal bone surface, which is lined primarily by hematopoietic niche osteoblastic cells. Osteoblasts are relatively more radiation-resistant than HSPCs, but the mechanisms are not well understood. In the present study, we demonstrated that the stress response gene REDD1 (regulated in development and DNA damage responses 1) was highly expressed in human osteoblast cell line (hFOB) cells after γ irradiation. Knockdown of REDD1 with siRNA resulted in a decrease in hFOB cell numbers, whereas transfection of PCMV6-AC-GFP-REDD1 plasmid DNA into hFOB cells inhibited mammalian target of rapamycin (mTOR) and p21 expression and protected these cells from radiation-induced premature senescence (PS). The PS in irradiated hFOB cells were characterized by significant inhibition of clonogenicity, activation of senescence biomarker SA-β-gal, and the senescence-associated cytokine secretory phenotype (SASP) after 4 or 8 Gy irradiation. Immunoprecipitation assays demonstrated that the stress response proteins p53 and nuclear factor κ B (NFkB) interacted with REDD1 in hFOB cells. Knockdown of NFkB or p53 gene dramatically suppressed REDD1 protein expression in these cells, indicating that REDD1 was regulated by both factors. Our data demonstrated that REDD1 is a protective factor in radiation-induced osteoblast cell premature senescence.  相似文献   

4.
Li AY  Han M  Zheng B  Wen JK 《FEBS letters》2008,582(2):243-248
Roscovitine is a potent CDK inhibitor often used as a biological tool in cell-cycle studies, but its working mechanism and real targets in vascular smooth muscle cells (VSMCs) remain unclear. In this study, we observed that ERK1/2 phosphorylation induced by Ang II was abrogated by pretreating VSMCs with roscovitine for 15h. Pretreating VSMCs with roscovitine also inhibited Ang II-induced c-Jun expression and phosphorylation. We further demonstrated that roscovitine could suppress the DNA binding activity of c-Jun and activation of angiotensinogen promoter by Ang II. These results suggest that roscovitine represses Ang II-induced angiotensinogen expression by inhibiting activation of ERK1/2 and c-Jun.  相似文献   

5.
Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca2+ ([Ca2+]i) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca2+]i elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca2+]i chelator; KN-93, a Ca2+/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca2+]i-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs.  相似文献   

6.
High glucose (HG) increases angiotensin II (AngII) generation in mesangial cells (MC). Chymase, an alternative AngII-generating enzyme, is upregulated in the glomeruli of diabetic kidneys. In this study, we examined AngII synthesis by human MC via angiotensin-converting enzyme (ACE)-dependent and chymase-dependent pathways under normal glucose (NG, 5 mM) and HG (30 mM) conditions. NG cells expressed ACE and chymase mRNA. Under NG conditions the chymase inhibitor chymostatin reduced AngII levels in cell lysates and in the culture medium, and the ACE inhibitor captopril had no effect. HG induced a 3-fold increase in chymase mRNA and protein but not in ACE mRNA; however, HG induced a 10-fold increase in intracellular ACE activity. The increase in AngII generation induced by HG was found in the cell lysate but not in the culture medium. The rise in intracellular AngII was not prevented by captopril or by chymostatin. Moreover, captopril inhibited extracellular ACE activity but failed to block intracellular ACE activity; these results suggested that captopril was unable to reach intra-cellular ACE. Losartan did not change the intracellular AngII content in either NG or HG conditions, and this lack of change suggested that the increase in AngII was due to intracellular generation. Together these results suggest that chymase may be active in human MC and that both ACE and chymase are involved in increased AngII generation during the HG stimulus by different mechanisms, including an upregulation of chymase mRNA and a rise in intracellular ACE activity, favoring the generation and accumulation of intracellular AngII.  相似文献   

7.
Arginine vasopressin (AVP) promotes proliferation of glomerular mesangial cells. We examined whether AVP modulates an apoptosis of cultured rat glomerular mesangial cells at 3-17th passages. The agarose gel electrophoresis demonstrated that AVP attenuated a ladder formation stimulated by the serum deprivation. The quantitation of oligonucleosomes by ELISA also showed that AVP suppressed the serum deprivation-induced apoptosis. Such an antiapoptotic effect of AVP was dose-dependent. An AVP V1a receptor antagonist, d(CH2)5Tyr(Me)AVP, abolished the antiapoptotic effect of AVP. The inhibitory effect of AVP on the apoptosis was reduced by staurosporine and mimicked by phorbol-12-myristate-13-acetate. These results suggest that AVP inhibits serum deprivation-induced apoptosis of glomerular mesangial cells via V1a receptor-protein kinase C pathway.  相似文献   

8.
Sublethal doses of surfactants as exemplified by NP-40 clearly induce premature senescence in normal human cells. To understand molecular basis for this phenomenon, we tried to suppress it with use of various inhibitors. An inhibitor of p38 of the MAPK family almost completely suppressed growth arrest and morphological changes induced by surfactants; however, other inhibitors tested had no effect. Oleic acid, a weak inducer of premature senescence, was found to suppress the effect of NP-40. Fluorescein-labeled oleic acid rapidly bound to the cell surface, and this binding was clearly blocked by pre-treatment with surfactants, suggesting that surfactants and oleic acid compete for binding to the cell surface. Moderate concentrations of cycloheximide, an inhibitor of protein synthesis, also suppressed the senescent features induced by NP-40. These results suggest that surfactants activate p38 signaling pathway by binding to the cell surface, and induce cellular senescence.  相似文献   

9.
Vascular endothelial cells have a finite cell lifespan and eventually enter an irreversible growth arrest, cellular senescence. The functional changes associated with cellular senescence are thought to contribute to human aging and age-related cardiovascular disorders, e.g. atherosclerosis. In this study, induction of Angiotensin II (Ang II) promoted a growth arrest with phenotypic characteristics of cell senescence, such as enlarged cell shapes, increased senescence-associated beta-galactosidase (SA-beta-gal) positive staining cell, and depressed cell proliferation. Apoptotic changes were increased in senescent cells, with a small subset of the senescent cells showing aberrant morphology such as pronounced nuclear fragmentation or multiple micronuclei. The results suggest cell apoptosis is possibly an important factor in the process of pathologic and physiologic senescence of endothelial cells as well as vascular aging.  相似文献   

10.
11.
Plasminogenactivatorinhibitor1(PAI1)isaspecificphysiologicalinhibitorofurokinasetypeplasminogenactivator(uPA)andtissuetypeplasminogenactivator(tPA)[1].ChangesofPAI1mayinduceimbalancebetweenglomerularextracellularmatrix(ECM)synthesisanddegradation,thusleading…  相似文献   

12.
Hydrogen sulfide (H2S) is the third gas signaling molecule that has been shown to be involved in the regulating vital activities in the body, including inhibition of aging. However, it is unknown whether H2S alleviates aging in the kidney and glomerular mesangial cells (GMCs) by modulating their mitophagy. Here, results of experiments in vivo and in vitro showed that compared with control group, the renal function of mice and GMCs viability were decreased in D-gal (D-galactose) group, while the activity of SA-β-gal and p21 expression were increased, Cyclin D1 and Klotho expressions were decreased; H2S content and CSE expression were lower; ROS and MDA contents and mitochondrial permeability transition pore (mPTP) opening were risedose; ATP production and mitochondrial membrane potential (Δψm) were reduced; Apoptotic rate, the expression of Cleaved caspase-9 and -3, Cyt c, p62 and Drp1 were enhanced and the expression of Bcl-2, Mfn2, Beclin-1, LC3 II/I, PINK1 and parkin were decreased. In addition, phospho-AMPK/AMPK and phospho-ULK1/ULK1 were also decreased significantly. Compared with the D-gal group, the changes of above indexes were reversed in the D-gal + NaHS (Sodium hydrosulfide, an exogenous H2S donor) group. The reverse effects of NaHS were similar to that of AICAR (an AMPK agonist) and kinetin (a PINK1 agonist), respectively. Taken together, these results suggest that exogenous H2S increases mitophagy and inhibits apoptosis as well as oxidative stress through up-regulation of AMPK-ULK1-PINK1-parkin pathway, which delays kidney senescence in mice.  相似文献   

13.
Human diploid fibroblasts (HDFs) exposed to subcytotoxic stresses under H2O2, tert-butylhydroperoxide (t-BHP), and ethanol (EtOH) undergo stress-induced premature senescence (SIPS) characterized by many biomarkers of HDFs replicative senescence. Among these biomarkers are a growth arrest, an increase in the senescence-associated beta-galactosidase activity, a senescent morphology, an overexpression of p21waf-1 and the subsequent inability to phosphorylate pRb, the presence of the common 4977-bp mitochondrial deletion, and an increase in the steady-state level of several senescence-associated genes such as apolipoprotein J (apo J). Apo J has been described as a survival gene against cytotoxic stress. In order to study whether apo J would be protective against cytotoxicity SIPS and replicative senescence in human fibroblasts, a full-length complementary deoxyribonucleic acid of apo J was transfected into WI-38 HDFs and SV40-transformed WI-38 HDFs. The overexpression of apo J resulted in an increased cell survival after t-BHP and EtOH stresses at cytotoxic concentrations. In addition, when WI-38 HDFs were exposed to 5 subcytotoxic stresses with EtOH or t-BHP, in conditions that were previously shown to induce SIPS, a lower induction of 2 biomarkers of SIPS was observed in HDFs overexpressing apo J. No effect of apo J overexpression was observed on the proliferative life span of HDFs, even if apo J overexpression triggered osteonectin (SPARC) overexpression, which was shown to decrease the mitogenic potential of platelet-derived growth factor but not of other common growth-inducing conditions. Apo J senescence-related overexpression is proposed to have antiapoptotic rather than antiproliferative effects.  相似文献   

14.
OBJECTIVE: Since mesangial and endothelial cells interact in the kidney, the present experiments were designed to analyze the ability of human mesangial cells (HMC) to modulate endothelin-1 (ET-1) synthesis by human umbilical vein endothelial cells (HuVEC). METHODS AND RESULTS: The supernatants of HuVEC/HMC contained significantly lower amounts of ET-1 than those of HuVEC alone. This effect was not due to a decreased prepro-ET-1 mRNA expression and was only partially the consequence of HMC-dependent ET-1 degradation. Therefore, we tested the influence of the coculture on endothelin-converting enzyme-1 (ECE-1), and found a significant reduction of its mRNA and protein levels as well as a decreased activity in HuVEC/HMC as compared to HuVEC alone. Using a pharmacological blockade approach (sulotrobam, BN52021, losartan or catalase), losartan was shown to completely abolish down-regulation of ECE-1 observed in HuVEC/HMC. Angiotensin II (AII) induced a dose and time-dependent inhibition of ECE-1 expression in HuVEC. CONCLUSIONS: These results support the importance of cross-talk among different cell types in the regulation of vascular or renal function. ET-1, and particularly ECE-1, might constitute a target in this regulation. In addition, locally synthesized AII could be one of the mediators involved in the down-regulation of ECE-1.  相似文献   

15.
16.
Intermedin (IMD) is a novel peptide related to calcitonin gene-related peptide (CGRP) and adrenomedullin (ADM). Proteolytic processing of a larger precursor of IMD yields a biologically active C-terminal fragment IMD1–53. We aimed to observe the cardioprotective antifibrotic effects of IMD1–53 and its mechanism. Radioimmunoassay and Western blot analysis was used to determine IMD content in angiotensin II (AngII)-treated rat cardiac fibroblasts (CFs). Real-time PCR was used to measure mRNA levels of IMD and the IMD receptor components calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein (RAMP) 1, 2 and 3. AngII was a powerful stimulator of CF activation. It decreased the production and secretion of IMD and increased the mRNA levels of the IMD receptor components CRLR, RAMP2 and RAMP3, but not IMD and RAMP1. Moreover, IMD1–53 (10− 8 or 10− 7 mol/l) exerted a 25% and 45% respective inhibition in [3H]-thymidine incorporation and 16% and 36% respective inhibition in [3H]-proline incorporation in rat CFs incubated with AngII, and the actions of IMD1–53 could be blocked by CGRP8–37 and ADM22–52. Immunofluorescence and Western blot analysis revealed that IMD1–53 inhibited the increase of alpha-SMA in CFs induced by AngII, and the above effects of IMD1–53 were similar to or more potent than those of an equivalent dose of ADM. Otherwise, IMD1–53 resulted in dose-dependent increases of cAMP production in CFs, and co-incubated with H89 blocked the inhibition effect of IMD1–53 on AngII-induced [3H]-thymidine, [3H]-proline incorporation and alpha-SMA expression. Collectively, these results show that IMD and its receptor components could be involved in an onset of cardiac fibrosis, and like ADM, IMD1–53 exerts an antifibrotic effect in CFs, and the effect can be mediated by cAMP–PKA pathway and implicated with the ADM and CGRP receptors.  相似文献   

17.
18.
Clinical evidence suggests a relationship between hypertension and insulin resistance, and cross-talk between angiotensin II (Ang II) and insulin signaling pathways may take place. We now report the effect of Ang II on insulin-induced glucose uptake and its intracellular mechanisms in vascular smooth muscle cells (VSMC). We examined the translocation of glucose transporter-4 (GLUT-4) and glucose uptake in rat aortic smooth muscle cells (RASMC). Mitogen-activated protein (MAP) kinases and Akt activities, and phosphorylation of insulin receptor substrate-1 (IRS-1) at the serine and tyrosine residues were measured by immunoprecipitation and immunoblotting. As a result, Ang II inhibited insulin-induced GLUT-4 translocation from cytoplasm to the plasma membrane in RASMC. Ang II induced extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK) activation and IRS-1 phosphorylation at Ser307 and Ser616. Ang II-induced Ser307 and Ser616 phophorylation of IRS-1 was inhibited by a MEK inhibitor, PD98059, and a JNK inhibitor, SP600125. Ang II inhibition of insulin-stimulated IRS-1 tyrosyl phophorylation and Akt activation were reversed by PD98059 but not by SP600125. Ang II inhibited insulin-induced glucose uptake, which was also reversed by PD98059 but not by SP600125. It is shown that Ang II-induced ERK1/2 activation inhibits insulin-dependent glucose uptake through serine phophorylation of IRS-1 in RASMC.  相似文献   

19.

Biological effects of angiotensin II (AngII) such as regulation of AngII target genes may be triggered by interaction of AngII with intracellular AngII receptor types 1 and 2 (AT1 and AT2), defined as intracrine response. The aim of this study was to examine the presence of AT1 and AT2 receptors in nuclear membrane of human mesangial cells (HMCs) and evaluate the possible biological effects mediated by intracellular AT1 through an intracrine mechanism. Subcellular distribution of AT1 and AT2 was evaluated by immunofluorescence and by western blot in isolated nuclear extract. Endogenous intracellular synthesis of AngII was stimulated by high glucose (HG). Effects of HG were analyzed in the presence of candesartan, which prevents AngII internalization. Both receptors were found in nuclear membrane. Fluorescein isothiocyanate (FITC)-labeled AngII added to isolated nuclei produced a fluorescence that was reduced in the presence of losartan or PD-123319 and quenched in the presence of both inhibitors simultaneously. HG induced overexpression of fibronectin and increased cell proliferation in the presence of candesartan, indicating an intracrine action of AngII induced by HG. Results showed the presence of nuclear receptors in HMCs that can be activated by AngII through an intracrine response independent of cytoplasmic membrane AngII receptors.

  相似文献   

20.
Kwak DH  Lee S  Kim SJ  Ahn SH  Song JH  Choo YK  Choi BK  Jung KY 《Life sciences》2005,77(20):2540-2551
Abrupt proliferation of glomerular mesangial cells (GMCs) is a common feature in the early stage of diabetic glomerulopathy, and ganglioside GM3 (NeuAcalpha3Galbeta4Glcbeta1Cer) is thought to regulate the proliferation of many cell types. Recently, we have reported ganglioside GM3 as a modulator of glomerular hypertrophy in streptozotocin-induced diabetic rats []. This study examined whether modulation of cellular ganglioside GM3 could regulate the high glucose- and transforming growth factor-beta1 (TGF-beta1)-induced proliferation of GMCs. To pharmacologically modulate the cellular ganglioside GM3, GMCs originated from rat kidneys were cultured with exogenous ganglioside GM3 or d-threo-PDMP, an inhibitor of ganglioside synthesis, in the RPMI 1640 media containing normal (5.6 mM, NG) or high (25 mM, HG) glucose. HG, TGF-beta1 (10 ng/ml) and d-threo-PDMP (20 microM) significantly stimulated the mesangial cell proliferation, whereas these increments were remarkable attenuated by exogenous ganglioside mixture (0.1-0.2 mg/ml) or GM3 (20-100 microM) in a dose-dependent manner. The mesangial cell proliferation caused by HG, TGF-beta1 and d-threo-PDMP was closely correlated with decreases in both cellular sialic acid contents and ganglioside GM3 synthase activity. Based upon the mobility on high-performance thin-layer chromatography (HPTLC), GMCs showed a complex pattern of ganglioside expression that consisted, at least, of five different components of gangliosides, mainly ganglioside GM3. HG, TGF-beta1 and d-threo-PDMP induced a significant reduction of ganglioside expression with apparent changes in the composition of ganglioside GM3, and semi-quantitative analysis by HPTLC showed that ganglioside GM3 expression reduced to about 35-54% of control. These results provide a pathophysiological link between mesangial cell proliferation and ganglioside GM3 expression, indicating that exogenously added ganglioside GM3 inhibits the high-ambient glucose- and TGF-beta1-induced proliferation of cultured GMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号