首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Models of social conflict in animal societies generally assume that within-group conflict reduces the value of a communal resource. For many animals, however, the primary cost of conflict is increased mortality. We develop a simple inclusive fitness model of social conflict that takes this cost into account. We show that longevity substantially reduces the level of within-group conflict, which can lead to the evolution of peaceful animal societies if relatedness among group members is high. By contrast, peaceful outcomes are never possible in models where the primary cost of social conflict is resource depletion. Incorporating mortality costs into models of social conflict can explain why many animal societies are so remarkably peaceful despite great potential for conflict.  相似文献   

2.
We use population genetic models to investigate the cooperative and conflicting synergistic fitness effects between genes from the nucleus and the mitochondrion. By varying fitness parameters, we examine the scope for conflict relative to cooperation among genomes and the utility of the “gene's eye view” analytical approach, which is based on the marginal average fitness of specific alleles. Because sexual conflict can maintain polymorphism of mitochondrial haplotypes, we can explore two types of evolutionary conflict (genomic and sexual) with one epistatic model. We find that the nuclear genetic architecture (autosomal, X‐linked, or Z‐linked) and the mating system change the regions of parameter space corresponding to the evolution by sexual and genomic conflict. For all models, regardless of conflict or cooperation, we find that population mean fitness increases monotonically as evolution proceeds. Moreover, we find that the process of gene frequency change with positive, synergistic fitnesses is self‐accelerating, as the success of an allele in one genome or in one sex increases the frequency of the interacting allele upon which its success depends. This results in runaway evolutionary dynamics caused by the positive intergenomic associations generated by selection. An inbreeding mating system tends to further accelerate these runaway dynamics because it maintains favorable host–symbiont or male–female gene combinations. In contrast, where conflict predominates, the success of an allele in one genome or in one sex diminishes the frequency of the corresponding allele in the other, resulting in considerably slower evolutionary dynamics. The rate of change of mean fitness is also much faster with positive, synergistic fitnesses and much slower where conflict is predominant. Consequently, selection rapidly fixes cooperative gene combinations, while leaving behind a slowing evolving residue of conflicting gene combinations at mutation–selection balance. We discuss how an emphasis on marginal fitness averages may obscure the interdependence of allelic fitness across genomes, making the evolutionary trajectories appear independent of one another when they are not.  相似文献   

3.
Michod RE  Nedelcu AM  Roze D 《Bio Systems》2003,69(2-3):95-114
The continued well being of evolutionary individuals (units of selection and evolution) depends upon their evolvability, that is their capacity to generate and evolve adaptations at their level of organization, as well as their longer term capacity for diversifying into more complex evolutionary forms. During a transition from a lower- to higher-level individual, such as the transition between unicellular and multicellular organisms, the evolvability of the lower-level (cells) must be restricted, while the evolvability of the new higher-level unit (multicellular organism) must be enhanced. For these reasons, understanding the factors leading to an evolutionary transition should help us to understand the factors underlying the emergence of evolvability of a new evolutionary unit. Cooperation among lower-level units is fundamental to the origin of new functions in the higher-level unit. Cooperation can produce a new more complex evolutionary unit, with the requisite properties of heritable fitness variations, because cooperation trades fitness from a lower-level (the costs of cooperation) to the higher-level (the benefits for the group). For this reason, the evolution of cooperative interactions helps us to understand the origin of new and higher-levels of fitness and organization. As cooperation creates a new level of fitness, it also creates the opportunity for conflict between levels of selection, as deleterious mutants with differing effects at the two levels arise and spread. This conflict can interfere with the evolvability of the higher-level unit, since the lower and higher-levels of selection will often "disagree" on what adaptations are most beneficial to their respective interests. Mediation of this conflict is essential to the emergence of the new evolutionary unit and to its continued evolvability. As an example, we consider the transition from unicellular to multicellular organisms and study the evolution of an early-sequestered germ-line in terms of its role in mediating conflict between the two levels of selection, the cell and the cell group. We apply our theoretical framework to the evolution of germ/soma differentiation in the green algal group Volvocales. In the most complex member of the group, Volvox carteri, the potential conflicts among lower-level cells as to the "right" to reproduce the higher-level individual (i.e. the colony) have been mediated by restricting immortality and totipotency to the germ-line. However, this mediation, and the evolution of an early segregated germ-line, was achieved by suppressing mitotic and differentiation capabilities in all post-embryonic cells. By handicapping the soma in this way, individuality is ensured, but the solution has affected the long-term evolvability of this lineage. We think that although conflict mediation is pivotal to the emergence of individuality at the higher-level, the way in which the mediation is achieved can greatly affect the longer-term evolvability of the lineage.  相似文献   

4.
Here we argue that models developed to examine cooperation and conflict in communal breeders, using a “tug-of-war” model of reproductive skew generated by incomplete control, are an appropriate way to model human kinship systems. We apply such models to understand the patterns of effort put into competition between father and son and between brothers in conflict over family resources in a patrilineal kinship system. Co-resident kin do not necessarily emerge with equal shares of the cake in terms of reproductive output. The models show that, depending on the efficiency with which they can gain more control of the resource, on the marriage system, and on the relatedness of the partners in conflict, individuals can do better to help their relatives breed rather than fight each other for the resources needed to reproduce. The models show that when a son’s father is still breeding with his mother, sons should not compete for any share of reproduction. However, under polygyny, increased effort is spent on father/son and brother/brother conflict. Fathers will win the majority of reproduction if dominant to sons (in contrast to the finding that daughters-in-law win in conflict over mothers-in-law in patrilocal kinship systems, which has been suggested as explaining the evolution of menopause). Hence who wins in the sharing of reproduction depends not just on which sex disperses but also on the relative competitive ability of all individuals to exploit family resources. Anthropologists have long argued that cultural norms can reduce conflict. These formal evolutionary models help us to quantify the effects of reproductive conflict in families, throwing light on the evolutionary basis not just of patterns of reproductive scheduling, but also human kinship and marriage systems.  相似文献   

5.
This article studies the transition in evolution from single cells to multicellular organisms as a case study in the origin of individuality. The issues considered are applicable to all major transitions in the units of selection that involve the emergence of cooperation and the regulation of conflict. Explicit genetic models of mutation and selection both within and between organisms are studied. Cooperation among cells increases when the fitness covariance at the level of the organism overcomes within-organism change toward defection. Selection and mutation during development generate significant levels of within-organism variation and lead to variation in organism fitness at equilibrium. This variation selects for gem-line modifiers and other mediators of within-organism conflict, increasing the heritability of fitness at the organism level. The evolution of these modifiers is the first new function at the emerging organism level and a necessary component of the evolution of individuality.  相似文献   

6.
Evolutionary biologists typically envision a trait’s genetic basis and fitness effects occurring within a single species. However, traits can be determined by and have fitness consequences for interacting species, thus evolving in multiple genomes. This is especially likely in mutualisms, where species exchange fitness benefits and can associate over long periods of time. Partners may experience evolutionary conflict over the value of a multi-genomic trait, but such conflicts may be ameliorated by mutualism’s positive fitness feedbacks. Here, we develop a simulation model of a host–microbe mutualism to explore the evolution of a multi-genomic trait. Coevolutionary outcomes depend on whether hosts and microbes have similar or different optimal trait values, strengths of selection and fitness feedbacks. We show that genome-wide association studies can map joint traits to loci in multiple genomes and describe how fitness conflict and fitness feedback generate different multi-genomic architectures with distinct signals around segregating loci. Partner fitnesses can be positively correlated even when partners are in conflict over the value of a multi-genomic trait, and conflict can generate strong mutualistic dependency. While fitness alignment facilitates rapid adaptation to a new optimum, conflict maintains genetic variation and evolvability, with implications for applied microbiome science.  相似文献   

7.
Here I review recent research on reproductive conflict between females in families and how it influences their reproductive behaviour. Kin selection can favor cooperation between parent and offspring, siblings, or unrelated co‐residents who share interests in other family members such as grand‐offspring. However, these are also the individuals most likely to be sharing resources, and so conflict can also emerge. While substantial interest has arisen in evolutionary anthropology, especially over the last two decades, in the possibility of cooperative breeding in humans, less attention has been paid to reproductive conflict among female kin. Communal breeding in animals is generally understood as emerging from competition over the resources needed to breed. Competition for household resources is a problem that also faces human families. Models suggest that in some circumstances, inclusive fitness can be maximized by sharing reproduction rather than harming relatives by fighting with them, even if the shares that emerge are not equal. Thus, competition and cooperation turn out to be strongly related to each other. Reproductive competition within and between families may have underpinned the biological evolution of fertility patterns (such as menopause) and the cultural evolution of marriage, residence, and inheritance norms (such as late male marriage or primogeniture), which can enhance cooperation and minimize the observed incidence of such conflicts.  相似文献   

8.
Werren JH  Hatcher MJ  Godfray HC 《Heredity》2002,88(2):102-111
Sex determination in many species involves interactions among maternally expressed genes (eg, mRNA's and proteins placed into the egg) and zygotically expressed genes. Recent studies have proposed that conflicting selective pressures can occur between maternally and zygotically expressed sex determining loci and that these may play a role in shaping the evolution of sex determining systems. Here we show that such genetic conflict occurs under very general circumstances. Whenever sex ratio among progeny in a family affects the fitness of either progeny in that family or maternal fitness, then maternal-zygotic genetic conflict occurs. Furthermore, we show that this conflict typically results in a "positive feedback loop" that leads to the evolution of a dominant zygotic sex determining locus. When males more negatively effect fitness within the family, a male heterogametic (XY male) sex determining system evolves, whereas when females more negatively effect fitness in the family, a female heterogametic (ZW female) system evolves. Individuals with the dominant sex allele are one sex, and the opposite sex is determined by maternally-expressed genes in individuals without the dominant sex allele. Results therefore suggest that maternal-zygotic conflict could play a role in the early evolution of chromosomal sex determining systems. Predictions are made concerning the patterns of expression of maternal and zygotic sex determining genes expected to result from conflict over sex determination.  相似文献   

9.
Evolutionary conflict and arms races are important drivers of evolution in nature. During arms races, new abilities in one party select for counterabilities in the second party. This process can repeat and lead to successive fixations of novel mutations, without a long‐term increase in fitness. Models of co‐evolution rarely address successive fixations, and one of the main models that use successive fixations—Fisher's geometric model—does not address co‐evolution. We address this gap by expanding Fisher's geometric model to the evolution of joint phenotypes that are affected by two parties, such as probability of infection of a host by a pathogen. The model confirms important intuitions and offers some new insights. Conflict can lead to long‐term Sisyphean arms races, where parties continue to climb toward their fitness peaks, but are dragged back down by their opponents. This results in far more adaptive evolution compared to the standard geometric model. It also results in fixation of mutations of larger effect, with the important implication that the common modeling assumption of small mutations will apply less often under conflict. Even in comparison with random abiotic change of the same magnitude, evolution under conflict results in greater distances from the optimum, lower fitness, and more fixations, but surprisingly, not larger fixed mutations. We also show how asymmetries in selection strength, mutation size, and mutation input allow one party to win over another. However, winning abilities come with diminishing returns, helping to keep weaker parties in the game.  相似文献   

10.
When female fecundity is relatively independent of male abundance, while male reproduction is proportional to female abundance, females have a larger effect on population dynamics than males (i.e. female demographic dominance). This population dynamic phenomenon might not appear to influence evolution, because male and female genomes still contribute equally much to the next generation. However, here we examine two evolutionary scenarios to provide a proof of principle that spatial structure can make female demographic dominance matter. Our two simulation models combine dispersal evolution with local adaptation subjected to intralocus sexual conflict and environmentally driven sex ratio biases, respectively. Both models have equilibria where one environment (without being intrinsically poorer) has so few reproductive females that trait evolution becomes disproportionately determined by those environments where females survive better (intralocus sexual conflict model), or where daughters are overproduced (environmental sex determination model). Surprisingly, however, the two facts that selection favours alleles that benefit females, and population growth is improved when female fitness is high, together do not imply that all measures of population performance are improved. The sex-specificity of the source–sink dynamics predicts that populations can evolve to fail to persist in habitats where alleles do poorly when expressed in females.  相似文献   

11.
In species with biparental care, sexual conflict occurs because the benefit of care depends on the total amount of care provided by the two parents while the cost of care depends on each parent's own contribution. Asynchronous hatching may play a role in mediating the resolution of this conflict over parental care. The sexual conflict hypothesis for the evolution of asynchronous hatching suggests that females adjust hatching patterns in order to increase male parental effort relative to female effort. We tested this hypothesis in the burying beetle Nicrophorus vespilloides by setting up experimental broods with three different hatching patterns: synchronous, asynchronous and highly asynchronous broods. As predicted, we found that males provided care for longer in asynchronous broods whereas the opposite was true of females. However, we did not find any benefit to females of reducing their duration of care in terms of increased lifespan or reduced mass loss during breeding. We found substantial negative effects of hatching asynchrony on offspring fitness as larval mass was lower and fewer larvae survived to dispersal in highly asynchronous broods compared to synchronous or asynchronous broods. Our results suggest that, even though females can increase male parental effort by hatching their broods more asynchronously, females pay a substantial cost from doing so in terms of reducing offspring growth and survival. Thus, females should be under selection to produce a hatching pattern that provides the best possible trade‐off between the benefits of increased male parental effort and the costs due to reduced offspring fitness.  相似文献   

12.
13.
Evolutionary conflict between the sexes has been studied in various taxa and in various contexts. When the sexes are in conflict over mating rates, natural selection favors both males that induce higher mating rates and females that are more successful at resisting mating attempts. Such sexual conflict may result in an escalating coevolutionary arms race between males and females. In this article, we develop simple replicator-dynamics models of sexual conflict in order to investigate its evolutionary dynamics. Two specific models of the dependence of a female's fitness on her number of matings are considered: in model 1, female fitness decreases linearly with increasing number of matings and in model 2, there is an optimal number of matings that maximizes female fitness. For each of these models, we obtain the conditions for a coevolutionary process to establish costly male and female traits and examine under what circumstances polymorphism is maintained at equilibrium. Then we discuss how assumptions in previous models of sexual conflict are translated to fit to our model framework and compare our results with those of the previous studies. The simplicity of our models allows us to consider sexual conflict in various contexts within a single framework. In addition, we find that our model 2 shows more complicated evolutionary dynamics than model 1. In particular, the population exhibits bistability, where the evolutionary outcome depends on the initial state, only in model 2.  相似文献   

14.
Evolution by natural selection improves fitness and may therefore influence population trajectories. Demographic matrix models are often employed in conservation studies to project population dynamics, but such analyses have not incorporated evolutionary dynamics. We project evolutionarily informed population trajectories for a population of the perennial plant Trillium grandiflorum, which is declining due to high levels of herbivory by white-tailed deer. Individuals with later flowering times are less often consumed, so there is selection on this trait. We first incorporated selection analyses into a deterministic matrix model in three ways (corresponding to different methods that have been used for analyzing evolution in structured populations). Because it is not clear which of these methods works best for stage-structured models, we compared each with a more realistic, individual-based model. Deterministic models using fitness averaged over the phenotypic distribution gave trajectories that were similar to those of the individual-based model, whereas the deterministic model using fitness at the mean phenotype gave a much faster rate of evolution than that which was observed. This illustrates that subtle differences in the way in which one splices evolution into demographic models can have a large effect on expected outcomes. This study demonstrates that, by combining demographic and selection analyses, one can gauge the potential relevance of evolution to population dynamics and persistence.  相似文献   

15.
It is widely understood that the costs and benefits of mating can affect the fecundity and survival of individuals. Sexual conflict may have profound consequences for populations as a result of the negative effects it causes males and females to have on one another's fitness. Here we present a model describing the evolution of sexual conflict, in which males inflict a direct cost on female fitness. We show that these costs can drive the entire population to extinction. To males, females are an essential but finite resource over which they have to compete. Population extinction owing to sexual conflict can therefore be seen as an evolutionary tragedy of the commons. Our model shows that a positive feedback between harassment and the operational sex ratio is responsible for the demise of females and, thus, for population extinction. We further show that the evolution of female resistance to counter harassment can prevent a tragedy of the commons. Our findings not only demonstrate that sexual conflict can drive a population to extinction but also highlight how simple mechanisms, such as harassment costs to males and females and the coevolution between harassment and resistance, can help avert a tragedy of the commons caused by sexual conflict.  相似文献   

16.
Cooperative breeders often exhibit reproductive skew, where dominant individuals reproduce more than subordinates. Two approaches derived from Hamilton's inclusive fitness model predict when subordinate behavior is favored over living solitarily. The assured fitness return (AFR) model predicts that subordinates help when they are highly likely to gain immediate indirect fitness. Transactional skew models predict dominants and subordinates "agree" on a level of reproductive skew that induces subordinates to join groups. We show the AFR model to be a special case of transactional skew models that assumes no direct reproduction by subordinates. We use data from 11 populations of four wasp species (Polistes, Liostenogaster) as a test of whether transactional frameworks suffice to predict when subordinate behavior should be observed in general and the specific level of skew observed in cooperative groups. The general prediction is supported; in 10 of 11 cases, transactional models correctly predict presence or absence of cooperation. In contrast, the specific prediction is not consistent with the data. Where cooperation occurs, the model accurately predicts highly biased reproductive skew between full sisters. However, the model also predicts that distantly related or unrelated females should cooperate with low skew. This prediction fails: cooperation with high skew is the observed norm. Neither the generalized transactional model nor the special-case AFR model can explain this significant feature of wasp sociobiology. Alternative, nontransactional hypotheses such as parental manipulation and kin recognition errors are discussed.  相似文献   

17.
Differences in the ways in which males and females maximize evolutionary fitness can lead to intra-locus sexual conflict in which genes delivering fitness benefits to one sex are costly when expressed in the other. Trade-offs between current reproductive effort and future reproduction and survival are fundamental to the evolutionary biology of ageing. This leads to the prediction that sex differences in the optimization of age-dependent reproductive effort may generate intra-locus sexual conflict over ageing rates. Here we test for intra-locus sexual conflict over age-dependent reproductive effort and longevity in the black field cricket, Teleogryllus commodus. Using a half-sib breeding design, we show that the most important components of male and female reproductive effort (male calling effort and the number of eggs laid by females) were positively genetically correlated, especially in early adulthood. However, the genetic relationships between longevity and reproductive effort were different for males and females, leading to low genetic covariation between male and female longevity. The apparent absence of intra-locus sexual conflict over ageing suggests that male and female longevity can evolve largely independently of one another.  相似文献   

18.
Sexual reproduction involves many costs. Therefore, females acquiring a capacity for parthenogenetic (or asexual) reproduction will gain a reproductive advantage over obligately sexual females. In contrast, for males, any trait coercing parthenogens into sexual reproduction (male coercion) increases their fitness and should be under positive selection because parthenogenesis deprives them of their genetic contribution to future generations. Surprisingly, although such sexual conflict is a possible outcome whenever reproductive isolation is incomplete between parthenogens and the sexual ancestors, it has not been given much attention in the studies of the maintenance of sex. Using two mathematical models, I show here that the evolution of male coercion substantially favours the maintenance of sex even though a female barrier against the coercion can evolve. First, the model based on adaptive-dynamics theory demonstrates that the resultant antagonistic coevolution between male coercion and a female barrier fundamentally ends in either the prevalence of sex or the co-occurrence of two reproductive modes. This is because the coevolution between the two traits additionally involves sex-ratio selection, that is, an increase in parthenogenetic reproduction leads to a female-biased population sex ratio, which will enhance reproductive success of more coercive males and directly promotes the evolution of the coercion among males. Therefore, as shown by the individual-based model, the establishment of obligate parthenogenesis in the population requires the simultaneous evolution of strong reproductive isolation between males and parthenogens. These findings should shed light on the interspecific diversity of reproductive modes as well as help to explain the prevalence of sexual reproduction.  相似文献   

19.
The theory of sexual conflict predicts that sexual coevolution will be very dynamic, with in principle perpetual evolutionary arms races and chases. These arms races are expected to stop once the costs of conflict adaptations become too high. We argue that this prediction is contingent on specific assumptions about the sexual interaction and the adaptations involved in the arms race. More generally, evolutionary arms races stop when the fitness benefit of further escalations is outweighed by the fitness costs. For this it is not necessary that the absolute costs of conflict must be high at the stable state, or that the population fitness must be decreased at equilibrium. We expect the outcome of sexual antagonistic coevolution to be determined by the possibility to reach compromises and by the relative ability of each sex to control the outcome of the interaction. We exemplify with a theoretical conflict model, which leads to population extinction when conflict is settled by armaments with expression-level determined costs. The model predicts a compromise with small conflict costs for the population, if costs are in addition determined by the extent of conflict between the sexes, which may be the case when the cost depends on behavioural antagonism.  相似文献   

20.
Zhang XS  Hill WG 《Genetics》2002,162(1):459-471
In quantitative genetics, there are two basic "conflicting" observations: abundant polygenic variation and strong stabilizing selection that should rapidly deplete that variation. This conflict, although having attracted much theoretical attention, still stands open. Two classes of model have been proposed: real stabilizing selection directly on the metric trait under study and apparent stabilizing selection caused solely by the deleterious pleiotropic side effects of mutations on fitness. Here these models are combined and the total stabilizing selection observed is assumed to derive simultaneously through these two different mechanisms. Mutations have effects on a metric trait and on fitness, and both effects vary continuously. The genetic variance (V(G)) and the observed strength of total stabilizing selection (V(s,t)) are analyzed with a rare-alleles model. Both kinds of selection reduce V(G) but their roles in depleting it are not independent: The magnitude of pleiotropic selection depends on real stabilizing selection and such dependence is subject to the shape of the distributions of mutational effects. The genetic variation maintained thus depends on the kurtosis as well as the variance of mutational effects: All else being equal, V(G) increases with increasing leptokurtosis of mutational effects on fitness, while for a given distribution of mutational effects on fitness, V(G) decreases with increasing leptokurtosis of mutational effects on the trait. The V(G) and V(s,t) are determined primarily by real stabilizing selection while pleiotropic effects, which can be large, have only a limited impact. This finding provides some promise that a high heritability can be explained under strong total stabilizing selection for what are regarded as typical values of mutation and selection parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号