首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Das M  Ithychanda SS  Qin J  Plow EF 《PloS one》2011,6(10):e26355
Cell adhesion and migration depend on engagement of extracellular matrix ligands by integrins. Integrin activation is dynamically regulated by interactions of various cytoplasmic proteins, such as filamin and integrin activators, talin and kindlin, with the cytoplasmic tail of the integrin β subunit. Although filamin has been suggested to be an inhibitor of integrin activation, direct functional evidence for the inhibitory role of filamin is limited. Migfilin, a filamin-binding protein enriched at cell-cell and cell-extracellular matrix contact sites, can displace filamin from β1 and β3 integrins and promote integrin activation. However, its role in activation and functions of different β integrins in human vascular cells is unknown. In this study, using flow cytometry, we demonstrate that filamin inhibits β1 and αIIbβ3 integrin activation, and migfilin can overcome its inhibitory effect. Migfilin protein is widely expressed in different adherent and circulating blood cells and can regulate integrin activation in naturally-occurring vascular cells, endothelial cells and neutrophils. Migfilin can activate β1, β2 and β3 integrins and promote integrin mediated responses while migfilin depletion impairs the spreading and migration of endothelial cells. Thus, filamin can act broadly as an inhibitor and migfilin is a promoter of integrin activation.  相似文献   

2.
The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Human filamins are large actin cross-linking proteins that connect integrins to the cytoskeleton. Filamin binding to the cytoplasmic tail of β integrins has been shown to prevent integrin activation in cells, which is important for controlling cell adhesion and migration. The molecular-level mechanism for filamin binding to integrin has been unclear, however, as it was recently demonstrated that filamin undergoes intramolecular auto-inhibition of integrin binding. In this study, using steered molecular dynamics simulations, we found that mechanical force applied to filamin can expose cryptic integrin binding sites. The forces required for this are considerably lower than those for filamin immunoglobulin domain unfolding. The mechanical-force-induced unfolding of filamin and exposure of integrin binding sites occur through stable intermediates where integrin binding is possible. Accordingly, our results support filamin's role as a mechanotransducer, since force-induced conformational changes allow binding of integrin and other transmembrane and intracellular proteins. This observed force-induced conformational change can also be one of possible mechanisms involved in the regulation of integrin activation.  相似文献   

3.
Cell surface integrins are the primary receptors for cell migration on extracellular matrix, and exist in several activation states regulated in part by ectodomain conformation. The α9 integrin subunit, which pairs only with β1, has specific roles in the immune system and may regulate cell migration. Melanoma cells express abundant α9β1 integrin, and its role in cell migration was assessed. Ligands derived from Tenascin-C and ADAM12 supported α9β1 integrin-mediated cell attachment and GTP-Rac dependent migration, but not focal adhesion formation. Manganese ions induced α9β1 integrin- and Rho kinase-dependent focal adhesion and stress fibre formation, suggesting that the activation status of α9β1 integrin was altered. The effect of manganese ions in promoting focal adhesion formation was reproduced by β1 integrin activating antibody. The α9β1 integrin translocated to focal adhesions, where active β1 integrin was also detected by conformation-specific antibodies. Focal adhesion assembly was commensurate with reduced cell migration. Endogenous α9β1 integrin-mediated adhesion was sensitive to the PP1 chemical inhibitor and an inhibitor of endosomal vesicle recycling, but not inhibitors of protein kinase C or the small GTPase Rho. Our results demonstrated that although α9β1 integrin can induce and localise to focal adhesions in a high activation state, its intermediate activity state normally supports cell adhesion consistent with migration.  相似文献   

4.
Cell adhesion and spreading on collagen, which are essential processes for development and wound healing in mammals, are mediated by β1 integrins and the actin and intermediate filament cytoskeletons. The mechanisms by which these separate cytoskeletal systems interact to regulate β1 integrins and cell spreading are poorly defined. We previously reported that the actin cross-linking protein filamin A binds the intermediate filament protein vimentin and that these two proteins co-regulate cell spreading. Here we used deletional mutants of filamin A to define filamin A-vimentin interactions and the subsequent phosphorylation and re-distribution of vimentin during cell spreading on collagen. Imaging of fixed and live cell preparations showed that phosphorylated vimentin is translocated to the cell membrane during spreading. Knockdown of filamin A inhibited cell spreading and the phosphorylation and re-distribution of vimentin. Knockdown of filamin A and/or vimentin reduced the cell surface expression and activation of β1 integrins, as indicated by immunoblotting of plasma membrane-associated proteins and shear force assays. In vitro pull-down assays using filamin A mutants showed that both vimentin and protein kinase C? bind to repeats 1-8 of filamin A. Reconstitution of filamin-A-deficient cells with full-length filamin A or filamin A repeats 1-8 restored cell spreading, vimentin phosphorylation, and the cell surface expression of β1 integrins. We conclude that the binding of filamin A to vimentin and protein kinase Cε is an essential regulatory step for the trafficking and activation of β1 integrins and cell spreading on collagen.  相似文献   

5.
Lipid rafts are related to cell surface receptor function. Integrin is a major surface receptor protein in cell adhesion and migration on the extracellular matrix (ECM). Here, we showed that lipid rafts played a critical role in human melanoma A375 cell spreading and migration on fibronectin; an important component of the ECM that interacts with β1 integrin. We found that the disruption of lipid rafts did not markedly inhibit the expression and activation of β1 integrin. By coimmunoprecipitation and mass spectrometry, we investigated the influence of lipid rafts on the β1 integrin complex and identified nucleolin as a potential lipid-raft-dependent β1-integrin-interacting protein. Upon confirmation of the interaction between β1 integrin and nucleolin, further studies revealed that nucleolin colocalized with β1 integrin in lipid rafts and raft disruption interrupted their association. In addition, knockdown of nucleolin markedly attenuated A375 cell spreading and migration on fibronectin. Taken together, we demonstrated that nucleolin is a critical lipid-raft-dependent β1-integrin-interacting protein in A375 cell spreading and migration on fibronectin.  相似文献   

6.
The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Filamins are large, actin-crosslinking proteins that connect multiple transmembrane and signaling proteins to the cytoskeleton. Here, we describe the high-resolution structure of an interface between filamin A and an integrin adhesion receptor. When bound, the integrin beta cytoplasmic tail forms an extended beta strand that interacts with beta strands C and D of the filamin immunoglobulin-like domain (IgFLN) 21. This interface is common to many integrins, and we suggest it is a prototype for other IgFLN domain interactions. Notably, the structurally defined filamin binding site overlaps with that of the integrin-regulator talin, and these proteins compete for binding to integrin tails, allowing integrin-filamin interactions to impact talin-dependent integrin activation. Phosphothreonine-mimicking mutations inhibit filamin, but not talin, binding, indicating that kinases may modulate this competition and provide additional means to control integrin functions.  相似文献   

7.
Integrins are transmembrane receptors for cell adhesion to the extracellular matrix. In cell migration, integrins are endocytosed from the plasma membrane or the cell surface, transported in vesicles and exocytosed actively at the cell front. In the present study, we examined the roles of VAMP3, a SNARE protein that mediates exocytosis, in cell migration and integrin trafficking. Small interfering RNA (siRNA)-induced silencing of VAMP3 inhibited chemotactic cell migration by more than 60% without affecting cell proliferation. VAMP3 silencing reduced the levels of β1 integrin at the cell surface but had no effect on total cellular β1 integrin, indicating that VAMP3 is required for trafficking of β1 integrin to the plasma membrane. Furthermore, VAMP3 silencing diminished cell adhesion to laminin but not to fibronectin or collagen. Taken together, these data suggest that VAMP3-dependent integrin trafficking is crucial in cell migration and cell adhesion to laminin.  相似文献   

8.
ARF6 GTPase is an important regulator of membrane trafficking and actin-based cytoskeleton dynamics active at the leading edge of migrating cells. The integrin family heterodimeric transmembrane proteins serve as major receptors for extracellular matrix proteins, which play essential roles in cell adhesion and migration. Our recent proteomic analyses of ARF6 effectors have identified a novel ARF6 GTPase-activating protein, ACAP4, essential for EGF-induced cell migration. However, molecular mechanisms underlying ACAP4-mediated cell migration have remained elusive. Here, we show that ACAP4 regulates integrin β1 dynamics during EGF-stimulated cell migration by interaction with Grb2. Our biochemical study shows that EGF stimulation induces phosphorylation of tyrosine 733, which enables ACAP4 to bind Grb2. This interaction of ACAP4 with Grb2 regulates integrin β1 recycling to the plasma membrane. Importantly, knockdown of ACAP4 by siRNA or overexpression of ACAP4 decreased recycling of integrin β1 to the plasma membrane and reduced integrin-mediated cell migration. Taken together, these results suggest a novel function for ACAP4 in the regulation of cell migration through controlling integrin β1 dynamics.  相似文献   

9.
10.
Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of α5β1 integrin. VAMP2 was present on vesicles containing endocytosed β1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface α5β1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of α5β1, without altering cell surface expression of α2β1 integrin or α3β1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of α5β1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.  相似文献   

11.
Cell adhesion, motility, and invasion are regulated by the ligand-binding activity of integrin receptors, transmembrane proteins that bind to the extracellular matrix. Integrins whose conformation allows for ligand binding and appropriate functional activity are said to be in an active state. Integrin activation and subsequent ligand binding are dynamically regulated by the association of cytoplasmic proteins with integrin intracellular domains. In this study, we evaluated the role of EGF in the regulation of the activation state of the α5β1 integrin receptor for fibronectin. The addition of EGF to either A431 squamous carcinoma cells or DiFi colon cancer cells resulted in loss of α5β1-dependent adhesion to fibronectin but no loss of integrin from the cell surface. EGF activated the EGF receptor/ERK/p90RSK and Rho/Rho kinase signaling pathways. Blocking either pathway inhibited EGF-mediated loss of adhesion, suggesting that they work in parallel to regulate integrin function. EGF treatment also resulted in phosphorylation of filamin A (FLNa), which binds and inactivates β1 integrins. EGF-mediated FLNa phosphorylation was completely blocked by an inhibitor of p90RSK and partially attenuated by an inhibitor of Rho kinase, suggesting that both pathways converge on FLNa to regulate integrin function. A431 clonal cell lines expressing non-phosphorylated dominant-negative FLNa were resistant to the inhibitory effects of EGF on integrin function, whereas clonal cell lines overexpressing wild-type FLNa were more sensitive to the inhibitory effect of EGF. These data suggest that EGF-dependent inactivation of α5β1 integrin is regulated through FLNa phosphorylation and cellular contractility.  相似文献   

12.
Integrins are adhesion receptors for components of the extracellular matrix (ECMs) that regulate multiple cellular functions, such as migration, invasion, proliferation, and survival by mediating bidirectional signal transmission. Even though many proteins have been reported to associate with integrins both on and in cells, systemic analyses of the adhesome have not been carried out. In previous studies, we identified proteins associating with a membrane-type protease, MT1-MMP, using nano-flow liquid chromatography/tandem mass spectrometry (nano-LC/MS/MS) of associated proteins prepared by optimized conditions for cell lysis and purification. Since integrins were identified as MT1-MMP-associated proteins, we next applied this method to analyze integrin-associated proteins. In this study, we expressed integrin α2 fused at the C terminus to a FLAG peptide in HT1080 cells. Cells stably expressing the chimeric protein were lysed with 1% Brij-98 and affinity purified using anti-FLAG antibody. Integrin β1 co-purified with integrin α2 confirming the specificity of the purification procedure. Analysis of the purified mixture by nano-LC/MS/MS identified 70 proteins. Nineteen of these were membrane proteins, including adhesion proteins, receptors, transporters, proteinases, and ion-channel receptors, and the balance were cytoplasmic. Interestingly, eight of the proteins had previously been shown to associate with MT1-MMP. We believe the present study provides a platform to facilitate the study of the mechanisms of cell adhesion, migration, and invasion.  相似文献   

13.
Adhesive interactions play a critical role in cell biology, influencing vital processes from proliferation to cell death. Integrins regulate cell-ECM (extracellular matrix) adhesion and must associate with phosphorylating proteins such as ILK (integrin-linked kinase). Dysregulation of ILK expression is associated with anchorage-independent growth, cell survival and inhibition of apoptosis. Glucocorticoids influence differentiation and adhesion of osteoblasts and can affect bone protein synthesis. The objective of this study was to analyse the effect of DEX (dexamethasone) on the biology of osteoblasts, together with its influence on the expression of ILK and β1 integrin. For this, primary cultures of human osteoblasts were exposed to DEX at 10-9 M (physiological dose) and 10-6 M (pharmacological dose) for 24 and 48 h. Cell viability, apoptosis and cell adhesion were analysed, as well as protein expression of β1 integrin and ILK. It was observed that cell viability and adhesion were reduced in the cultures evaluated. In comparison with the control cultures, there was slightly less apoptosis in the cultures exposed to the physiological dose and considerably more apoptosis in those exposed to the pharmacological dose. In all treated cultures, protein expression of ILK was slightly higher than in the control cultures, whereas that of β1 integrin was significantly lower. Both proteins under study were co-localized at the cell periphery in all cultures. Our results suggest that DEX causes osteoblast anoikis, probably due to decreased β1 integrin expression, which might have had a direct influence upon ILK, reducing its activation and preventing it from playing its characteristic anti-apoptotic role.  相似文献   

14.
Cell adhesion and migration are complex processes that require integrin activation, the formation and dissolution of focal adhesion (FAs), and linkage of actin cytoskeleton to the FAs. The IPP (ILK, PINCH, Parvin) complex regulates FA formation via binding of the adaptor protein ILK to β1 integrin, PINCH and parvin. The signaling protein Rsu1 is linked to the complex via binding PINCH1. The role of Rsu1 and PINCH1 in adhesion and migration was examined in non-transformed mammary epithelial cells. Confocal microscopy revealed that the depletion of either Rsu1 or PINCH1 by siRNA in MCF10A cells decreased the number of focal adhesions and altered the distribution and localization of β1 integrin, vinculin, talin and paxillin without affecting the levels of FA protein expression. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. In addition, constitutive phosphorylation of actin regulatory proteins occurred in the absence of PINCH1. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function by regulating levels of PINCH1. However, while both Rsu1- or PINCH1-depleted cells retained the ability to activate adhesion signaling in response to EGF stimulation, only Rsu1 was required for EGF-induced p38 Map Kinase phosphorylation and ATF2 activation, suggesting an Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with an Rsu1 mutant that does not bind to PINCH1 failed to restore FAs or migration but did promote spreading and constitutive p38 activation. These data show that Rsu1-PINCH1 association with ILK and the IPP complex is required for regulation of adhesion and migration but that Rsu1 has a critical role in linking integrin-induced adhesion to activation of p38 Map kinase signaling and cell spreading. Moreover, it suggests that Rsu1 may regulate p38 signaling from the IPP complex affecting other functions including survival.  相似文献   

15.
S100A6 is a calcium binding protein belonging to the S100 family. In this work we examined the function of extracellular S100A6. Using mesenchymal stem cells isolated from Wharton's jelly of the umbilical cord (WJMS cells) we have shown that S100A6 is secreted by these cells, and when added to the medium, increases their adhesion and inhibits proliferation. The search for a potential target/receptor of S100A6 in the membrane fraction of WJMS cells allowed us to identify some proteins, among them integrin β1, which interacts with S100A6 in a calcium dependent manner. The interaction between S100A6 and integrin β1, was then confirmed by ELISA using purified proteins. Applying specific antibodies against integrin β1 reversed the effect on cell adhesion and proliferation observed in the presence of S100A6 which indicates that S100A6 exerts its function due to interaction with integrin β1. Since the data show the influence of extracellular S100A6 on cells isolated from Wharton's jelly, our results might help to establish molecular mechanisms leading to some pathologies characteristic for this tissue.  相似文献   

16.
betaig-h3 is an extracellular matrix protein that mediates adhesion and migration of several cell types through interaction with integrins. In the present study, we tested whether betaig-h3 mediates endothelial cell adhesion and migration, thereby regulating angiogenesis. In this study, we demonstrate that not only betaig-h3 itself but also all four fas-1 domains of betaig-h3 mediate endothelial cell adhesion and migration through interaction with the alphavbeta3 integrin. We found that the alphavbeta3 integrin-interacting motif of the four fas-1 domains of betaig-h3 is the same YH motif that we reported previously to interact with alphavbeta5 integrin. The YH peptide inhibited endothelial cell adhesion and migration in a dose-dependent manner. We demonstrate that the YH peptide has anti-angiogenic activity in vitro and in vivo using an endothelial cell tube formation assay and a Matrigel plug assay, respectively. Our results reveal that betaig-h3 bears alphavbeta3 integrin-interacting motifs that mediate endothelial cell adhesion and migration and, therefore, may regulate angiogenesis.  相似文献   

17.
Membrane-bound integrin receptors are linked to intracellular signaling pathways through focal adhesion kinase (FAK). FAK tends to colocalize with integrin receptors at focal adhesions through its C-terminal focal adhesion targeting (FAT) domain. Through recruitment and binding of intracellular proteins, FAs transduce signals between the intracellular and extracellular regions that regulate a variety of cellular processes including cell migration, proliferation, apoptosis and detachment from the ECM. The mechanism of signaling through the cell is of interest, especially the transmission of mechanical forces and subsequent transduction into biological signals. One hypothesis relates mechanotransduction to conformational changes in intracellular proteins in the force transmission pathway, connecting the extracellular matrix with the cytoskeleton through FAs. To assess this hypothesis, we performed steered molecular dynamics simulations to mechanically unfold FAT and monitor how force-induced changes in the molecular conformation of FAT affect its binding to paxillin.  相似文献   

18.
Epidermal growth factor (EGF) induced the disruption and scattering of colonies of TMK-1, a cell line derived from a human gastric carcinoma. A stimulatory action of EGF on cell migration was also observed as determined by a wound assay. However, these actions of EGF were inhibited if the cells were pretreated with dexamethasone, a synthetic glucocorticoid. Dexamethasone increased cell adhesion to collagen type IV and laminin, but not to poly-L-lysine and fibronectin. In contrast, EGF did not affect cell adhesion to these extracellular matrices whether dexamethasone was present or not. Dexamethasone enhanced the protein levels of both α1 and β1 integrin subunits, and that of the α1 β1 heterodimer. Further, flow cytometric analysis revealed that dexamethasone increased the expression of β1 and α1 integrin subunits at the cell surface, whereas EGF increased expression of β1 and α2 subunits at the cell surface. Antibodies against α1 and β1 integrin subunits inhibited the increased cell adhesion seen in the presence of dexamethasone. An immunofluorescence study indicated that dexamethasone increased the formation of focal adhesions along the entire edges of cell colonies. In contrast, EGF led to the formation of focal adhesions preferentially at the cell front, and this EGF-induced preferential formation was not observed if the cells were pretreated with dexamethasone. These results suggest that glucocorticoid increased cell adhesion to the extracellular matrix via α1 β1 integrin, and therebyantagonized EGF-induced cell migration. J. Cell. Physiol. 176:127–137, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Integrin receptors are heterodimeric transmembrane receptors with critical functions in cell adhesion and migration, cell cycle progression, differentiation, apoptosis, and phagocytosis of apoptotic cells. Integrins are activated by intracellular signaling that alter the binding affinity for extracellular ligands, so-called inside to outside signaling. A common element for integrin activation involves binding of the cytoskeletal protein talin, via its FERM domain, to a highly conserved NPxY motif in the β chain cytoplasmic tails, which is involved in long-range conformation changes to the extracellular domain that impinges on ligand affinity. When the human beta-5 (β5) integrin cDNA was expressed in αv positive, β5 and β3 negative hamster CS-1 cells, it promoted NPxY-dependent adhesion to VTN-coated surfaces, phosphorylation of FAK, and concomitantly, β5 integrin-EGFP protein was recruited into talin and paxillin-containing focal adhesions. Expression of a NPxY destabilizing β5 mutant (Y750A) abrogated adhesion and β5-Y750A-EGFP was excluded from focal adhesions at the tips of stress fibers. Surprisingly, expression of β5 Y750A integrin had a potent gain-of-function effect on apoptotic cell phagocytosis, and further, a β5-Y750A-EGFP fusion integrin readily bound MFG-E8-coated 10 μm diameter microspheres developed as apoptotic cell mimetics. The critical sequences in β5 integrin were mapped to a YEMAS motif just proximal to the NPxY motif. Our studies suggest that the phagocytic function of β5 integrin is regulated by an unconventional NPxY-talin-independent activation signal and argue for the existence of molecular switches in the β5 cytoplasmic tail for adhesion and phagocytosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号