首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to evaluate the activities of the ectoenzymes NTPDase and 5′-nucleotidase in synaptosomes from cerebral cortex of rats experimentally infected with Trypanosoma evansi. The animals were divided in four groups (n = 10) according to the time and degree of parasitemia (groups A, B, C and D). The animals from group A were euthanized on day 3 (low parasitemia), group B on day 5 (high parasitemia) and group C on day 15 (low parasitemia). Group D consisted of healthy rats (not-infected, n = 15) and were divided in three periods (n = 5) in order to compare with the infected groups. After euthanasia, cerebral cortex was removed for the preparation of synaptosomes and enzymatic assays. Group A showed no changes in enzymatic activities compared with control. The hydrolysis of ATP, ADP and AMP by the enzymes NTPDase and 5′-nucleotidase were increased (P < 0.05) in group B (38%, 140% and 61%, respectively) when compared with control. In the group C it was observed a decreased (22%) hydrolysis of ATP when compared with control group. The activities of NTPDase and 5′-nucleotidase in synaptosomes alters the acute phase of the disease when the number of circulating parasites is high, thus the change observed is probably due to the parasitemia.  相似文献   

2.
This study aimed to evaluate the adenine nucleotides and nucleoside concentration in serum and cerebral cortex of rats infected with Trypanosma evansi. Each rat was intraperitoneally infected with 1 × 10(6) trypomastigotes suspended in cryopreserved blood (Group A; n = 18). Twelve animals were used as controls (Group B). The infected animals were monitored daily by blood smears. At days 4 and 20 post-infection (PI) it was collected serum and cerebral cortex to measure the levels of ATP, ADP, AMP and adenosine by high performance liquid chromatography (HPLC). In serum there was a significant (P < 0.05) increase in the ATP, AMP and adenosine concentrations at days 4 and 20 PI in infected rats when compared to not-infected. Furthermore, in the cerebral cortex it was observed a significant (P < 0.05) increase in the concentrations of ATP, AMP and decreased adenosine levels at day 4 PI. At day 20 PI it was only observed an increase in the AMP and adenosine concentrations in cerebral cortex of infected rats when compared to not-infected. It was not observed any difference in ADP concentration in serum and brain at days 4 and 20 PI. No change was observed histologically in the cerebral cortex of infected animals. The results allow us to conclude that infection with T. evansi in rats causes an increase in the concentrations of ATP, AMP and adenosine in serum and cerebral cortex the time periods evaluated. These alterations occurred as a result of T. evansi infection which involves neurotransmission, neuromodulation and immune response impairment confirm the importance of the purinergic system in this pathology.  相似文献   

3.
Human lymphocytes contain NTPDase (NTPDase-1; ecto-apyrase; ecto-diphosphohydrolase; CD39; EC 3.6.1.5), a cation-dependent enzyme that hydrolyzes ATP and ADP and also other di- and triphosphate nucleosides, acting at an optimum pH of 8.0. A significant inhibition of ATP and ADP hydrolysis (P<0.05) was observed in the presence of 20 mM sodium azide. NTPDase inhibitors, 20 mM sodium fluoride, 0.2 mM trifluoperazine and 0.3 mM suramin, significantly decreased ATP and ADP hydrolysis (P<0.05) and ADP hydrolysis was only inhibited by 0.5 mM orthovanadate (P<0.05). ATP and ADP hydrolysis was not inhibited in the presence of 0.01 mM Ap5A (P1,P5-di(adenosine-5')pentaphosphate), 0.1 mM ouabain, 1 mM levamisole, 2 microg/mL oligomycin, 0.1 mM N-ethylmaleimide (NEM), or 5 mM sodium azide. With respect to kinetic behavior, apparent K(m) values of 77.6+/-10.2 and 106.8+/-21.0 microM, and V(max) values of 68.9+/-8.1 and 99.4+/-8.5 (mean+/-S.E., n=3) nmol Pi/min/mg protein were obtained for ATP and ADP, respectively. A Chevilard plot demonstrated that only one enzymatic site is responsible for the hydrolysis of ATP and ADP. The presence of CD39 was determined by flow cytometry, showing a low density of 2.72+/-0.24% (mean+/-S.E.; n=30) in human peripheral lymphocytes. The study of NTPDase activity in human lymphocytes may be important to determine the immune response status against infectious agents related to ATP and ADP hydrolysis.  相似文献   

4.
Many aspects of the relationship between the demyelinating pathology and platelet function need to be elucidated. Thus, the activity of NTPDase and 5'-nucleotidase enzymes was analyzed in platelets from rats demyelinated with ethidium bromide (EB) and previously treated with ebselen (Ebs) and vitamin E (Vit. E). The animals were divided into four groups: for ebselen, the groups were: I-control (saline), II-(saline and Ebs), III-(EB) and IV-(EB and Ebs); and for vitamin E, the groups were: I - control (saline), II-(saline and Vit. E), III-(EB) and IV-(EB and Vit. E). After 3 and 21 days, the blood was collected and the platelets were separated for enzymatic assays. For the treatment with Ebs, the NTPDase activity for ATP substrate was significantly lower in groups II, III and IV (p < 0.05) after 3 days, while after 21 days, a reduction was observed in group III (p < 0.05). ADP hydrolysis was reduced in group II (p < 0.05) and increased in group IV (p < 0.05) after 3 days, while after 21 days there was an increase in group IV (p < 0.05). In the treatment with Vit. E, ATP hydrolysis was lower in groups II, III and IV (p < 0.05) after 3 and 21 days. ADP hydrolysis was increased in group II (p < 0.05) after 3 days, and in group IV (p < 0.05) after 21 days. However, 5'-nucleotidase activity was not altered by the treatments. These findings demonstrate that NTPDase activity in platelets is diminished in demyelinating events and the treatments with Ebs and Vit. E modulated adenine nucleotide hydrolysis.  相似文献   

5.
Al adjuvants are used in vaccines to increase the immune response. NTPDase and AChE play a pivotal role and act in the regulation of the immune system. The effect of Al exposure in vitro and in vivo on NTPDase and AChE activities in the lymphocytes of rats was determined. In vitro, ATP hydrolysis was decreased by 20.4% and 17.3% and ADP hydrolysis was decreased by 36.5% and 34.8%, in groups D and E, respectively, when compared to the control. AChE activity was increased by 157.3%, 152.5%, 74.7% and 90.8% in groups B, C, D, and E, respectively, when compared to the control. In vivo, ATP hydrolysis was increased by 85% and 86% and ADP hydrolysis was increased by 104.2% and 74%, in Al plus citrate and Al groups, respectively, when compared to the control. AChE activity was increased by 50.7% in Al plus citrate and by 28.6% in Al groups, when compared to the control. Our results show that Al exposure both in vitro and in vivo altered NTPDase and AChE activities in lymphocytes. These results may demonstrate the ability of Al to elicit the immune system, where NTPDase and AChE activities can act as purinergic and cholinergic markers in lymphocytes.  相似文献   

6.
Patients with homocystinuria, an inborn error of metabolism, present neurological dysfunction and commonly experience frequent thromboembolic complications. The nucleoside triphosphate diphosphohydrolase (NTPDase) and 5'-nucleotidase enzymes regulate the nucleotide/nucleoside ratio in the central nervous system and in the circulation and are thought to be involved in these events. Thus, the current study investigated the effect of homocysteine administration on NTPDase and 5'-nucleotidase activities, in the synaptosomal fraction of rat hippocampus, and on nucleotidase activities in rat serum. Twenty-nine-day-old Wistar rats were divided in two groups: group I (control), animals received 0.9% saline; group II (homocysteine-treated), animals received one single subcutaneous injection of homocysteine (0.6 micromol/g). Rats were killed 1 h after the injection. NTPDase and 5'-nucleotidase activities from brain and serum were significantly increased in the homocysteine-treated group. Results show that, in hippocampus, ATP and ADP hydrolysis increased by 20.5% and 20%, respectively, and AMP hydrolysis increased by 48%, when compared to controls. In serum, ATP and ADP hydrolysis increased 136% and 107%, respectively, and AMP hydrolysis increased 95%, in comparison to controls. The current data strongly indicate that in vivo homocysteine administration alters the activities of the enzymes involved in nucleotide hydrolysis, both in the central nervous system and in the serum of adult rats.  相似文献   

7.
8.
Alcohol abuse is an acute health problem throughout the world and alcohol consumption is linked to the occurrence of several pathological conditions. Here we tested the acute effects of ethanol on NTPDases (nucleoside triphosphate diphosphohydrolases) and 5'-nucleotidase in zebrafish (Danio rerio) brain membranes. The results have shown a decrease on ATP (36.3 and 18.4%) and ADP (30 and 20%) hydrolysis after 0.5 and 1% (v/v) ethanol exposure during 60 min, respectively. In contrast, no changes on 5'-nucleotidase activity were observed in zebrafish brain membranes. Ethanol in vitro did not alter ATP and ADP hydrolysis, but AMP hydrolysis was inhibited at 0.5, and 1% (23 and 28%, respectively). Acetaldehyde in vitro, in the range 0.5-1%, inhibited ATP (40-85%) and ADP (28-65%) hydrolysis, whereas AMP hydrolysis was reduced (52, 58 and 64%) at 0.25, 0.5 and 1%, respectively. Acetate in vitro did not alter these enzyme activities. Semi-quantitative expression analysis of NTPDase and 5'-nucleotidase were performed. Ethanol treatment reduced NTPDase1 and three isoforms of NTPDase2 mRNA levels. These findings demonstrate that acute ethanol intoxication may influence the enzyme pathway involved in the degradation of ATP to adenosine, which could affect the responses mediated by adenine nucleotides and nucleosides in zebrafish central nervous system.  相似文献   

9.
The activities of the enzymes NTPDase (E.C.3.6.1.5, apyrase, ATP diphosphohydrolase, ecto-CD 39) and 5'-nucleotidase (E.C.3.1.3.5, CD 73) were analyzed in platelets from patients with chronic renal failure (CRF), both undergoing hemodialysis treatment (HD) and not undergoing hemodialysis (ND), as well as from a control group. The results showed an increase in platelet NTPDase activity in CRF patients on HD treatment (52.88%) with ATP as substrate (P<0.0001). ADP hydrolysis was decreased (33.68% and 39.75%) in HD and ND patients, respectively. In addition, 5'-nucleotidase activity was elevated in the HD (160%) and ND (81.49%) groups when compared to the control (P<0.0001). Significant correlation was found among ATP, ADP and AMP hydrolysis and plasma creatinine and urea levels (P<0.0001). Patients were compared statistically according the time of hemodialysis treatment. We found enhanced NTPDase and 5'-nucleotidase activities between 49 and 72 months on HD patients. Our result suggests the existence of alterations in nucleotide hydrolysis in platelets of CRF patients. Possibly, this altered nucleotide hydrolysis could contribute to hemostasis abnormalities found in CRF.  相似文献   

10.
Chagas disease (CD) is caused by the parasite Trypanosoma cruzi. CD affects people worldwide, primarily in tropical areas. The central nervous system (CNS) is an essential site for T. cruzi persistence during infection. The protozoan may pass through the blood–brain barrier and may cause motor and cognitive neuronal damage. Once in the CNS, T. cruzi triggers immune responses that the purinergic system can regulate. Treatment for CD is based on benznidazole (BNZ); however, this agent has negative side-effects and is toxic to the host. For this reason, we investigated whether resveratrol (RSV), a potent antioxidant and neuroprotective molecule, would modulate purinergic signaling and RSV alone or in combination with BNZ would prevent changes in purinergic signaling and oxidative damage caused by T. cruzi. We infected mice with T. cruzi and treated them with RSV or BNZ for 8 days. Increases in ATP and ADP hydrolysis by NTPDase in the total cortex of infected animals were observed. The treatment with RSV in infected group diminished ATP, ADP, and AMP hydrolysis compared to infected group. The combination of RSV + BNZ decreased AMP hydrolysis in infected animals compared to the INF group, exerting an anti-inflammatory effect. RSV acted as a neuroprotector, decreasing adenosine levels. Infected animals presented an increase of P2X7 and A2A density of purine receptors. RSV reduced P2X7 and A2A and increased A1 density receptors in infected animals. In addition, infected animals showed higher TBARS and reactive oxygen species (ROS) levels than control. RSV diminished ROS levels in infected mice, possibly due to antioxidant properties. In short, we conclude that resveratrol could act as a neuroprotective molecule, probably preventing inflammatory changes caused by infection by T. cruzi, even though the mice experienced high levels of parasitemia.  相似文献   

11.
Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP) as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP) accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.  相似文献   

12.
The inhibition of adenine nucleotide hydrolysis by heparin and chondroitin sulfate (sulfated polysaccharides) was studied in membrane preparations from liver and kidney of adult rats. Hydrolysis was measured by the activity of NTPDase and 5′-nucleotidase. The inhibition of NTPDase by heparin was observed at three different pH values (6.0, 8.0 and 10.0). In liver, the maximal inhibition observed for ATP and ADP hydrolysis was about 80% at pH 8.0 and 70% at pH 6.0 and 10.0. Similarly to the effect observed in liver, heparin caused inhibition of ATP and ADP hydrolysis that reached a maximum of 70% in kidney (pH 8.0). Na+, K+ and Rb+ changed the inhibitory potency of heparin, suggesting that its effects may be related to charge interaction. In addition to heparin, chondroitin sulfate also caused a dose-dependent inhibition in liver and kidney membranes. The maximal inhibition observed for ATP and ADP hydrolysis was about 60 and 50%, respectively. In addition, the hepatic and renal activity of 5′-nucleotidase was inhibited by heparin and chondroitin sulfate, except for kidney membranes where chondroitin sulfate did not alter AMP hydrolysis. On this basis, the findings indicate that glycosaminoglycans have a potential role as inhibitors of adenine nucleotide hydrolysis on the surface of liver and kidney cell membranes in vitro.  相似文献   

13.
Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) comprise a novel family of ectonucleotidases that are important in the hydrolysis of extracellular nucleotides. The related NTPDase1 (ecto-apyrase) and NTPDase2 (ecto-ATPase) share a common membrane topography with a transmembrane domain at both the N- and C-terminus, an extensive extracellular loop with five 'apyrase conserved regions' (ACR1 to ACR5), and a cysteine-rich C-terminal region. Whereas NTPDase1 expressed in CHO cells hydrolyzes ATP and ADP equivalently, NTPDase2 has a high preference for the hydrolysis of ATP over ADP. In addition recombinant NTPDase1 hydrolyzes ATP to AMP with the formation of only minor amounts of free ADP. In contrast, ADP appears as the major free product when ATP is hydrolyzed by NTPDase2. In order to determine molecular domains responsible for these differences in catalytic properties, chimeric cDNAs were constructed in which N-terminal sequences of increasing length of NTPDase1 were substituted by the corresponding sequences of NTPDase2 and vice versa. The turnover points were contained within ACR1 to ACR5. Chimeric cDNAs were expressed in CHO cells and surface expression was verified by immunocytochemistry. ATP and ADP hydrolysis rates and ADP and AMP product formation were determined using HPLC. Amino-acid residues between ACR3 and ACR5 and in particular the cysteine-rich region between ACR4 and ACR5 conferred a phenotype to the chimeric enzymes that corresponded to the respective wild-type enzyme. Protein structure rather than the conserved ACRs may be of major relevance for determining differences in the catalytic properties between the related wild-type enzymes.  相似文献   

14.
The activities of the enzymes NTPDase (EC 3.6.1.5, apyrase, CD39) and 5'-nucleotidase (EC 3.1.3.5, CD73) were analyzed in platelets from rats submitted to demyelination by ethidium bromide (EB) and treated with interferon beta (IFN-beta). The following groups were studied: I - control (saline), II - (saline and IFN-beta), III - (EB) and IV - (EB and IFN-beta). After 7, 15 and 30 days, the animals (n=7) were sacrificed and the platelets were separated by the method of Lunkes et al. [Lunkes, G., Lunkes D., Morsch, V., Mazzanti, C., Morsch, A., Miron, V., Schetinger, M.R.C., 2004. NTPDase and 5'-nucleotidase in rats alloxan- induced diabetes. Diabetes Research and Clinical Practice 65, 1-6]. NTPDase activity for ATP and ADP substrates was significantly lower in groups II and III after seven days, when compared to control (p<0.001). At fifteen days, ATP hydrolysis was significantly lower in group III and IV and higher in group II (p<0.001), while there was an activation of ADP hydrolysis in group II (p<0.001), when compared with the control. 5'-nucleotidase activity was significantly higher in group IV (p<0.001) after seven days, and lower in the groups III and IV (p<0.001) after fifteen days in relation to the control. No significant differences were observed in NTPDase and 5'-nucleotidase activities after thirty days. In conclusion, our study demonstrated that the hydrolysis of adenine nucleotides is modified in platelets of rats demyelinated and treated with IFN-beta.  相似文献   

15.
An investigation of E-NTPDase and E-ADA activities in lymphocytes from rats experimentally infected with Toxoplasma gondii was carried out in this study. For this purpose, twenty four adult male Wistar rats were divided in two groups/four subgroups (A1 and A2; B1 and B2–6 animal/each group), with “A” as uninfected and “B” inoculated with T. gondii (RH strain). Sampling was performed on days 5 and 10 post-infection (p.i.), with evaluation of hemogram, immunoglobulins (IgM and IgG) and activity of E-NTPDase and E-ADA in lymphocytes. Enzymes essays showed ATP hydrolysis increased on days 5 (P < 0.05) and 10 (P < 0.01) p.i., as well as an increase of ADP hydrolysis on day 10 (P < 0.01) p.i. E-ADA activity on lymphocytes was also increased in both evaluated periods (P < 0.01). Based on E-NTPDase and E-ADA increased activities observed on lymphocytes, it is possible to suggest their involvement in an anti-inflammatory response, consisting of a modulatory response, preventing excessive tissue damage caused by the infection with Toxoplasma gondii.  相似文献   

16.
Depression is a serious condition associated with considerable morbidity and mortality. Selective serotonin reuptake inhibitors and tricyclic antidepressants, such as fluoxetine and nortriptyline, respectively, were commonly used in treatment for depression. Selective serotonin reuptake inhibitors have been associated with increased risk of bleeding complications, possibly as a result of inhibition of platelet aggregation. ATP, ADP and adenosine are signaling molecules in the vascular system and nucleotidases activities are considered an important thromboregulatory system which functions in the maintenance of blood fluidity. Therefore, here we investigate the effect of in vivo (acute and chronic) and in vitro treatments with the antidepressant drugs on nucleotidases activities in rat blood serum. In acute treatment, nortriptyline decreased ATP hydrolysis (41%), but not altered ADP and AMP hydrolysis. In contrast, fluoxetine did not alter NTPDase and ecto-5'-nucleotidase activities. A significant inhibition of ATP, ADP, and AMP hydrolysis were observed in chronic treatment with fluoxetine (60%, 32%, and 42% for ATP, ADP, and AMP hydrolysis, respectively). Similar effects were shown in chronic treatment with nortriptyline (37%, 41%, and 30% for ATP, ADP, and AMP hydrolysis, respectively). In addition, there were no significant changes in NTPDase and ecto-5'-nucleotidase activities when fluoxetine and nortriptyline (100, 250, and 500 microM) were tested in vitro. Our results have shown that fluoxetine and nortriptyline changed the nucleotide catabolism, suggesting that homeostasis of vascular system can be altered by antidepressant treatments.  相似文献   

17.
We investigated NTPDase-like activity [ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases)] in liver and kidney membrane from silver catfish (Rhamdia quelen), chicken (Gallus gallus) and rat (Rattus norvegicus) under different conditions and in the presence of several inhibitors. The cation concentration required for maximal activity was 0.5, 1.5 and 2.0 mM for fish, chicken and rat liver, respectively (with ATP and ADP as substrates). The maximal activity in the kidney was observed at calcium concentrations of 0.5, 2.0, 1.5 mM (ATP) and 0.5, 1.5, 1.0 (ADP) for fish, chickens and rats, respectively. The results showed that the pH optimum for all animals and for the two tissues was close to 8.0. The temperature chosen was 25 °C for fish and 36 °C for chicken and rat preparations. Ouabain had no effect on the NTPDase-like activity of fish, chickens or rats. NTPDase activity was decreased in the presence of lanthanum in the chicken (ADP) and rat (ATP and ADP) liver. In the kidney, lanthanum inhibited fish ATP and rat ATP and ADP (0.2 mM) hydrolysis. N-ethylmaleimide (NEM) had an inhibitory effect on the kidney of all species at the concentration of 3.0 mM (ADP). Orthovanadate only inhibited fish membrane NTPDase; azide only inhibited the preparation at high concentrations (10 mM) and fluoride inhibited it at 10 mM (fish and chicken) and 5 mM (rat). Trifluoperazine (0.05–0.2 mM) and suramin (0.03–0.3 mM) inhibited NTPDase at all concentrations tested. These results suggest that NTPDase-like activity shows a different behavior among the vertebrate species and tissues studied. Additionally, we propose that NTPDase1 is the main enzyme present in this preparation.  相似文献   

18.
Here we described an nucleoside triphosphate diphosphohydrolase (NTPDase) activity in living trophozoites of Trichomonas gallinae. The enzyme hydrolyzes a variety of purine and pyrimidine nucleoside di- and triphosphates in an optimum pH range of 6.0-8.0. This enzyme activity was activated by high concentrations of divalent cations, such as calcium and magnesium. Contaminant activities were ruled out because the enzyme was not inhibited by classical inhibitors of ATPases (ouabain, 5.0 mM sodium azide, oligomycin) and alkaline phosphatases (levamisole). A significant inhibition of ATP hydrolysis (38%) was observed in the presence of 20 mM sodium azide. Sodium orthovanadate inhibited ATP and ADP hydrolysis (24% and 78%), respectively. The apparent K(M) (Michaelis constant) values were 667.62+/-13 microM for ATP and 125+/-5.3 microM for ADP. V(max) (maximum velocity) values were 0.44+/-0.007 nmol Pi min(-1) per 10(6) trichomonads and 0.91+/-0.12 nmol Pi min(-1) per 10(6) trichomonads for ATP and ADP, respectively. Moreover, we showed a marked decrease in ATP, ADP and AMP hydrolysis when the parasites were grown in the presence of penicillin and streptomycin. The existence of an NTPDase activity in T. gallinae may be involved in pathogenicity, protecting the parasite from the cytolytic effects of the extracellular nucleotides.  相似文献   

19.
The aim of the present investigation was to evaluate the effect of a subchronic treatment (30 days/30 doses) with subcutaneous injections (0.1 mg/kg) of HgCl2 on NTPDase (E.C. 3.6.1.5), 5′-nucleotidase (E.C. 3.1.3.5) and acetylcholinesterase (AChE, E.C. 3.1.1.7) activities in brain from adult rats. NTPDase and 5′-nucleotidase were measured in cortical synaptosomal fraction and AChE was measured in the homogenate of cerebral cortex and hippocampus. After the subchronic treatment (30 days), NTPDase activity was enhanced approximately 35% (p < 0.05) with ATP and ADP as substrates and no difference was observed in 5′-nucleotidase activity (AMP hydrolysis). In addition, AChE activity was enhanced in the cerebral cortex (22%, p < 0.05) and hippocampus (26%, p < 0.05) after the subchronic treatment. Mercury deposited in brain was measured by cold vapor (atomic absorption spectrometry) and no difference between the control and the subchronically treated group was observed. Here we showed for the first time that exposure to low levels of Hg2+, which resembles occupational exposure to low levels of mercury, caused a marked increase in NTPDase and AChE activities. The relationship of these alterations with the neurotoxicity of inorganic mercury deserves further studies.  相似文献   

20.
The degradation of nucleotides is catalyzed by the family of enzymes called nucleoside triphosphate diphosphohydrolases (NTPDases). The aim of this work was to demonstrate the presence of NTPDase in the rat gastric mucosa. The enzyme was found to hydrolyze ATP and ADP at an optimum pH of 8.0 in the presence of Mg2+ and Ca2+. The inhibitors ouabain (0.01-1 mM), N-ethylmaleimide (0.01-4 mM), levamisole (0.10-0.2 mM) and Ap5A (0.03 mM) had no effect on NTPDase 1 activity. Sodium azide (0.03-30 mM), at high concentrations (>0.1 mM), caused a parallel hydrolysis inhibition of ATP and ADP. Suramin (50-300 microM) inhibited ATP and ADP hydrolysis at all concentrations tested. Orthovanadate slightly inhibited (15%) Mg2+ and Ca2+ ATP/ADPase at 100 microM. Lanthanum decreased Mg2+ and Ca2+ ATP/ADPase activities. The presence of NTPDase as ecto-enzyme in the gastric mucosa may have an important role in the extracellular metabolism of nucleotides, suggesting that this enzyme plays a role in the control of acid and pepsin secretion, mucus production, and contractility of the stomach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号