首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tob belongs to the anti-proliferative Tob/BTG family. The level of Tob throughout the cell cycle is regulated by the SCF (Skp1/Cullin/F-box protein)Skp2 ubiquitin ligase (E3) complex. Here, we show that Coronin7 (CRN7) is also involved in Tob degradation. We identified CRN7 as a Tob-interacting molecule. A sequence containing two of the six WD motifs in the middle of CRN7 was responsible for the interaction. CRN7 enhanced the polyubiquitination of Tob in vitro, and overexpression of CRN7 promoted proteasome-dependent degradation of Tob. Furthermore, CRN7 interacted with Cullin1 and Roc1 to form a novel SCF-like E3 complex, suggesting that Tob protein is regulated by multiple ubiquitination machineries.

Structured summary

Cullin1physically interacts with CRN7: shown by anti tag coimmunoprecipitation (view interaction)Roc1physically interacts with CRN7: shown by anti tag coimmunoprecipitation (view interaction)CRN7physically interacts with Tob1: shown by anti tag coimmunoprecipitation (view interaction)CDC34physically interacts with CRN7: shown by anti tag coimmunoprecipitation (view interaction)Tob1 and CRN7colocalize: shown by fluorescence microscopy (view interaction)Elongin Bphysically interacts with CRN7: shown by anti tag coimmunoprecipitation (view interaction)Elongin Cphysically interacts with CRN7: shown by anti tag coimmunoprecipitation (view interaction)Tob1physically interacts with CRN7: shown by two hybrid (view interaction)  相似文献   

2.
The p53 tumour suppressor protein is tightly controlled by the E3 ubiquitin ligase, mouse double minute 2 (MDM2), but maintains MDM2 expression as part of a negative feedback loop. We have identified the immunophilin, 25 kDa FK506-binding protein (FKBP25), previously shown to be regulated by p53-mediated repression, as an MDM2-interacting partner. We show that FKBP25 stimulates auto-ubiquitylation and proteasomal degradation of MDM2, leading to the induction of p53. Depletion of FKBP25 by siRNA leads to increased levels of MDM2 and a corresponding reduction in p53 and p21 levels. These data are consistent with the idea that FKBP25 contributes to regulation of the p53-MDM2 negative feedback loop.

Structured summary

MINT-6823686:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q00688) by anti bait coimmunoprecipitation (MI:0006)MINT-6823707, MINT-6823722:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q62446) by pull down (MI:0096)MINT-6823775:P53 (uniprotkb:Q04637) physically interacts (MI:0218) with MDM2 (uniprotkb:Q00987) by anti bait coimmunoprecipitation (MI:0006)MINT-6823735, MINT-6823749:FKBP25 (uniprotkb:Q62446) binds (MI:0407) to MDM2 (uniprotkb:Q00987) by pull down (MI:0096)MINT-6823761:Ubiquitin (UNIPROTKB:62988)P physically interacts (MI:0218) with MDM2 (uniprotkb:Q00987) by pull down (MI:0096)MINT-6823669:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q00688) by two hybrid (MI:0018)  相似文献   

3.
Hee-Won Seo 《FEBS letters》2009,583(1):55-60
The interplay between hypoxia-inducible factor-1α (HIF-1α) and histone deacetylase (HDACs) have been well studied; however, the mechanism of cross-talk is unclear. Here, we investigated the roles of HDAC4 and HDAC5 in the regulation of HIF-1α function and its associated mechanisms. HDAC4 and HDAC5 enhanced transactivation by HIF-1α without stabilizing HIF-1α. HDAC4 and HDAC5 physically associated with HIF-1α through the inhibitory domain (ID) that is the binding site for factor inhibiting HIF-1 (FIH-1). In the presence of these HDACs, binding of HIF-1α to FIH-1 decreased, whereas binding to p300 increased. These results indicate that HDAC4 and HDAC5 increase the transactivation function of HIF-1α by promoting dissociation of HIF-1α from FIH-1 and association with p300.

Structured summary:

MINT-6802187:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with FIH1 (uniprotkb:Q9NWT6) by anti bait coimmunoprecipitation (MI:0006)MINT-6802058:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with HDAC4 (uniprotkb:P56524) by pull down (MI:0096)MINT-6802021:HIF1 alpha (uniprotkb:Q61221) physically interacts (MI:0218) with HDAC4 (uniprotkb:P56524) by anti bait coimmunoprecipitation (MI:0006)MINT-6802036:HIF1 alpha (uniprotkb:Q61221) physically interacts (MI:0218) with HDAC5 (uniprotkb:Q9UQL6) by anti bait coimmunoprecipitation (MI:0006)MINT-6802102:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with HDAC5 (uniprotkb:Q9UQL6) by pull down (MI:0096)MINT-6802121, MINT-6802156:P300 (uniprotkb:Q09472) physically interacts (MI:0218) with HIF1 alpha (uniprotkb:Q16665) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

4.
The KRAB-type zinc-finger protein Apak (ATM and p53 associated KZNF protein) specifically suppresses p53-mediated apoptosis. Upon DNA damage, Apak is phosphorylated and inhibited by ATM kinase, resulting in p53 activation. However, how Apak is regulated in response to oncogenic stress remains unknown. Here we show that upon oncogene activation, Apak is inhibited in the tumor suppressor ARF-dependent but ATM-independent manner. Oncogene-induced ARF protein directly interacts with Apak and competes with p53 to bind to Apak, resulting in Apak dissociation from p53. Thus, Apak is differentially regulated in the ARF and ATM-dependent manner in response to oncogenic stress and DNA damage, respectively.

Structured summary

MINT-7989670: p53 (uniprotkb:P04637) binds (MI:0407) to APAK (uniprotkb:Q8TAQ5) by pull down (MI:0096)MINT-7989812: HDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti bait coimmunoprecipitation (MI:0006)MINT-7989603, MINT-7989626: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti bait coimmunoprecipitation (MI:0006)MINT-7989653: ARF (uniprotkb:Q8N726-1) binds (MI:0407) to APAK (uniprotkb:Q8TAQ5) by pull down (MI:0096)MINT-7989686, MINT-7989705, MINT-7989747:APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti tag coimmunoprecipitation (MI:0007)MINT-7989724: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0914) with ARF (uniprotkb:Q8N726-1) and p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)MINT-7989635: ARF (uniprotkb:Q8N726-1) and APAK (uniprotkb:Q8TAQ5) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7989584, MINT-7989773: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

5.
6.
Velma V  Carrero ZI  Cosman AM  Hebert MD 《FEBS letters》2010,584(23):4735-4739
Coilin is a nuclear protein that plays a role in Cajal body formation. The function of nucleoplasmic coilin is unknown. Here we report that coilin interacts with Ku70 and Ku80, which are major players in the DNA repair process. Ku proteins compete with SMN and SmB′ proteins for coilin interaction sites. The binding domain on coilin for Ku proteins cannot be localized to one discrete region, and only full-length coilin is capable of inhibiting in vitro non-homologous DNA end joining (NHEJ). Since Ku proteins do not accumulate in CBs, these findings suggest that nucleoplasmic coilin participates in the regulation of DNA repair.

Structured summary

MINT-8052983:coilin (uniprotkb:P38432) physically interacts (MI:0915) with SmB′ (uniprotkb:P14678) by pull down (MI:0096)MINT-8052941:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku70 (uniprotkb:P12956) by competition binding (MI:0405)MINT-8052765:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by pull down (MI:0096)MINT-8052971:coilin (uniprotkb:P38432) physically interacts (MI:0915) with SMN (uniprotkb:Q16637) by pull down (MI:0096)MINT-8052957:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by competition binding (MI:0405)MINT-8052894, MINT-8052908:coilin (uniprotkb:P38432) binds (MI:0407) to Ku80 (uniprotkb:P13010) by pull down (MI:0096)MINT-8052804:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by anti bait coimmunoprecipitation (MI:0006)MINT-8052925:coilin (uniprotkb:P38432) binds (MI:0407) to Ku70 (uniprotkb:P12956) by pull down (MI:0096)MINT-8052786:Ku80 (uniprotkb:P13010) physically interacts (MI:0914) with coilin (uniprotkb:P38432) and Ku70 (uniprotkb:P12956) by anti bait coimmunoprecipitation (MI:0006)MINT-8052776:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku70 (uniprotkb:P12956) by pull down (MI:0096)  相似文献   

7.
8.
Although the precise intracellular roles of S100 proteins are not fully understood, these proteins are thought to be involved in Ca2+-dependent diverse signal transduction pathways. In this report, we identified importin α as a novel target of S100A6. Importin α contains armadillo repeats, essential for binding to nuclear localization signals. Based on the results from GST pull-down assay, gel-shift assay, and co-immunoprecipitation, we demonstrated that S100A6 specifically interacts with the armadillo repeats of importin α in a Ca2+-dependent manner, resulting in inhibition of the nuclear localization signal (NLS)-importin α complex formation in vitro and in vivo. These results indicate S100A6 may regulate the nuclear transport of NLS-cargos in response to increasing concentrations of intracellular Ca2+.

Structured summary

MINT-8045244: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8044928: Importin alpha (uniprotkb:P52292) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8044941: Importin alpha (uniprotkb:P52292) and S100A6 (uniprotkb:P06703) bind (MI:0407) by electrophoretic mobility supershift assay (MI:0412)MINT-8044997: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by anti bait coimmunoprecipitation (MI:0006)MINT-8045031: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) and S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8044917: Importin alpha (uniprotkb:P52292) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045257: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8045015: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) and S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045267: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) and npm2 (uniprotkb:Q6GQG6) by pull down (MI:0096)MINT-8045316: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) by pull down (MI:0096)MINT-8045302: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with NPM1 (uniprotkb:P06748) and S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045290: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with npm2 (uniprotkb:Q6GQG6) by pull down (MI:0096)MINT-8044963, MINT-8044985: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by anti bait coimmunoprecipitation (MI:0006)MINT-8044951: Importin alpha (uniprotkb:P52292) and S100A2 (uniprotkb:P29034) bind (MI:0407) by electrophoretic mobility supershift assay (MI:0412)  相似文献   

9.
10.
mdm2 and mdmx oncogenes play essential yet non-redundant roles in synergistic inactivation of the tumor suppressor, p53. While Mdm2 inhibits p53 activity mainly by augmenting its ubiquitination, the functional role of Mdmx on p53 ubiquitination remains obscure. In transfected H1299 cells, Mdmx augmented Mdm2-mediated ubiquitination of p53. In in vitro ubiquitination assays, the Mdmx/Mdm2 heteromeric complex, in comparison to the Mdm2 homomer, showed enhanced ubiquitinase activity toward p53 and the reduced auto-ubiquitination of Mdm2. Alteration of the substrate specificity via binding to Mdmx may contribute to efficient ubiquitination and inactivation of p53 by Mdm2.

Structured summary

MINT-7219995: P53 (uniprotkb:P04637) physically interacts (MI:0914) with Ubiquitin (uniprotkb:P62988) by anti bait coimmunoprecipitation (MI:0006)MINT-7220023: Ubiquitin (uniprotkb:P62988) physically interacts (MI:0914) with P53 (uniprotkb:P04637) by pull down (MI:0096)  相似文献   

11.
In this study, we identified p53 as a novel TCTP-interacting protein using TCTP as bait. Also, we determined the critical binding sites between TCTP and p53. To elucidate the functional consequence of the interaction, we developed the overexpression and inhibition system of TCTP and p53 expression. Overexpression of TCTP in lung carcinoma cells reversed p53 mediated apoptosis and inhibition of TCTP expression by small interfering RNA increased apoptosis of lung carcinoma cells. Moreover, it was observed that TCTP overexpression promotes degradation of p53. These results clearly indicate that the interaction between TCTP and p53 prevents apoptosis by destabilizing p53. Thus, TCTP acts as a negative regulator of apoptosis in lung cancer.

Structured summary

MINT-8057107, MINT-8057116: p53 (uniprotkb:P04637) physically interacts (MI:0915) with TCTP (uniprotkb:P13693) by anti bait coimmunoprecipitation (MI:0006)MINT-8057141: TCTP (uniprotkb:P13693) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by two hybrid pooling approach (MI:0398)MINT-8057126: p53 (uniprotkb:P04637) physically interacts (MI:0915) with TCTP (uniprotkb:P13693) by anti tag coimmunoprecipitation (MI:0007) MINT-8057160: TCTP (uniprotkb:P13693) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by two hybrid (MI:0018)  相似文献   

12.
ELL-associated protein 30 (EAP30) was initially characterized as a component of the Holo-ELL complex, which contains the elongation factor ELL. Both ELL and Holo-ELL stimulate RNA pol II elongation in vitro. However, ELL and not Holo-ELL inhibits RNA pol II initiation. It is not clear how these two discrete functions of ELL are regulated. Here we report that mini-chromosome maintenance 2 (MCM2) binds to EAP30 and show that MCM2 competes with ELL for binding to EAP30 thus potentially modulating the stability of Holo-ELL.

Structured summary

MINT-7277033: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with RPB1 (uniprotkb:P24928) by anti tag coimmunoprecipitation (MI:0007)MINT-7277085: EAP30 (uniprotkb:Q96H20) binds (MI:0407) to ELL (uniprotkb:P55199) by pull down (MI:0096)MINT-7277072: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with ELL (uniprotkb:P55199) by anti tag coimmunoprecipitation (MI:0007)MINT-7277100: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with ELL (uniprotkb:P55199) by competition binding (MI:0405)MINT-7277153: MCM2 (uniprotkb:P49736) binds (MI:0407) to ELL (uniprotkb:P55199) by pull down (MI:0096)MINT-7276989: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with MCM2 (uniprotkb:P49736) by pull down (MI:0096)MINT-7277005: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with RPB1 (uniprotkb:P24928) by pull down (MI:0096)MINT-7276960, MINT-7277168: MCM2 (uniprotkb:P49736) physically interacts (MI:0915) with EAP30 (uniprotkb:Q96H20) by two hybrid (MI:0018)MINT-7276971, MINT-7277121, MINT-7277137: MCM2 (uniprotkb:P49736) binds (MI:0407) to EAP30 (uniprotkb:Q96H20) by pull down (MI:0096)MINT-7277018, MINT-7277061: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with MCM2 (uniprotkb:P49736) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

13.
The small GTPase ADP-ribosylation factor 6 (ARF6) plays crucial roles in a wide variety of cell functions. To better understand the molecular mechanisms of ARF6-mediated signaling and cellular functions, we sought new ARF6-binding proteins in the mouse brain. We identified the signaling scaffold protein JNK-interacting protein 3 (JIP3), which is exclusively expressed in neurons, as a downstream effector of ARF6. Overexpression of a unique dominant negative mutant of ARF6, which was unable to interact with JIP3, and knockdown of JIP3 in mouse cortical neurons stimulated the elongation and branching of neurites. These results provide evidence that ARF6/JIP3 signaling regulates neurite morphogenesis.

Structured summary

MINT-7892698: PIP5K gamma 661 (uniprotkb:O70161) physically interacts (MI:0915) with Arf6 (uniprotkb:P62331) by anti tag coimmunoprecipitation (MI:0007)MINT-7892333, MINT-7892573, MINT-7892594, MINT-7892629, MINT-7892644, MINT-7892522, MINT-7892716: Arf6 (uniprotkb:P62331) physically interacts (MI:0915) with JLP (uniprotkb:Q58A65) by anti tag coimmunoprecipitation (MI:0007)MINT-7892509: Arf6 (uniprotkb:P62331) physically interacts (MI:0915) with JIP3 (uniprotkb:Q9ESN9) by pull down (MI:0096)MINT-7892770: Arf6 (uniprotkb:P62331) binds (MI:0407) to JIP3 (uniprotkb:Q9ESN9) by pull down (MI:0096)MINT-7892755: Arf6 (uniprotkb:P62331) binds (MI:0407) to JLP (uniprotkb:Q58A65) by pull down (MI:0096)MINT-7892289, MINT-7892314: Arf6 (uniprotkb:P62331) physically interacts (MI:0915) with JLP (uniprotkb:Q58A65) by pull down (MI:0096)MINT-7892353, MINT-7892615, MINT-7892657, MINT-7892672, MINT-7892549, MINT-7892738: Arf6 (uniprotkb:P62331) physically interacts (MI:0915) with JIP3 (uniprotkb:Q9ESN9) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

14.
S100 proteins are a subfamily of the EF-hand type calcium sensing proteins, the exact biological functions of which have not been clarified yet. In this work, we have identified Cyclophilin 40 (CyP40) and FKBP52 (called immunophilins) as novel targets of S100 proteins. These immunophilins contain a tetratricopeptide repeat (TPR) domain for Hsp90 binding. Using glutathione-S transferase pull-down assays and immunoprecipitation, we have demonstrated that S100A1 and S100A2 specifically interact with the TPR domains of FKBP52 and CyP40 in a Ca2+-dependent manner, and lead to inhibition of the CyP40-Hsp90 and FKBP52-Hsp90 interactions. These findings have suggested that the Ca2+/S100 proteins are TPR-targeting regulators of the immunophilins-Hsp90 complex formations.

Structured summary

MINT-7710442: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by competition binding (MI:0405)MINT-7710192: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A1 (uniprotkb:P35467) by pull down (MI:0096)MINT-7710412: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by competition binding (MI:0405)MINT-7710374: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-7710452: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with S100A2 (uniprotkb:P29034) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710387: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-7710279: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A1 (uniprotkb:P35467) by competition binding (MI:0405)MINT-7710224: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to Hsp90 (uniprotkb:P07900) by pull down (MI:0096)MINT-7710464: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with S100A6 (uniprotkb:P06703) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710249: Cyp40 (uniprotkb:P26882) binds (MI:0407) to Hsp90 (uniprotkb:P07900) by pull down (MI:0096)MINT-7710422: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by competition binding (MI:0405)MINT-7710348: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-7710208: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A1 (uniprotkb:P35467) by pull down (MI:0096)MINT-7710265: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A1 (uniprotkb:P35467) by competition binding (MI:0405)MINT-7710361: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-7710476: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A2 (uniprotkb:P29034) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710316: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A1 (uniprotkb:P35467) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710432: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by competition binding (MI:0405)MINT-7710488: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A6 (uniprotkb:P06703) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710329: S100A6 (uniprotkb:P14069) physically interacts (MI:0914) with FKBP52 (uniprotkb:P30416) and Cyp40 (uniprotkb:Q08752) by anti bait coimmunoprecipitation (MI:0006)MINT-7710295: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with Hsp90 (uniprotkb:P07900) and S100A1 (uniprotkb:P35467) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

15.
THOC7 and Fms-interacting protein (FMIP) are members of the THO complex that associate with the mRNA export apparatus. FMIP is a nucleocytoplasmic shuttling protein with a nuclear localization signal (NLS), whereas THOC7 does not contain a typical NLS motif. We show here that THOC7 (50-137, amino acid numbers) binds to the N-terminal portion (1-199) of FMIP directly. FMIP is detected mainly in the nucleus. In the absence of exogenous FMIP, THOC7 resides mainly in the cytoplasm, while in the presence of FMIP, THOC7 is transported into the nucleus with FMIP. Furthermore, THOC7 lacking the FMIP binding site does not co-localize with FMIP, indicating that THOC7/FMIP interaction is required for nuclear localization of THOC7.

Structured summary

MINT-6799962, MINT-6799973, MINT-6800005: THOC7 (uniprotkb:Q6I9Y2) physically interacts (MI:0218) with THOC5 (uniprotkb:Q13769) by pull down (MI:0096)MINT-6800108: FMIP (uniprotkb:Q13769) and THOC7 (uniprotkb: Q6I9Y2) co-localize (MI:0403) by fluorescence microscopy (MI:0416)MINT-6800052: FMIP (uniprotkb:Q13769) physically interacts (MI:0218) with THOC1 (uniprotkb: Q96FV9) by anti tag coimmunoprecipitation (MI:0007)MINT-6800022: THOC7 (uniprotkb:Q6I9Y2) physically interacts (MI:0218) with FMIP (uniprotkb:Q6DFL5) by pull down (MI:0096)MINT-6799989: THOC7 (uniprotkb:Q6I9Y2) binds (MI:0407) to FMIP (uniprotkb:Q13769) by pull down (MI:0096)MINT-6800071, MINT-6800089: FMIP (uniprotkb:Q13769) physically interacts (MI:0218) with THOC7 (uniprotkb:Q6I9Y2) and THOC1 (uniprotkb:Q96FV9) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

16.
17.
The presence of heterotrimeric G-proteins at epithelial tight junctions suggests that these cellular junctions are regulated by so far unknown G-protein coupled receptors. We identify here an interaction between the human somatostatin receptor 3 (hSSTR3) and the multiple PDZ protein MUPP1. MUPP1 is a tight junction scaffold protein in epithelial cells, and as a result of the interaction with MUPP1 the hSSTR3 is targeted to tight junctions. Interaction with MUPP1 enables the receptor to regulate transepithelial permeability in a pertussis toxin sensitive manner, suggesting that hSSTR3 can activate G-proteins locally at tight junctions.

Structured summary:

MINT-6800756, MINT-6800770: MUPP1 (uniprotkb:O75970) and hSSTR3 (uniprotkb:P32745) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-6800587:hSSTR3 (uniprotkb:P32745) physically interacts (MI:0218) with MUPP1 (uniprotkb:O55164) by pull down (MI:0096)MINT-6800562:hSSTR3 (uniprotkb:P32745) physically interacts (MI:0218) with MUPP1 (uniprotkb:O75970) by two hybrid (MI:0018)MINT-6800622:hSSTR3 (uniprotkb:P32745) physically interacts (MI:0218) with PIST (uniprotkb: Q9HD26), Hsp70 (uniprotkb:P08107), Maguk p55 (uniprotkb: Q8N3R9), MAGI3 (uniprotkb:Q5TCQ9), ZO-2 (uniprotkb:Q9UDY2), ZO-1 (uniprotkb:Q07157) and MUPP1 (uniprotkb:O55164) by pull down (MI:0096)MINT-6800607, MINT-6801122:hSSTR3 (uniprotkb:P32745) physically interacts (MI:0218) with MUPP1 (uniprotkb:O75970) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

18.
Nbr1, a ubiquitous kinase scaffold protein, contains a PB1, and a ubiquitin-associated (UBA) domain. We show here that the nbr1 UBA domain binds to lysine-48 and -63 linked polyubiquitin-B chains. Nbr1 also binds to the autophagic effector protein LC3-A via a novel binding site. Ubiquitin-binding, but not PB1-mediated p62/SQSTM1 interaction, is required to target nbr1 to LC3 and polyubiquitin-positive bodies. Nbr1 binds additionally to proteins implicated in ubiquitin-mediated protein turnover and vesicle trafficking: ubiquitin-specific peptidases USP8, and the endosomal transport regulator p14/Robld3. Nbr1 thus contributes to specific steps in protein turnover regulation disrupted in several hereditary human diseases.

Structured summary

MINT-7034452: USP8 (uniprotkb:P40818) physically interacts (MI:0218) with NBR1 (uniprotkb:Q14596) by pull down (MI:0096)MINT-7034438: SQSTM1 (uniprotkb:Q13501) and LC3 (uniprotkb:Q9H492) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034309: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034323: NBR1 (uniprotkb:P97432) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034233: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with USP8 (uniprotkb:P40818) by two hybrid (MI:0018)MINT-7034207: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Robld3 (uniprotkb:Q9JHS3) by two hybrid (MI:0018)MINT-7034400, MINT-7034418: NBR1 (uniprotkb:Q14596) and LC3 (uniprotkb:Q9H492) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034167: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Ubiquitin B (uniprotkb:Q78XY9) by two hybrid (MI:0018)MINT-7034470: NBR1 (uniprotkb:Q14596) and USP8 (uniprotkb:P40818) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034194: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with LC3-A (uniprotkb:Q91VR7) by two hybrid (MI:0018)MINT-7034336: SQSTM1 (uniprotkb:Q13501) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034375: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with LC3 (uniprotkb:Q9H492) by pull down (MI:0096)MINT-7034350: NBR1 (uniprotkb:Q14596) and Ubiquitin (uniprotkb:P62988) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034181: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Tmed10 (uniprotkb:Q9D1D4) by two hybrid (MI:0018)MINT-7034220: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with ube2o (uniprotkb:Q6ZPJ3) by two hybrid (MI:0018)  相似文献   

19.
Daniela Tosoni 《FEBS letters》2009,583(2):293-300
CAP (c-Cbl associated protein)/ponsin belongs to a family of adaptor proteins implicated in cell adhesion and signaling. Here we show that CAP binds to and co-localizes with the essential endocytic factor dynamin. We demonstrate that CAP promotes the formation of dynamin-decorated tubule like structures, which are also coated with actin filaments. Accordingly, we found that the expression of CAP leads to the inhibition of dynamin-mediated endocytosis and increases EGFR stability. Thus, we suggest that CAP may coordinate the function of dynamin with the regulation of the actin cytoskeleton during endocytosis.

Structured summary:

MINT-6804322: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with Cbl (uniprotkb:Q8K4S7) and dynamin 2 (uniprotkb:P39052) by pull down (MI:0096)MINT-6804285: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with FAK (uniprotkb:O35346), vinculin (uniprotkb:P85972) and dynamin 2 (uniprotkb:P39052) by pull down (MI:0096)MINT-6804245, MINT-6804259, MINT-6804272: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with dynamin 2 (uniprotkb:P39052) by pull down (MI:0096)MINT-6804344: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with dynamin 2 (uniprotkb:P50570) by anti tag coimmunoprecipitation (MI:0007)MINT-6804371: dynamin 1 (uniprotkb:P21575) physically interacts (MI:0218) with CAP (uniprotkb:O35413) by anti bait coimmunoprecipitation (MI:0006)MINT-6804446, MINT-6804464: F-actin (uniprotkb:P60709), CAP (uniprotkb:Q9BX66) and dynamin 2 (uniprotkb:P50570) colocalize (MI:0403) by fluorescence microscopy (MI:0416)  相似文献   

20.
Retrovirus replication critically depends on a dynamic interplay between retroviral and host proteins. We report on the binding of the surface subunit (glycoprotein 120 (gp120)) of the human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) to the cytoplasmic C-terminus of the voltage-gated potassium channel BEC1 (brain-specific ether-a-go-go-like channel 1), an interaction that can result in the repression of BEC’s activity and the inhibition of HIV-1 particle-release. BEC1 protein was found to be expressed in T cells and macrophages, the major target cells of HIV-1. Thus, gp120/BEC1 interaction may be involved in HIV-1 life cycle and/or pathogenesis.

Structured summary

MINT-7968695: BEC1 (uniprotkb:Q9ULD8) physically interacts (MI:0915) with gp160 (uniprotkb:P04578) by anti bait coimmunoprecipitation (MI:0006)MINT-7968714: BEC1 (uniprotkb:Q9ULD8) physically interacts (MI:0915) with gp160 (uniprotkb:P04578) by anti tag coimmunoprecipitation (MI:0007)MINT-7968675: BEC1 (uniprotkb:Q9ULD8) physically interacts (MI:0915) with gp160 (uniprotkb:P04578) by pull down (MI:0096)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号