首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A reduced concentration of cytokinins may cause the abnormal growth and development found in F1 hybrids between Andean and Mesoamerican races of Phaseolus vulgaris L. In this study, concentrations of the transportable cytokinin zeatin riboside (ZR) were measured by ELISA for ZR (cross reactivities dihydrozeatin, 14%, zeatin 7.6%) in roots, stems, and leaves of a Phaseolus Mesoamerican landrace (P. vulgaris L. cv. Redkloud), an Andean landrace (P. vulgaris L. cv. Batt), and their F1 hybrids. Concentrations of ZR in roots and leaves of F1 hybrids were significantly less than that found in roots and leaves of parental cultivars. Approximately 90% of the ZR found in F1 hybrids was found sequestered in the stems, whereas cytokinins of the parental cultivars were distributed throughout the plant (roots: Batt 37%, Redkloud, 44%; stems: Batt 35%, Redkloud 42%; leaves: Batt 28%, Redkloud 14%). These results suggest that abnormal growth and development of F1 hybrids may involve interruption of the regulation of cytokinin allocation, thereby disrupting the root-shoot feedback loop between root-sourced cytokinins and putative shoot-produced factors. Received October 15, 1998; accepted May 12, 1999  相似文献   

2.
We have examined the hypothesis that cytokinins transportedfrom roots to shoots affects leaf growth, stomatal conductance,and cytokinin concentration of leaves of Phaseolus and a hybridpoplar (Populus trichocarpa x Populus deltoides) with hypoxicroots. Because cytokinins may interact with other substances,potassium and calcium concentrations were determined in xylemsap of Populus plants with hypoxic and aerated roots while gibberellin(GA) concentrations were measured in shoot tissues. Root hypoxiadecreased leaf growth and closed stomata in both species. Inboth species, fluxes of cytokinins out of the roots were reduced,but no differences in bulk leaf concentrations were measuredbetween the hypoxic and aerated plants. Shoots with aeratedroots contained slightly higher concentrations of GA1 and GA3than shoots from hypoxic plants. There were no differences incalcium or potassium concentrations in xylem sap between aerationtreatments. Exogenously applied cytokinins did not alleviatethe growth or stomatal responses caused by root hypoxia. Informationon the site(s) and mechanism(s) of cytokinin action and theways in which cytokinins are compartmentalized within plantcells will be required to understand the physiological significanceof cytokinin transport in the transpirational stream. Key words: Cytokinins, hypoxia, Populus, Phaseolus  相似文献   

3.
The role of roots in the enhancement of cytokinin content and leaf growth of Phaseolus vulgaris plants after decapitation and partial defoliation was investigated. Partial excision of the roots of plants which were decapitated above the primary leaf node resulted in a reduction of leaf growth and soluble proteins accumulation in the primary leaves. Roots excision was done at time of decapitation and repeated 8 days later. Endogenous cytokinins, known to be involved in enhancing shoot growth, accumulated in the leaves and stems of decapitated and partially defoliated plants. Lower levels of cytokinins were detected in the leaves of decapitated plants with only a partial root system. The level of cytokinins in the roots of decapitated plants was reduced by partial root excision. The growth and accumulation of cytokinins in leaves were, however, not totally suppressed by removing a large proportion of the roots. At the commencement of the experiment the stem had a higher cytokinin content than both the leaves and roots. This suggests that the stem could be an alternative source of cytokinins to the leaves. The cytokinin complement in the leaves of decapitated plants is not identical to that in the roots. It appears that cytokinins supplied by the roots are metabolized in the leaves, or that alternatively certain cytokinins are synthesized in the leaves themselves.  相似文献   

4.
1. Quantitative proof is furnished that all the material available for shoot and root formation in an isolated leaf of Bryophyllum calycinum flows to those notches where through the influence of gravity or by a more abundant supply of water growth is accelerated. As soon as the acceleration of growth in these notches commences, the growth of shoots and roots in the other notches which may already have started ceases. 2. It had been shown in a preceding paper that the regeneration of an isolated piece of stem may be and frequently is in the beginning not markedly polar, but that after some time the growth of all the roots except those at the base and of all the shoots except those at the apex is suppressed. This analogy with the behavior of regeneration in a leaf in which the growth in one set of notches is accelerated, suggests that in an isolated stem a more rapid growth is favored at the extreme ends (probably by a block of the sap flow at the extreme ends) and that when this happens the total flow of ascending sap goes to the most apical buds and the total flow of the descending sap goes to the most basal roots. As soon as this occurs, the growth of the other roots and shoots is suppressed.  相似文献   

5.
The effect of phosphate starvation on growth and acid phosphatases (APases) localization and activity in oat tissues was investigated. Oat cultivars (Avena sativa L.??Arab, Polar, Szakal) were grown for 1?C3?weeks in complete nutrient medium (+P) and without phosphate (?P). Pi concentration in plant tissues decreased strongly after culturing on ?P medium. Pi deficit reduced shoot growth, stimulated root elongation and increased ratio of root/shoot in all oat cultivars. Pi deficit had a greater impact on growth of oat cv. Polar than other varieties. A decrease in the internal Pi status led to an increase of acid phosphatase activities in extracts from shoots and roots, and in root exudates. The highest activity of secreted APases was observed for oat cv. Arab, during the third week of growth under Pi-deficient conditions. The activity of extracellular APase was high in young, growing zones of roots of ?P plants. Histochemical visualization indicated high activity of APases in the epidermis and vascular tissues of ?P plants. Pi deficiency increased intracellular APase activity in shoot mainly in oat cv. Polar, whereas APase activity in roots was the highest in oat cv. Szakal. Protein extracts from roots and shoots were run on native discontinuous PAGE to determine which isoform(s) may be affected by Pi deficiency. Three major APase isoforms were detected in all oat plants; one was strongly induced by Pi deficit. The studied oat cultivars differed in terms of acclimation to deficiency of phosphate??used various pools of APases to acquire Pi from external or internal sources.  相似文献   

6.
The contents of phytohormones (IAA, ABA, cytokinins, and gibberellin-like compounds) were measured in shoots and roots of eight-day-old seedlings of two maize (Zea mays L.) hybrids differing in their tolerance to elevated temperatures. More tolerant seedlings initially contained more ABA and cytokinins, and the contents of these hormones changed less after a temperature increase than in seedlings of the sensitive hybrid. Hyperthermia induced a destruction of chloroplast lamellar structure in the leaf sheath cells of the sensitive but not of the tolerant hybrid.  相似文献   

7.
This study examined the potential role of restricted phloem export, or import of substances from the roots in the leaf growth response to root hypoxia. In addition, the effects of root hypoxia on abscisic acid (ABA) and zeatin riboside (ZR) levels were measured and their effects on in vitro growth determined. Imposition of root hypoxia in the dark when transpirational water flux was minimal delayed the reduction in leaf growth until the following light period. Restriction of phloem transport by stem girdling did not eliminate the hypoxia-induced reduction in leaf growth. In vitro growth of leaf discs was inhibited in the presence of xylem sap collected from hypoxic roots, and also by millimolar ABA. Disc growth was promoted by sap from aerated roots and by 0.1 micromolar ZR. The flux of both ABA and ZR was reduced in xylem sap from hypoxic roots. Leaf ABA transiently increased twofold after 24 hours of hypoxia exposure but there were no changes in leaf cytokinin levels.  相似文献   

8.
This study focuses on the expansion of Phaseolus vulgaris in Europe. The pathways of distribution of beans into and across Europe were very complex, with several introductions from the New World that were combined with direct exchanges between European and other Mediterranean countries. We have analyzed here six chloroplast microsatellite (cpSSR) loci and two unlinked nuclear loci (for phaseolin types and Pv-shatterproof1). We have assessed the genetic structure and level of diversity of a large collection of European landraces of P. vulgaris (307) in comparison to 94 genotypes from the Americas that are representative of the Andean and Mesoamerican gene pools. First, we show that most of the European common bean landraces (67%) are of Andean origin, and that there are no strong differences across European regions for the proportions of the Andean and Mesoamerican gene pools. Moreover, cytoplasmic diversity is evenly distributed across European regions. Secondly, the cytoplasmic bottleneck that was due to the introduction of P. vulgaris into the Old World was very weak or nearly absent. This is in contrast to evidence from nuclear analyses that have suggested a bottleneck of greater intensity. Finally, we estimate that a relatively high proportion of the European bean germplasm (about 44%) was derived from hybridization between the Andean and Mesoamerican gene pools. Moreover, although hybrids are present everywhere in Europe, they show an uneven distribution, with high frequencies in central Europe, and low frequencies in Spain and Italy. On the basis of these data, we suggest that the entire European continent and not only some of the countries therein can be regarded as a secondary diversification center for P. vulgaris. Finally, we outline the relevance of these inter-gene pool hybrids for plant breeding.  相似文献   

9.
Effect of temperature on drought resistance and growth of cotton plants   总被引:1,自引:0,他引:1  
In cotton plants ( Gossypium hirsutum L. cv. B.J.A.) the temperature of the roots affected both root and shoot growth, as did the temperature of the shoot. Drought resistance increased when the temperature imposed on roots (27°C) was lower than that imposed on shoots (17°C); the result was a decrease in both transpiration and flow of root sap. Stomatal characteristics as measured by density, index and resistance, depended only on shoot temperature. Differences in drought resistance, depended only on shoot temperature. Differences in drought resistance seem to be a result of changes in transpiration flow modulated by the amount of absorbed water.  相似文献   

10.
Abstract Previous studies suggest that high temperature stress on wheat (Triticum aestivum L.) involves root processes and acceleration of monocarpic senescence. Physiological changes in wheat roots and shoots were investigated to elucidate their relationship to injury from elevated temperatures after anthesis. Plants were grown under uniform conditions until 10 d after anthesis, when shoot/root regimes of 25°C/25°C, 25°C/35°C, 35°C/25°C and 35°C/35°C were imposed. Growth and senescence of shoots and grain were influenced more by root temperatures than by shoot temperatures. High root temperatures increased activities of protease and RNasc enzymes, and loss of chlorophyll, protein and RNA from shoots, whereas low root temperatures had opposite effects. High root temperatures appeared to induce shoot senescence directly. High shoot temperatures probably disrupted root processes, including export of cytokinins, and induced high leaf protease activity, senescence and cessation of grain development. The authors concluded that responses of wheat to high temperatures, whether of roots or shoots, are manifested as acceleration of senescence and may be mediated by roots during grain development.  相似文献   

11.
Pathogenicity of physiologically distinct races of Colletotrichum lindemuthianum originating from Andean (races 7, 19 and 55) and Mesoamerican (races 9, 31, 65, 69, 73, 81, 89, 95 and 453) locations of the new world were evaluated on 26 landrace genotypes of common bean (Phaseolus vulgaris L.) from Paraná State, Brazil. Races 7 (Andean), 65, 73 and 89 (Mesoamerican) were the most pathogenic, while race 31 (Mesoamerican) was the least pathogenic. Most of the landrace genotypes evaluated (88%) were resistant to race 31, except Carioca 3, Preto 1 and Preto 2. In addition, about 50% of the landrace genotypes had resistance to races 9, 19, 55 and 453; and about 30% to races 7, 65, 69, 73, 81, 89 and 95. The resistance index, which measured the pathogenicity response averaged across all the physiologically distinct Andean and Mesoamerican races of C. lindemuthianum, of the landrace genotypes ranged from 8% to 83%. The most resistant cultivars were Carioca Pintado 1, Carioca Pintado 2, Jalo Vermelho and Jalo de Listras Pretas. In contrast, the most susceptible cultivars were Jalo Pardo, Jalo Pintado 1 and Bolinha that showed resistance only to the least pathogenic race 31. These results indicated that many of the common bean landrace cultivars evaluated have genes that could be useful in breeding programmes to enhance resistance to Andean and Mesoamerican races of C. lindemuthianum.  相似文献   

12.
Nitrate assimilation was examined in two cultivars (Banner Winterand Herz Freya) of Vicia faba L. supplied with a range of nitrateconcentrations. The distribution between root and shoot wasassessed. The cultivars showed responses to increased applied nitrateconcentration. Total plant dry weight and carbon content remainedconstant while shoot: root dry weight ratio, total plant nitrogen,total plant leaf area and specific leaf area (SLA) all increased.The proportion of total plant nitrate and nitrate reductase(NR) activity found in the shoot of both cultivars increasedwith applied nitrate concentrations as did NO3: Kjeldahl-Nratios of xylem sap. The cultivars differed in that a greaterproportion of total plant NR activity occurred in the shootof cv. Herz Freya at all applied nitrate concentrations, andits xylem sap NO3: Kjeldahl-N ratio and SLA were consistentlygreater. It is concluded that the distribution of nitrate assimilationbetween root and shoot of V. faba varies both with cultivarand with external nitrate concentration. Vicia faba L., field bean, nitrate assimilation, nitrate reductase, xylem sap analysis  相似文献   

13.
Roots are recognised as the major sites of cytokinin synthesis and shoots receive a continuous supply of cytokinins from the roots. Although reports are available on the xylem mobility of putative free bases and their ribosides, relatively few studies on the phloem mobility of cytokinins have been reported. The origin of phloem-mobile cytokinins is uncertain but there is evidence which implicates a recirculation from the root source. This study is the first report in which zeatin and zeatin riboside from the root pressure exudate and phloem sap of Ricinus have been identified by full-scan GC-MS and quantified by GC-MS selective-ion-monitoring. In this study, the concentration of cytokinins in root pressure exudate was similar, but lower, and in the phloem sap higher than that reported previously. The concentration of cytokinins quantified in the phloem sap confirms their transport in the sieve tubes. The relatively high concentration of zeatin riboside detected in the root pressure exudate and of zeatin detected in the phloem sap indicate a possible vascular recirculation of these hormones.  相似文献   

14.
Measurements with a pressure chamber were made of the xylem water potential of leaves, shoots and roots from bean plants (Pkaseolus vulgaris L. cv. Processor) grown with a 12 hour dark period and natural or artificial light conditions during the day. The water potentials were measured at the end of a dark period and during the light period. Measurements taken at the end of the dark period indicated normal potential gradients within the soil/plant system (leaf < shoot < root < soil), when the matric potential of soil water was relatively high (above ?0.02 bar), and the gradients then also remained normal during the day (natural light). When the soil water potential was ?1 bar or lower in the morning, however, the root xylem water potential was higher than the soil water potential; at very low soil water potentials (< ?4 bar) it remained higher during most of the day. In this case also leaf and shoot xylem water potentials were higher than the soil water potential in the early morning, although decreasing rapidly in daylight. Under artificial light, both leaf and root water potentials were higher than the soil water potential throughout the whole diurnal cycle when the latter potential was below ?4 bar. From measurements of stomatal diffusion resistance, transpiration, relative water content of leaves and of changes in the matric potential of soil water, it was concluded that when the matric potential of soil water was low, water could be taken up by the plant against a water potential gradient. Because leaf xylem water potential was always lower than root xylem water potential, the mechanism involved in the inversion of water potential gradient must be localized in the roots, and probably related to ion uptake. Symbols and abbreviations used in the text: Ψ: Plant water potential (thermocouple psychrometer); Ψx: Xylem water potential (pressure chamber); Ψs: Osmotic potential of xylem sap; Ψm: Matric potential of soil water; RWC: Relative water content.  相似文献   

15.
The effect of excessive Cd on the growth and metal uptake by leafy vegetables Brassica chinensis L. (cv. Wuyueman) and Brassica pekinensis (Lour.) Rupr. (cv. Qingyan 87-114) were studied in hydroponic solution culture. The Cd concentration higher than 10 μM significantly decreased the root elongation and leaf chlorophyll contents of both plant species. The shoots of B. pekinensis had significantly higher concentrations of total and water-soluble Cd than B. chinensis. The roots of both species accumulated more Cd than the shoots in all the Cd treatments. Most of the Cd in the roots was found in the cell walls. The shoot/root ratio of Cd concentrations in B. pekinensis was always greater than that in B. chinensis. But, the concentration and proportion of Cd in the cell walls in B. chinensis were higher than that in B. pekinensis. Cadmium treatments also increased the concentrations of total non-protein thiols (NPT) in the shoots of the both species. A significant correlation was found between the concentrations of soluble Cd and NPT in plant shoots.  相似文献   

16.

Background and aims

Ammonium (NH4 +) is the preferred nitrogen nutrient over nitrate (NO3 ) in Oryza sativa L. (rice), but photosynthetic capacity is enhanced by partial NO3 nutrition (PNN). The role of cytokinin in the effects of PNN on photosynthetic capacity is unknown.

Methods

We investigated effects of PNN on six cytokinin fractions in roots, xylem sap, and leaves and on the expression of eight cytokinin synthesis genes in the roots of Nanguang and Elio rice cultivars. The effect of exogenous cytokinin (6-BA) on leaf growth and photosynthetic activity was examined.

Results

Cell expansion and CO2 assimilation in the first fully expanded leaf were enhanced by PNN in Nanguang but not in Elio. The concentrations of cytokinins in roots, xylem sap, and leaves of Nanguang increased approximately 25–34 % with PNN compared with sole NH4 +, but no difference was observed in Elio. Exogenous 6-BA counteracted the effects of sole NH4 + on leaf growth and photosynthetic activity in both cultivars. OsIPT3 was the key NO3 -responsive cytokinin synthesis gene in cv. Nanguang.

Conclusions

High NO3 responsiveness is associated with increased cytokinin synthesis and transport from the root to the leaf and is strongly related to a higher photosynthetic capacity in cv. Nanguang.  相似文献   

17.
The rms4 mutant of pea ( Pisum sativum L.) was used in grafting studies and cytokinin analyses of the root xylem sap to provide evidence that, at least for pea, the shoot can modify the import of cytokinins from the root. The rms4 mutation, which confers a phenotype with increased branching in the shoot, causes a very substantial decrease (down to 40-fold less) in the concentration of zeatin riboside (ZR) in the xylem sap of the roots. Results from grafts between wild-type (WT) and rms4 plants indicate that the concentration of cytokinins in the xylem sap of the roots is determined almost entirely by the genotype of the shoot. WT scions normalize the cytokinin concentration in the sap of rms4 mutant roots, whereas mutant scions cause WT roots to behave like those of self-grafted mutant plants. The mechanism whereby rms4 shoots of pea cause a down-regulation in the export of cytokinins from the roots is unknown at this time. However, our data provide evidence that the shoot transmits a signal to the roots and thereby controls processes involved in the regulation of cytokinin biosynthesis in the root.  相似文献   

18.
Two genotypes (cv. Smaragd and line DP1059) of Pisum sativum with different susceptibility to Fusarium oxysporum and F. solani and influence of pathogenesis on enzyme activities were studied. The increase of activity of studied enzymes was mostly observed in both roots and shoots during pathogenesis. Only activity of acid phosphatase decreased in the root and increased in shoots. The correlation between enzyme activity change and susceptibility of pea cultivars to F. oxysporum or F. solani was observed.  相似文献   

19.
Root pruning of wheat seedlings resulted in 2–10 foldincrease in the concentration of IAA in roots ascompared to the control level, which might beresponsible for the observed initiation of lateralroot growth. Cytokinin concentration in xylem sap wasdecreased initially by 60% by pruning in accordancewith the reduction in the hormone-producing organ.Nevertheless cytokinin content in the shoots remainedhigh, which might be due to a decrease in cytokinindecay registered in vitro. A subsequent increasein the export of cytokinins from roots up to thecontrol level demonstrated an elevated ability of thepruned organ to synthesise the hormone. The highcytokinin content in the shoots correlated with theability of the plants to maintain their transpirationand growth at the level of intact plants. Both IAA andcytokinins seem to be important in the restoration ofthe shoot/root balance disturbed by root pruning.  相似文献   

20.
The effect of various hormonal combinations on callus formation and regeneration of shoot and root from leaf derived callus of Acanthophyllum sordidum Bunge ex Boiss. has been studied. Proteins and activity of antioxidant enzymes were also evaluated during shoot and root organogenesis from callus. Calli were induced from leaf explants excised from 30-d-old seedlings grown on Murashige and Skoog medium containing 4.52 μM 2,4-dichlorophenoxyacetic acid + 4.65 μM kinetin. Maximum growth of calli and the most efficient regeneration of shoots and roots occurred with 2.69 μM 1-naphthalene acetic acid (NAA), 2.69 μM NAA + 4.54 μM thidiazuron and 2.46 μM indole-3-butyric acid. Protein content decreased in calli and increased significantly during regeneration of shoots from callus. Superoxide dismutase activity decreased in calli comparing to that of seedlings, then increased in regenerated shoots and roots. High catalase activity was detected in seedlings and regenerated shoots, whereas high peroxidase activity was observed in calli and regenerated roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号