首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unfertilized eggs of the rose bitterling (Rhodeus ocellatus ocellatus) were squeezed out of females that had an elongated ovipositor and were dechorionated mechanically with fine forceps in physiological saline. The dechorionated eggs were transferred into fresh water then inseminated at once by spermatozoa of the same species. A large number of spermatozoa was found on the surface of eggs that had not yet had cortical reaction following insemination. The surface of the naked eggs responded by formation of many small cytoplasmic protrusions (viz., fertilization cones) at sperm attachment sites. The formed fertilization cones were rosettelike structures formed by the aggregation of some bleblike swellings devoid of microvilli and microplicae. About 10 min after insemination, the fertilization cones retracted, but marks of their presence characterized by less microvilli and microplicae remained in the eggs 15 min after insemination. Many spermatozoa penetrated into the cytoplasm of each naked egg. The sperm nuclear envelope disappeared by means of vesiculation resulting from fusion of the inner and outer membranes. The sperm nucleus decondensed and developed into a larger male pronucleus. Smooth-surfaced vesicles surrounded the decondensing sperm nucleus and formed the new male pronuclear envelope. Sperm mitochondria and flagella were found in the egg 15 min after insemination. The response of the egg surface to sperm entry and pronucleus formation are discussed.  相似文献   

2.
Fertilization in Notophthalmus viridescens is internal and involves passage of the sperm through five layers of egg jelly (J5-J1, from outermost to innermost), each of which is secreted by a discrete region of the oviduct. Polyspermy is normal. Passage of the sperm through the jelly and into the egg was studied by a technique of artificial insemination similar to natural insemination, in that undiluted fluid from the vas deferens was applied directly to eggs with various layers of jelly present, followed by flooding with water three to five minutes later. In general, successful fertilization increased as the number of jelly layers increased; jellyless coelomic eggs were not fertilizable. Sperm passage through the jelly and into the egg usually occurs within one to three minutes. Upon hydration of the jelly, barriers to sperm penetration develop in layers J5 and J3. Changes in the egg jelly thus seem to be involved in the restriction of polyspermy to a low level.  相似文献   

3.
Surface ultrastructure of paddlefish eggs before and after fertilization   总被引:2,自引:0,他引:2  
The surface ultrastructure of eggs of the paddlefish Polyodon spathula was investigated by scanning electron microscopy. Mature eggs of paddlefish possess four to 12 micropyles in the animal polar region. There are sperm entry sites in the egg surface under the micropyles which consist of tufts of microvilli. Five to nine sperm entry sites were observed on mature eggs. Probably, the number of sperm entry sites corresponds to the number of micropyles. In a few eggs, 1 min after fertilization the ball-like enlarged top of a cytoplasmic process (probably a full-grown fertilization cone) had reached the external aperture or the canal of several micropyles. In other micropyles of the same egg, a few smaller cytoplasmic processes or flocculent material were found in the micropylar canal. With one exception, no sperm tails were found there. The formation of the full-grown cytoplasmic process is possibly initiated before the cortical reaction has started in an area of the animal hemisphere. Three, 10 and 20 min after fertilization, the uneven surface of the cortical cytoplasm in the animal polar region rose gently where microvilli were much less than the in other area and together with a secondary polar body at the latter stage. Taken together, paddlefish eggs may have sperm entry sites corresponding to the number of micropyles and respond to the stimulus of fertilization by forming a few cytoplasmic processes–fertilization cones (larger and smaller). Sperm penetration into the egg may be achieved at an earlier stage of fertilization (sperm-egg contact), as inferred from the fact that a secondary polar body was formed at the 20-min stage irrespective of the exceptional finding of the sperm tail.  相似文献   

4.
Electron microscopic and cytochemical investigations were carried out on inseminated Arbacia oocytes comparing structural and chemical properties of their microvillous surface and fertilization cones. Early fertilization cones (up to 4 min postinsemination) were relatively small, smooth surface projections of cytoplasm that engulfed the incorporated sperm nucleus. However, in contrast to surrounding microvillous areas of the oocyte surface, enlarged fertilization cones (8 to 15 min postinsemination) had a distinctive crenated appearance that persisted until their regression. When examined by various cytochemical techniques, membrane delimiting fertilization cones had a much lower affinity for agents that stain negatively charged and carbohydrate moieties (cationized ferritin, concanavalin A, ruthenium red, and alcian blue) than did other regions of the oocyte surface. This difference in surface properties of membrane delimiting the site of sperm-egg fusion was not due solely to incorporated sperm plasma membrane and did not occur when inseminated oocytes were incubated with cytochalasin B. Little or no difference in the membrane of the fertilization cone versus microvillous areas was observed when inseminated eggs were freeze-fractured or prepared with agents (filipin and polymixin B) to demonstrate β-hydroxysterols and anionic phospholipids. These observations indicate that membrane delimiting the fertilization cone differs from the remainder of the oocyte surface and suggests that following insemination significant rearrangements of surface molecules take place within the egg plasmalemma that give rise to asymmetries in membrane topography.  相似文献   

5.
The responses of the egg to insemination in a modified Fish Ringer's solution (FRS) were examined in eggs of the zebrafish ( Brachydanio rerio ) primarily by scanning electron microscopy. FRS is a physiological saline which temporarily inhibits parthenogenetic activation of the egg for 5–8 min. Spermatozoa were collected in a small volume of water and pipetted over eggs in FRS. Eggs inseminated in FRS typically incorporated the fertilizing sperm within 3–4 min. Inseminated cells showed an absence of a fertilization cone and no cortical granule exocytosis. The deep conical depression in the egg surface beneath the micropyle remained unaltered. Control eggs inseminated in tank water developed a large fertilization cone during sperm incorporation. Occasionally, eggs inseminated in water were observed to incorporate the entire sperm head prior to egg activation. Our results corroborate earlier findings showing that in the zebrafish, cortical granule exocytosis, fertilization cone formation and elevation of the sperm entry site are not triggered by the fertilizing sperm in experimental conditions (18, 19). Furthermore, sperm incorporation requires neither egg activation nor formation of a fertilization cone in this fish.  相似文献   

6.
Summary Fertilization in the freshwater hydrozoanHydra carnea has been examined by light, scanning and transmission electron microscopy. Sperm penetrate the jelly coat which covers the entire egg surface only at the site of the emission of the polar bodies. The egg surface exhibits a small depression, the so called fertilization pit at this site. Sperm-egg fusion takes place only at the bottom of the fertilization pit.Hydra sperm lack a structurally distinct acrosome and in most of the observed cases, fusion was initiated by contact between the membrane of the lateral part of the sperm head and the egg surfacce. Neither microvilli nor a fertilization cone are formed at the site of gamete fusion. The process of membrane fusion takes only a few seconds and within 1 to 2 min sperm head and midpiece are incorporated in the egg.Electron dense material is released by the egg upon insemination but cortical granule exocytosis does not occur and a fertilization envelope is not formed. The possible polyspermy-preventing mechanisms in hydrozoans are discussed. Hydra eggs can be cut into halves whereupon the egg membranes reseal at the cut edges and the fragments assume a spherical shape. Fragments containing the female pronucleus can be inseminated and exhibit normal cleavage and development. The observation that in such isolated parts the jelly coat will not fuse along the cut edges was used to determine its role in site-specific gamete fusion. These experiments indicate that site-specificity of gamete fusion can be attributed to special membrane properties at the fertilization pit.  相似文献   

7.
Sperm penetration and the formation of a fertilization cone in the micropylar canal of the egg of the common carp were examined by electron microscopy. The overwhelming majority of inseminated eggs fixed without immersion in fresh water showed that the first spermatozoon had penetrated into the ooplasm before the cortical reaction had occurred, and in many cases had formed a fertilization cone to plug the micropylar canal. At this stage the sperm head was usually located at the base of the cone, and the tail part did not participate in the formation of the cone. Inseminated eggs fixed soon after immersion in fresh water showed that the elevation of the fertilization membrane and the simultaneous recession of the fertilization cone often permitted the penetration of a few supernumerary spermatozoa into the perivitelline space near the micropylar canal, but polyspermic fertilization was never observed. The mechanism of the block to polyspermy in the egg of the common carp is discussed in connection with the fertilization cone.  相似文献   

8.
Fertilization Cone of Carp Eggs as Revealed by Scanning Electron Microscopy   总被引:3,自引:1,他引:2  
The process of formation of the fertilization cone in carp eggs was examined by scanning electron microscopy. The fertilized eggs responded to penetration of one sperm by primary and secondary steps of formation of a fertilization cone of unique morphology. In the primary step, the earliest fertilization cone was seen at the superior or anterosuperior part of a fused sperm head in inseminated eggs fixed 20 sec after immersion in fresh water. The cone reached a maximum of more than 10 μm in length and 3–4 μm in thickness by 40 sec, resulting in a transient plugging of the micropylar canal. In the secondary step, usually seen at 105–120 sec, a conformation reminiscent of a very small caldera volcano was formed, with the shortened earlier cone and part of the sperm tail at its top. By 2.5 min, the fertilization cone had become conical, and the sperm tail still extended from its top. At 3 min, the sperm tail was often not detectable, but a cytoplasmic eminence was still seen as a trace of the fertilization cone. The role of the earlier fertilization cone in blocking polyspermy is discussed.  相似文献   

9.
The sensitivity of specific stages of fertilization to microfilament inhibitors (cytochalasins B (CB), D (CD), and E (CE) and phalloidin) and to inhibitors of microtubule assembly (colcemid (CMD), colchicine (CLC), griseofulvin (GSF), maytansine (MAY), nocodazole (NCD), podophyllotoxin (PDP), and vinblastine (VB)) was investigated using differential interference contrast, time-lapse video microscopy of the sea urchin Lytechinus variegatus. Cytochalasins (CDCE>CB) will prevent sperm incorporation if added prior to or simultaneous with insemination. Sperm-egg fusion and the cortical reaction appear normal, but then the subsequent elevation of the fertilization coat lifts and eventually detaches the ‘fertilizing’ sperm from the egg plasma membrane. When the cytochalasins are added after fusion, the forming fertilization cone is rapidly resorbed, and the lateral displacement of the sperm along the egg cortex is terminated; the pronuclear migrations and mitoses occur normally though cytokinesis is never observed. Cytochalasin treatment before or within 2 min of insemination results in the development of aberrant egg cortices, whereas cytochalasin treatments after 2 min post-fusion have little effect. Phalloidin results in large and long-lasting fertilization cones and a retardation of the rate of sperm incorporation. Eggs exposed to any of the microtubule inhibitors 15 min prior to insemination will incorporate the spermatozoon, though the formation of the sperm aster and the accompanying pronuclear migrations are prevented. Interestingly, the final stage of sperm incorporation involving a lateral displacement of the sperm along the egg cortex is greater (27.1 vs 12.4 μm in controls) and faster (5.4 vs 3.5 μm/min in controls) in microtubule-inhibited eggs. GSF and VB, which readily permeate fertilized eggs, will prevent the formation of the sperm aster if added 3 min after sperm-egg fusion, they will prevent the migration of the female pronucleus if added 5 or 7 min after sperm-egg fusion, pronuclear centration if added 10 min post-fusion, and syngamy if added 12 min post-fusion. CLC- or CMD- treated eggs will develop normally if these drugs are photochemically inactivated with 366 nm light within 4 min post-fusion, arguing that sperm incorporation is completely independent of assembling microtubules. These results indicate that microfilament inhibitors will prevent sperm incorporation and the restructuring of the fertilized egg cortex, and that microtubule inhibitors will prevent the formation and functioning of the sperm aster during the pronuclear migrations; an interplay between cortical microfilaments and cytoplasmic microtubules appears required for the successful completion of fertilization.  相似文献   

10.
Wave of cortical actin polymerization in the sea urchin egg   总被引:2,自引:0,他引:2  
The distribution of actin filaments in the cortical layer of sea urchin eggs during fertilization has been investigated by light microscopy using fluorescently labeled phallotoxins. The cortical layer of both whole eggs and cortices isolated on a glass surface was examined. In cortices of unfertilized eggs, numerous fluorescent spots were seen, which may correspond to short actin filament cores in microvilli. After insemination, one of the sperm-attaching points on the egg surface first became strongly fluorescent. This fluorescence grew around the point of sperm penetration with the growth of the fertilization cone. Then, the cortical layer of the egg around the fertilization cone became strongly fluorescent and the fluorescence propagated in a wavelike manner over the entire cortex. The mechanism of the propagation of actin polymerization is discussed.  相似文献   

11.
In Discoglossus pictus eggs, only the dimple contains ionic channels active at fertilization; in particular, chloride channels are found in the central portion of the dimple, which is also the site of sperm penetration. Moreover the dimple hosts an imposing cytoskeleton, consisting of a cortical network and bundles of microfilaments extending from the microvilli. Since spectrin cross links actin and is connected through ankyrin to anion transporters in the plasma membrane of erythrocytes as well as to anion channels in other cells, we studied, in D. pictus egg, the relationship between the localization of spectrin and the high polarization of ionic channels and cytoskeletal organization. By means of immunocytochemistry, we localized spectrin exclusively in the egg dimple. In an attempt to trace back the source of spectrin localization, we immunostained sections of D. pictus ovary and localized spectrin in the nuclei of previtellogenic oocytes, where actin is also present. Antispectrin staining remained until germinal vesicle breakdown. By contrast, a cortical localization was found only when the oocytes divided into two hemispheres and into the germinative area (GA), which, after germinal vesicle breakdown, gives rise to the dimple. At this stage the antispectrin signal was particularly strong in the GA. Using Rho-pialloidin, we also established that spectrin is generally present where F-actin is found. However, spectrin and F-actin do not have the same pattern of fluorescence. In conclusion, our data suggest that spectrin may play a role in oocyte and egg polarity. In eggs, it could be instrumental in anchoring to the cytoskeleton membrane proteins such as receptors and ionic channels, including chloride-permeable channels.  相似文献   

12.
The significance of egg-jelly layers in internal fertilization was evaluated in the newt, Cynops pyrrhogaster. In this species, six egg-jelly layers, J1, J2, J3, J4, J5 and the outermost J6 layers, are accumulated on the surface of the fertilizable eggs in pars convoluta of the oviduct. When a large number of sperm (about 6 x 10(5)) were placed on eggs having different numbers of jelly layers, all the eggs were fully fertilized, although many of the eggs developed abnormally. Upon insemination using about 600 sperm, only eggs with the full set of jelly layers were fertilized at a high rate with normal development. Since around 300 (the range of 48-1,192) sperm were observed on and in the egg-jelly in naturally spawned eggs, we conclude that the J6 layer must be present on the outermost surface of the egg-jelly for successful internal fertilization of the newt. Previous studies have suggested that the J6 layer is a prerequisite for the initiation of sperm motility and the acrosome reaction. In the present study, the fertilization rate decreased in eggs with a full set of jelly layers when inseminated using acrosome-reacted and motile sperm. However, the fertilization rate was high when motile sperm with intact acrosome was used. These results suggest that induction of the sperm acrosome reaction in the J6 layer is an important step in the internal fertilization of the newt.  相似文献   

13.
Fertilization of investment-free Xenopus eggs   总被引:1,自引:0,他引:1  
The vitelline envelope of unfertilized Xenopus egg can be removed manually after treating the dejellied eggs for 10 min with 20% (w/v) sucrose in F-1 saline. Fertilization occurred in 52% of the eggs denuded in this way when UV-solubilized jelly was added to the sperm-egg mixture; without the jelly the level of fertilization was only 6%. Fertilization did not occur synchronously in the denuded eggs; the average delay between insemination and fertilization was 19 +/- 18 min.  相似文献   

14.
Actin, microvilli, and the fertilization cone of sea urchin eggs   总被引:11,自引:8,他引:3       下载免费PDF全文
Sea urchin eggs and oocytes at the germinal vesicle stage were fixed at various times after insemination, and thin sections were examined. Actin filaments can first be found in the cortical cytoplasm 1 min after insemination, and by 2 min enormous numbers of filaments are present. At these early stages, the filaments are only occasionally organized into bundles, but one end of many filaments contacts the plasma membrane. By 3 min, and even more dramatically by 5 min after insemination, the filaments become progressively more often found in bundles that lie parallel to the long axis of the microvilli and the fertilization cones. By 7 min, the bundles of filaments in the cone are maximally pronounced, with virtually all the filaments lying parallel to one another. Decoration of the filaments with subfragment 1 of myosin shows that, in both the microvilli and the cones, the filaments are unidirectionally polarized with the arrowheads pointing towards the cell center. The efflux of H+ from the eggs was measured as a function of time after insemination. The rapid phase of H+ efflux occurs at the same time as actin polymerization. From these results it appears that the formation of bundles of actin filaments in microvilli and in cones is a two-step process, involving actin polymerization to form filaments, randomly oriented but in most cases having one end in contact with the plasma membrane, followed by the zippering together of the filaments by macromolecular bridges.  相似文献   

15.
Eggs of bony fishes are enveloped by an egg envelope (chorion) in which a micropyle is present near the animal pole. Therefore, sperm penetration into the eggs is limited to the sperm entry site (SES), a region of plasma membrane just beneath the micropyle. In rose bitterling eggs, the SES transforms from a tuft of microvilli into a swollen mass (SM) that continues to plug the micropyle after sperm penetration. The present observations using the rose bitterling Rhodeus ocellatus ocellatus were conducted to examine: 1) whether or not sperm penetration is necessary for formation of the SM and 2) whether or not actin microfilaments are involved in the formation of the SM. Water activation without sperm transformed the SES from a tuft of microvilli into the SM, although it took a longer time for the transformation and the SMs were smaller than in the case of inseminated eggs. The SES presumably has the ability to transform into the SM upon activation of eggs in the present species. Cytochalasin B, which acts on actin microfilaments, did not prevent formation of the SM, irrespective of insemination or activation. The present observations suggest that sperm penetration is not necessary for SM formation and actin microfilaments do not participate in SM formation. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Sperm incorporation and the formation of the fertilization cone with its associated microvilli were investigated by scanning electron microscopy of eggs denuded of their vitelline layers with dithiothreitol or stripped of their elevating fertilization coats by physical methods. The activity of the elongating microvilli which appear to engulf the entering spermatozoon was recorded in living untreated eggs with time-lapse video microscopy. Following the acrosome reaction, the elongated acrosomal process connects the sperm head to the egg surface. About 15 microvilli adjacent to the attached sperm elongate at a rate of 2.6 μm/min and appear to engulf the sperm head, midpiece, and sperm tail. These elongate microvilli swell to form the fertilization cone (average height, 6.7 ± 2.0 μm) and are resorbed as the sperm tail enters the egg cytoplasm 10 min after insemination. Cytochalasin B, an inhibitor of microfilament motility, completely inhibits the observed egg plasma membrane surface activity in both control and denuded eggs. These results argue for a role of the microfilaments found in the egg cortex and microvilli as necessary for the engulfment of the sperm during incorporation and indicate that cytochalasin interferes with the fertilization process at this site.  相似文献   

17.
The effects of selected concentrations of cytochalasins B (1-10 micrograms/ml; CB) and D (10, 50 micrograms/ml; CD) on the morphology and fertilization of zebra danio (Brachydanio) eggs were studied primarily with light and scanning electron microscopy. Eggs pretreated with either CB (10 micrograms/ml) or CD (10, 50 micrograms/ml) prepared in Fish Ringer's solution-0.5% DMSO showed a flattened shape, alterations in the form of surface microplicae and microvilli, and occasional spontaneous exocytosis of cortical granules. All eggs preincubated in either CB or CD were activated upon transfer to tap water, showing cortical granule exocytosis, elevation of the chorion, and formation of a fertilization cone. When eggs were pretreated for 5 minutes with 1-5 micrograms/ml CB or 10 micrograms/ml CD and inseminated, they incorporated the fertilizing sperm and typically developed to the two-cell stage. A single sperm cell attached to and fused with the sperm entry site microvilli but failed to enter the cytoplasm in eggs preincubated with 10 micrograms/ml CB. Eggs that were immersed continuously in either CB (10 micrograms/ml) or CD (50 micrograms/ml) 15 seconds after insemination also failed to incorporate the fertilizing sperm. Treatment of eggs after insemination with CD (10 micrograms/ml), however, did not prevent sperm cell incorporation or fertilization cone formation. Our drug data suggest the presence of actin-containing filaments in the danio egg before and following fertilization. These filaments appear to play a role in maintaining the shape of the egg cell and its surface specializations and in the incorporation of the fertilizing sperm. The fertilization cone appears to form independently of actin polymerization.  相似文献   

18.
The process of sperm incorporation into starfish (Asterias amurensis) oocytes was examined by electron and fluorescence microscopy. The fertilization cone began to form at the place where the acrosomal process fused with the egg surface and developed into an inverted conical mass containing a small amount of electron-dense cytoplasm. Microfilaments, which stained with NBD-phallacidin, were detected in the fertilization cone. Microvillar protrusions from the fully grown fertilization cone engulfed the sperm head outside the fertilization membrane. The sperm organelles were incorporated into the egg cortex with the absorption of the protrusions. Cytochalasin B inhibited sperm incorporation, fertilization cone formation, and actin filament organization. It is suggested that the development and reduction of the fertilization cone, which depend on the functioning of microfilaments, are necessary for sperm incorporation in starfish.  相似文献   

19.
Sperm limitation may be an important selective force influencing gamete traits such as egg size. The relatively inexpensive extracellular structures surrounding many marine invertebrate eggs might serve to enhance collision rates without the added cost of increasing the egg cell. However, despite decades of research, the effects of extracellular structures on fertilization have not been conclusively documented. Here, using the sea urchin Lytechinus variegatus, we remove jelly coats from eggs, and we quantify sperm collisions to eggs with jelly coats, eggs without jelly coats, and inert plastic beads. We also quantify fertilization success in both egg treatment groups. We find that sperm-egg collision rates increase as a function of sperm concentration and target size and that sperm are not chemotactically attracted to eggs nor to jelly coats in this species. In fertilization assays, the presence of the jelly coat is correlated with a significant but smaller-than-expected improvement in fertilization success. A pair of optimality models predict that, despite the large difference in the energetic value of egg contents and jelly material, the presence of the jelly coat does not diminish selection for larger egg cell size when sperm are limiting.  相似文献   

20.
Jelly coats of the sea urchin, Pseudocentrotus depressus, were stripped off the eggs, and the eggs were “inseminated.” After penetration through the isolated jelly hull, sperm swarmed in the cavity previously occupied by the egg. Electron microscopic examination could not detect any sperm with reacted acrosome. Observation was also made of the sperm penetrating through the intact jelly coat-egg complex. Although a number of sperm were examined in ultrathin sections, only those attached to the vitelline layer had undergone the acrosome reaction; those sperm embedded in jelly but not attached to the vitelline layer had not undergone the acrosome reaction. The sequence of events in fertilization of this species and of other echinoids is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号