首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim HJ  Kim HM  Kim CS  Jeong CS  Choi HS  Kawada T  Kim BS  Yu R 《FEBS letters》2011,585(14):2285-2290
HVEM is a member of the TNF receptor superfamily that plays a role in the development of various inflammatory diseases. In this study, we show that HVEM deficiency attenuates adipose tissue inflammatory responses and glucose intolerance in diet-induced obesity. Feeding a high-fat diet (HFD) to HVEM-deficient mice elicited a reduction in the number of macrophages and T cells infiltrated into adipose tissue. Proinflammatory cytokine levels in the adipose tissue decreased in HFD-fed HVEM-deficient mice, while levels of the anti-inflammatory cytokine IL-10 increased. Moreover, glucose intolerance and insulin sensitivity were markedly improved in the HFD-fed HVEM-deficient mice. These findings indicate that HVEM may be a useful target for combating obesity-induced inflammatory responses and insulin resistance.  相似文献   

2.
Herpes virus entry mediator (HVEM) is a member of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF14), which serves as a receptor for herpes viruses and cytokines such as lymphotoxin‐α (LT‐α) and LIGHT (lymphotoxin‐like inducible protein that competes with glycoprotein D for herpes virus entry on T cells). We aimed to explore the associations of HVEM with human obesity. HVEM gene expression and protein levels were studied in total adipose tissue and in their fractions (isolated adipocytes and stromovascular cells (SVCs)) obtained from 81 subjects during elective surgical procedures. HVEM ?241GA and ?14AG gene polymorphisms were also studied and associated with obesity measures in 840 subjects. Visceral adipose tissue had significantly higher expression of HVEM than subcutaneous adipose tissue (P < 0.0001). Obese patients had significantly higher subcutaneous HVEM gene expression (P = 0.03) and protein levels (P = 0.01) than lean subjects. HVEM gene expression and protein levels were found in both isolated adipocytes and SVCs. These findings were confirmed in primary cultures from human preadipocytes, in which a significant increase in HVEM was observed during the differentiation process. HVEM ?241GA and ?14AG gene polymorphisms were associated with obesity, diastolic pressure, several inflammatory parameters (C‐reactive protein and interleukin 18 (IL‐18)), and circulating LIGHT concentrations. A sample of men with the G241A gene polymorphism also showed an increased serum titer of IgG antiherpes virus 1. These results provide evidences of an existing relationship between HVEM and obesity, which suggest that this TNF superfamily receptor could be involved in the pathogenesis of obesity and inflammation‐related activity.  相似文献   

3.
Obesity leads to a proinflammatory state with immune responses that include infiltration of adipose tissue with macrophages. These macrophages are believed to alter insulin sensitivity in adipocytes, but the mechanisms that underlie this effect have not been characterized. We have explored the interaction between macrophages and adipocytes in the context of both indirect and direct coculture. Macrophage-secreted factors blocked insulin action in adipocytes via downregulation of GLUT4 and IRS-1, leading to a decrease in Akt phosphorylation and impaired insulin-stimulated GLUT4 translocation to the plasma membrane. GLUT1 was upregulated with a concomitant increase in basal glucose uptake. These changes recapitulate those seen in adipose tissue from insulin-resistant humans and animal models. TNF-alpha-neutralizing antibodies partially reversed the insulin resistance produced by macrophage-conditioned media. Peritoneal macrophages and macrophage-enriched stromal vascular cells from adipose tissue also attenuated responsiveness to insulin in a manner correlating with inflammatory cytokine secretion. Adipose tissue macrophages from obese mice have an F4/80(+)CD11b(+)CD68(+)CD14(-) phenotype and form long cellular extensions in culture. Peritoneal macrophages take on similar characteristics in direct coculture with adipocytes and induce proinflammatory cytokines, suggesting that macrophage activation state is influenced by contact with adipocytes. Thus both indirect/secreted and direct/cell contact-mediated factors derived from macrophages influence insulin sensitivity in adipocytes.  相似文献   

4.
The adipose tissue is an active endocrine organ that harbours not only mature and developing adipocytes but also a wide array of immune cells, including macrophages, a key immune cell in determining metabolic functionality. With adipose tissue expansion, M1 pro‐inflammatory macrophage infiltration increases, activates other immune cells, and affects lipid trafficking and metabolism, in part via inhibiting mitochondrial function and increasing reactive oxygen species (ROS). The pro‐inflammatory cytokines produced and released interfere with insulin signalling, while inhibiting M1 macrophage activation improves systemic insulin sensitivity. In healthy adipose tissue, M2 alternative macrophages predominate and associate with enhanced lipid handling and mitochondrial function, anti‐inflammatory cytokine production, and inhibition of ROS. The sequence of events leading to macrophage infiltration and activation in adipose tissue remains incompletely understood but lipid handling of both macrophages and adipocytes appears to play a major role.  相似文献   

5.
LIGHT is a cytokine belonging to the TNF family. This cytokine has been extensively defined in its role on T‐cell regulation and dendritic cell maturation. It also exhibits the role in liver regeneration. We recently identified its role in regulation of hematopoietic stem cell differentiation. However, the question whether this cytokine regulates mesenchymal stem cells (MSCs) proliferation and/or differentiation remains unknown. In this study, we observed that MSCs express LT‐βR but not HVEM. PCR analysis show LIGHT mRNA is undectable in MSCs. LIGHT did promote neither MSCs proliferation nor migration. However, LIGHT promoted MSCs differentiation into adipocyte which was confirmed by Oil Red O Staining Assay. Since either MSCs or adipocytes are the major cell population in bone marrow niche, we then suggest that LIGHT regulate bone marrow niche, such as MSCs differentiation. J. Cell. Biochem. 114: 346–353, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
LIGHT is a membrane-bound protein that belongs to the tumor necrosis factor (TNF) superfamily ligands. In this study, we established an effective strategy for producing a bioactive soluble form of LIGHT (sLIGHT), an extracellular region (Ile??-Val2??) of human LIGHT. Because sLIGHT was expressed as inclusion bodies in Escherichia coli, we investigated reagents that enhance the renaturation of sLIGHT from the inclusion bodies. Interestingly, L-cysteine in the denaturation buffer containing 3.5 M guanidine hydrochloride significantly improved the renaturation efficiency of sLIGHT. The effect of L-cysteine was synergistically enhanced by L-arginine in the refolding buffer. The optimal concentrations of L-cysteine and L-arginine in the denaturation and refolding buffers were 8 mM and 0.8 M, respectively. With these buffers, approximately 90 mg of sLIGHT was purified from 200 g of frozen E. coli cells. sLIGHT thus obtained significantly induced apoptosis in the WiDr human colon adenocarcinoma cell line at nanomolar concentrations, the same amount of sLIGHT that was produced by Sf9 insect cells. These results suggest that L-cysteine in the denaturation buffer enhances the renaturation of recombinant proteins from inclusion bodies in E. coli.  相似文献   

8.
Tumor necrosis factor (TNF)/TNF receptor (TNFR) superfamily members play essential roles in the development of the different phases of the immune response. Mouse LIGHT (TNFSF14) is a type II transmembrane protein with a C-terminus extracellular TNF homology domain (THD) that assembles in homotrimers and regulates the course of the immune responses by signaling through 2 receptors, the herpes virus entry mediator (HVEM, TNFSFR14) and the lymphotoxin β receptor (LTβR, TNFSFR3). LIGHT is a membrane-bound protein transiently expressed on activated T cells, natural killer (NK) cells and immature dendritic cells that can be proteolytically cleaved by a metalloprotease and released to the extracellular milieu. The immunotherapeutic potential of LIGHT blockade was evaluated in vivo. Administration of an antagonist of LIGHT interaction with its receptors attenuated the course of graft-versus-host reaction and recapitulated the reduced cytotoxic activity of LIGHT-deficient T cells adoptively transferred into non-irradiated semiallogeneic recipients. The lack of LIGHT expression on donor T cells or blockade of LIGHT interaction with its receptors slowed down the rate of T cell proliferation and decreased the frequency of precursor alloreactive T cells, retarding T cell differentiation toward effector T cells. The blockade of LIGHT/LTβR/HVEM pathway was associated with delayed downregulation of interleukin-7Rα and delayed upregulation of inducible costimulatory molecule expression on donor alloreactive CD8 T cells that are typical features of impaired T cell differentiation. These results expose the relevance of LIGHT/LTβR/HVEM interaction for the potential therapeutic control of the allogeneic immune responses mediated by alloreactive CD8 T cells that can contribute to prolong allograft survival.  相似文献   

9.
Crohn's disease (CD) is a type of inflammatory bowel disease associated with increased Th1 cytokines and unique pathological features. However, its pathogenesis has not been fully understood. Previous studies showed that homologous to lymphotoxin, exhibits inducible expression, competes with herpesvirus glycoprotein D for HVEM on T cells (LIGHT) transgenic (Tg) mice develop autoimmunity including intestinal inflammation with a variable time course. In this study, we establish an experimental model for CD by adoptive transfer of Tg mesenteric lymph node cells into RAG(-/-) mice. The recipients of Tg lymphocytes rapidly develop a disease strikingly similar to the key pathologic features and cytokine characterization observed in CD. We demonstrate that, as a costimulatory molecule, LIGHT preferentially drives Th1 responses. LIGHT-mediated intestinal disease is dependent on both of its identified signaling receptors, lymphotoxin beta receptor and herpes virus entry mediator, because LIGHT Tg mesenteric lymph node cells do not cause intestinal inflammation when transferred into the lymphotoxin beta receptor-deficient mice, and herpes virus entry mediator on donor T cells is required for the full development of disease. Furthermore, we demonstrated that up-regulation of LIGHT is associated with active CD. These data establish a new mouse model resembling CD and suggest that up-regulation of LIGHT may be an important mediator of CD pathogenesis.  相似文献   

10.
Obesity is accompanied by the development of chronic low-grade inflammation in adipose tissue. The presence of chronic inflammatory response along with metabolically harmful factors released by adipose tissue into the circulation is associated with several metabolic complications of obesity such as type 2 diabetes mellitus or accelerated atherosclerosis. The present review is focused on macrophages and lymphocytes and their possible role in low-grade inflammation in fat. Both macrophages and lymphocytes respond to obesity-induced adipocyte hypertrophy by their migration into adipose tissue. After activation and differentiation, they contribute to the development of local inflammatory response and modulation of endocrine function of adipose tissue. Despite intensive research, the exact role of lymphocytes and macrophages within adipose tissue is only partially clarified and various data obtained by different approaches bring ambiguous information with respect to their polarization and cytokine production. Compared to immunocompetent cells, the role of adipocytes in the obesity-related adipose tissue inflammation is often underestimated despite their abundant production of factors with immunomodulatory actions such as cytokines or adipokines such as leptin, adiponektin, and others. In summary, conflicting evidence together with only partial correlation of in vitro findings with true in vivo situation due to great heterogeneity and molecular complexity of tissue environment calls for intensive research in this rapidly evolving and important area.  相似文献   

11.
The biological actions of LIGHT, a member of the tumor necrosis factor superfamily, are mediated by the interaction with lymphotoxin-beta receptor (LTbetaR) and/or herpes virus entry mediator (HVEM). Previous study demonstrated high-level expressions of LIGHT and HVEM receptors in atherosclerotic plaques. To investigate the role of LIGHT in the functioning of macrophages and vascular smooth muscle cells (VSMC) in relation to atherogenesis, we determined the effects of LIGHT on macrophage migration and VSMC proliferation. We found LIGHT through HVEM activation can induce both events. LIGHT-induced macrophage migration was associated with activation of signaling kinases, including MAPKs, PI3K/Akt, NF-kappaB, Src members, and FAK. Proliferation of VSMC was also shown relating to the activation of MAPKs, PI3K/Akt, and NF-kappaB, which consequently led to alter the expression of cell cycle regulatory molecules. Down-regulation of p21, p27, and p53, and inversely up-regulation of cyclin D and RB hyper-phosphorylation were demonstrated. In conclusion, LIGHT acts as a novel mediator for macrophage migration and VSMC proliferation, suggesting its involvement in the atherogenesis.  相似文献   

12.
Woo HM  Kang JH  Kawada T  Yoo H  Sung MK  Yu R 《Life sciences》2007,80(10):926-931
Inflammation plays a key role in obesity-related pathologies such as cardiovascular disease, type II diabetes, and several types of cancer. Obesity-induced inflammation entails the enhancement of the recruitment of macrophages into adipose tissue and the release of various proinflammatory proteins from fat tissue. Therefore, the modulation of inflammatory responses in obesity may be useful for preventing or ameliorating obesity-related pathologies. Some spice-derived components, which are naturally occurring phytochemicals, elicit antiobesity and antiinflammatory properties. In this study, we investigated whether active spice-derived components can be applied to the suppression of obesity-induced inflammatory responses. Mesenteric adipose tissue was isolated from obese mice fed a high-fat diet and cultured to prepare an adipose tissue-conditioned medium. Raw 264.7 macrophages were treated with the adipose tissue-conditioned medium with or without active spice-derived components (i.e., diallyl disulfide, allyl isothiocyanate, piperine, zingerone and curcumin). Chemotaxis assay was performed to measure the degree of macrophage migration. Macrophage activation was estimated by measuring tumor necrosis factor-alpha (TNF-alpha), nitric oxide, and monocyte chemoattractant protein-1 (MCP-1) concentrations. The active spice-derived components markedly suppressed the migration of macrophages induced by the mesenteric adipose tissue-conditioned medium in a dose-dependent manner. Among the active spice-derived components studied, allyl isothiocyanate, zingerone, and curcumin significantly inhibited the cellular production of proinflammatory mediators such as TNF-alpha and nitric oxide, and significantly inhibited the release of MCP-1 from 3T3-L1 adipocytes. Our findings suggest that the spice-derived components can suppress obesity-induced inflammatory responses by suppressing adipose tissue macrophage accumulation or activation and inhibiting MCP-1 release from adipocytes. These spice-derived components may have a potential to improve chronic inflammatory conditions in obesity.  相似文献   

13.
The TNF receptor (TNFR) family plays a central role in the development of the immune response. Here we describe the reciprocal regulation of the recently identified TNFR superfamily member herpes virus entry mediator (HVEM) (TR2) and its ligand LIGHT (TL4) on T cells following activation and the mechanism of this process. T cell activation resulted in down-regulation of HVEM and up-regulation of LIGHT, which were both more pronounced in CD8(+) than CD4(+) T lymphocytes. The analysis of HVEM and LIGHT mRNA showed an increase in the steady state level of both mRNAs following stimulation. LIGHT, which was present in cytoplasm of resting T cells, was induced both in cytoplasm and at the cell surface. For HVEM, activation resulted in cellular redistribution, with its disappearance from cell surface. HVEM down-regulation did not rely on de novo protein synthesis, in contrast to the partial dependence of LIGHT induction. Matrix metalloproteinase inhibitors did not modify HVEM expression, but did enhance LIGHT accumulation at the cell surface. However, HVEM down-regulation was partially blocked by a neutralizing mAb to LIGHT or an HVEM-Fc fusion protein during activation. As a model, we propose that following stimulation, membrane or secreted LIGHT binds to HVEM and induces receptor down-regulation. Degradation or release of LIGHT by matrix metalloproteinases then contributes to the return to baseline levels for both LIGHT and HVEM. These results reveal a self-regulating ligand/receptor system that contributes to T cell activation through the interaction of T cells with each other and probably with other cells of the immune system.  相似文献   

14.
Objective: This study was designed to examine the effect of peroxisome proliferator‐activated receptor‐α (PPAR‐α) ligands on the inflammatory changes induced by the interaction between adipocytes and macrophages in obese adipose tissue. Methods and Procedures: PPAR‐α ligands (Wy‐14,643 and fenofibrate) were added to 3T3‐L1 adipocytes, RAW264 macrophages, or co‐culture of 3T3‐L1 adipocytes and RAW264 macrophages in vitro, and monocyte chemoattractant protein‐1 (MCP‐1) and tumor necrosis factor‐α (TNF‐α) mRNA expression and secretion were examined. PPAR‐α ligands were administered to genetically obese ob/ob mice for 2 weeks. Moreover, the effect of PPAR‐α ligands was also evaluated in the adipose tissue explants and peritoneal macrophages obtained from PPAR‐α‐deficient mice. Results: In the co‐culture of 3T3‐L1 adipocytes and RAW264 macrophages, PPAR‐α ligands reduced MCP‐1 and TNF‐α mRNA expression and secretion in vitro relative to vehicle‐treated group. The anti‐inflammatory effect of Wy‐14,643 was observed in adipocytes treated with macrophage‐conditioned media or mouse recombinant TNF‐α and in macrophages treated with adipocyte‐conditioned media or palmitate. Systemic administration of PPAR‐α ligands inhibited the inflammatory changes in adipose tissue from ob/ob mice. Wy‐14,643 also exerted an anti‐inflammatory effect in the adipose tissue explants but not in peritoneal macrophages obtained from PPAR‐α‐deficient mice. Discussion: This study provides evidence for the anti‐inflammatory effect of PPAR‐α ligands in the interaction between adipocytes and macrophages in obese adipose tissue, thereby improving the dysregulation of adipocytokine production and obesity‐related metabolic syndrome.  相似文献   

15.
16.
Obesity is associated with inflammation characterized by increased infiltration of macrophages into adipose tissue. C5aR-like receptor 2 (C5L2) has been identified as a receptor for acylation-stimulating protein (ASP) and the inflammatory factor C5a, which also binds C5aR. The present study examines the effects of ligands ASP and C5a on interactions between the receptors C5L2 and C5aR in 3T3-L1 adipocytes and J774 macrophages.BRET experiments indicate that C5L2 and C5aR form homo- and heterodimers in transfected HEK 293 cells, which were stable in the presence of ligand. Cell surface receptor levels of C5L2 and C5aR increased during 3T3-L1 adipocyte differentiation; both receptors are also highly expressed in J774 macrophages. Using confocal microscopy to evaluate endogenous receptors in adipocytes following stimulation with ASP or C5a, C5L2 is internalized with increasing perinuclear colocalization with C5aR. There is little C5a-dependent colocalization in macrophages. While adipocyte-conditioned medium (ACM) increased C5L2–C5aR colocalization in macrophages, this was blocked by C5a. ASP stimulation increased Akt (Ser473) phosphorylation in both cell types; C5a induced slight Akt phosphorylation in adipocytes with less effect in macrophages. ASP, but not C5a, increased fatty acid uptake/esterification in adipocytes.C5L2–C5aR homodimerization versus heterodimerization may thus contribute to differential responses obtained following ASP vs C5a stimulation of adipocytes and macrophages, providing new insights into the complex interaction between these two cell types within adipose tissue. Studying the mechanisms involved in the differential responses of C5L2–C5aR activation based on cell type will further our understanding of inflammatory processes in obesity.  相似文献   

17.
CD160 was recently identified as a T cell coinhibitory molecule that interacts with the herpesvirus entry mediator (HVEM) on antigen-presenting cells to deliver a potent inhibitory signal to CD4+ T cells. HVEM also binds to the coinhibitory receptor BTLA (B- and T-lymphocyte attenuator) and the costimulatory receptor LIGHT (which is homologous to lymphotoxins, exhibits inducible expression, and competes with the herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes, or TNFSF14), thus regulating the CD160/BTLA/LIGHT/HVEM signaling pathway. To date, the detailed properties of the formation of these complexes, especially HVEM binding to the newly identified receptor CD160, and the relationship of CD160 with BTLA and LIGHT are still unclear. We performed N-terminal sequencing and a mass spectrometric analysis, which revealed that the extracellular domain of CD160 exists primarily in the monomeric form. The surface plasmon resonance analysis revealed that CD160 binds directly to the cysteine-rich domain 1-3 of HVEM with a similar affinity to, but slower dissociation rate than, that of BTLA. Notably, CD160 competed with BTLA for binding to HVEM; in contrast, LIGHT did not affect HVEM binding to either CD160 or BTLA. The results of a mutagenesis study of HVEM also suggest that the CD160 binding region on HVEM was slightly different from, but overlapped with, the BTLA binding site. Interestingly, an anti-CD160 antibody exhibiting antiangiogenic properties blocked CD160/HVEM binding. These results provide insight into the molecular architecture of the CD160/BTLA/LIGHT/HVEM signaling complex that regulates immune function.  相似文献   

18.
Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathways.  相似文献   

19.
ObjectiveWhite adipose tissue (WAT) is now considered a defined tissue capable of interactions with other organ systems. WAT role in elevating the level of systemic chronic inflammation suggests that alterations in this tissue as the result of disease or environmental factors may influence the development and progression of various obesity-related pathologies. This study investigated WAT cell-specific responses to an organometal compound, trimethyltin (TMT), to determine possible contribution to induced inflammation.MethodsHuman primary mature adipocytes and macrophage differentiated THP-1 cells were cultured in TMT presence and relative toxicities and different adipokine levels were determined. The inflammatory response was examined in TMT presence for primary cells from obese ob/ob mice WAT, and after TMT injection in ob/ob mice.ResultsBoth adipocytes and macrophages were resistant to cell death induced by TMT. However, adipocytes cultured in TMT presence showed increased expression of TNFα and IL-6, and modified leptin levels. In macrophage cultures, TMT also increased TNFα and IL-6, while MCP-1 and MIP-1α were decreased. In vivo, a single injection of TMT in ob/ob mice, elevated TNFα, MIP-1α and adiponectin in WAT.ConclusionsElevation of the inflammatory related products can be induced by chemical exposure in adipocytes and macrophages, as well as murine WAT. These data suggest that numerous factors, including a systemic chemical exposure, can induce an inflammatory response from the WAT. Furthermore, when characterizing both chemical-induced toxicity and the progression of the chronic inflammation associated with elevated WAT content, such responses in this target tissue should be taken into consideration.  相似文献   

20.
Herpes virus entry mediator (HVEM) is a member of the TNF receptor (TNFR) superfamily and is expressed on many immune cells, including T and B cells, NK cells, monocytes, and neutrophils. Interaction of HVEM with its ligand, LIGHT, costimulates T cells and increases the bactericidal activity of monocytes and neutrophils. The interaction recruits cytoplasmic TNFR-associated factor adaptor proteins to the intracellular domain of HVEM. This leads to NFkappaB activation as a result of IkappaBalpha degradation and/or JNK/AP-1 activation, and ultimately results in the expression of genes required for cell survival, cytokine production, or cell proliferation. In this study, we show that treatment of human monocytes with recombinant human LIGHT (rhLIGHT) induces rapid elevation of intracellular calcium concentration ([Ca(2+)](i)) in a HVEM-specific manner in parallel with TNF-alpha production, and enhances the bactericidal activities of monocytes. Immunoprecipitation and Western blotting analyses revealed phosphorylation of phospholipase Cgamma1 (PLCgamma1) but not PLCgamma2. rhLIGHT-induced Ca(2+)response was completely abolished by silencing PLCgamma1, or preincubating monocytes with PLC inhibitors, antagonists of the inositol-1,4,5-triphosphate receptor, or [Ca(2+)](i) chelators. Furthermore, these PLC/Ca(2+) inhibitors also blocked rhLIGHT-mediated IkappaBalpha degradation, generation of reactive oxygen species, TNF-alpha production and the bactericidal activities of monocytes. Our results indicate that Ca(2+)is a downstream mediator of the LIGHT/HVEM interaction in monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号