首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Glutamate dehydrogenase from Pyrococcus horikoshii (Pho-GDH) was cloned and overexpressed in Escherichia coli. The cloned enzyme with His-tag was purified to homogeneity by affinity chromatography and shown to be a hexamer enzyme of 290+/-8 kDa (subunit mass 48 kDa). Its optimal pH and temperature were 7.6 and 90 degrees C, respectively. The purified enzyme has outstanding thermostability (the half-life for thermal inactivation at 100 degrees C was 4 h). The enzyme shows strict specificity for 2-oxoglutarate and L-glutamate and requires NAD(P)H and NADP as cofactors but it does not reveal activity on NAD as cofactor. K(m) values of the recombinant enzyme are comparable for both substrates: 0.2 mM for L-glutamate and 0.53 mM for 2-oxoglutarate. The enzyme was activated by heating at 80 degrees C for 1 h, which was accompanied by the formation of its active conformation. Circular dichroism and fluorescence spectra show that the active conformation is heat-inducible and time-dependent.  相似文献   

3.
The Ski complex composed of Ski2p, Ski3p, and Ski8p plays an essential role in the 3' to 5' cytoplasmic mRNA degradation pathway in yeast. Ski2p is a putative RNA helicase, belonging in the DExD/H-box protein families and conserved in eukarya as well as in archaea. The gene product (Ph1280p) from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 shows sequence homology with Ski2p, sharing 22.6% identical amino acids with a central region of Ski2p. In order to gain structural information about the Ski2p-like RNA helicase, we overproduced Ph1280p in Escherichia coli cells, and purified it to apparent homogeneity. Ph1280p exhibits DNA/RNA-dependent ATPase activity with an optimal temperature at approximately 90 degrees C. The crystal structure of Ph1280p has been solved at a resolution of 3.5 A using single-wavelength anomalous dispersion (SAD) and selenomethionyl (Se-Met)-substituted protein. Ph1280p comprises four subdomains; the two N-terminal subdomains (N1 and N2) fold into an RecA-like architecture with the conserved helicase motifs, while the two C-terminal subdomains (C1 and C2) fold into alpha-helical structures containing a winged helix (WH)-fold and helix-hairpin-helix (HhH)-fold, respectively. Although the structure of each of the Ph1280p subdomains can be individually superimposed on the corresponding domains in other helicases, such as the Escherichia coli DNA helicase RecQ, the relative orientation of the helicase and C-terminal subdomains in Ph1280p is significantly different from that of other helicases. This structural feature is implicated in substrate specificity for the Ski2-like helicase and would play a critical role in the 3' to 5' cytoplasmic mRNA degradation in the Ski complex.  相似文献   

4.
Archaea-specific D-family DNA polymerase forms a heterotetramer consisting of two large polymerase subunits and two small exonuclease subunits. We analyzed the structure of the N-terminal 200 amino-acid regulatory region of the small subunit by NMR and revealed that the N-terminal ∼70 amino-acid region is folded. The structure consists of a four-α-helix bundle including a short parallel β-sheet, which is similar to the N-terminal regions of the B subunits of human DNA polymerases α and ε, establishing evolutionary relationships among these archaeal and eukaryotic polymerases. We observed monomer-dimer equilibrium of this domain, which may be related to holoenzyme architecture and/or functional regulation.  相似文献   

5.
We have determined a 2.6 Å resolution crystal structure of Pfu DNA polymerase, the most commonly used high fidelity PCR enzyme, from Pyrococcus furiosus. Although the structures of Pfu and KOD1 are highly similar, the structure of Pfu elucidates the electron density of the interface between the exonuclease and thumb domains, which has not been previously observed in the KOD1 structure. The interaction of these two domains is known to coordinate the proofreading and polymerization activity of DNA polymerases, especially via H147 that is present within the loop (residues 144–158) of the exonuclease domain. In our structure of Pfu, however, E148 rather than H147 is located at better position to interact with the thumb domain. In addition, the structural analysis of Pfu and KOD1 shows that both the Y-GG/A and β-hairpin motifs of Pfu are found to differ with that of KOD1, and may explain differences in processivity. This information enables us to better understand the mechanisms of polymerization and proofreading of DNA polymerases.  相似文献   

6.
DNA ligases join single-strand breaks in double-stranded DNA, and are essential to maintain genome integrity in DNA metabolism. Here, we report the 1.8 A resolution structure of Pyrococcus furiosus DNA ligase (PfuLig), which represents the first full-length atomic view of an ATP-dependent eukaryotic-type DNA ligase. The enzyme comprises the N-terminal DNA-binding domain, the middle adenylation domain, and the C-terminal OB-fold domain. The architecture of each domain resembles those of human DNA ligase I, but the domain arrangements differ strikingly between the two enzymes. The closed conformation of the two "catalytic core" domains at the carboxyl terminus in PfuLig creates a small compartment, which holds a non-covalently bound AMP molecule. This domain rearrangement results from the "domain-connecting" role of the helical extension conserved at the C termini in archaeal and eukaryotic DNA ligases. The DNA substrate in the human open-ligase is replaced by motif VI in the Pfu closed-ligase. Both the shapes and electrostatic distributions are similar between motif VI and the DNA substrate, suggesting that motif VI in the closed state mimics the incoming substrate DNA. Two basic residues (R531 and K534) in motif VI reside within the active site pocket and interact with the phosphate group of the bound AMP. The crystallographic and functional analyses of mutant enzymes revealed that these two residues within the RxDK sequence play essential and complementary roles in ATP processing. This sequence is also conserved exclusively among the covalent nucleotidyltransferases, even including mRNA-capping enzymes with similar helical extensions at the C termini.  相似文献   

7.
The family B DNA polymerase gene of Thermococcus thioreducens, an archaeon recently isolated from the Rainbow hydrothermal vent field, was cloned and its protein product expressed, purified and characterized. The gene was found to encode a 1,311 amino acid chain including an intein sequence of 537 residues. Phylogenetic analysis revealed a predominantly vertical type of inheritance of the intein in the Thermococcales order. Primary sequence analysis of the mature protein (TthiPolB) showed significant sequence conservation among DNA polymerases in this family. The structural fold of TthiPolB was predicted against the known crystallographic structure of a family B DNA polymerase from Thermococcus gorgonarius, allowing regional domain assignments within the TthiPolB sequence. The recombinant TthiPolB was overexpressed in Escherichia coli and purified for biochemical characterization. Compared with other DNA polymerases from the Thermococcales order, TthiPolB was found to have moderate thermal stability and fidelity, and a high extension rate, consistent with an extremely low K m corresponding to the dNTP substrate. TthiPolB performed remarkably well in a wide range of PCR conditions, being faster, more stable and more accurate than many commonly used enzymes.  相似文献   

8.
Loh E  Loeb LA 《DNA Repair》2005,4(12):5921-1398
DNA polymerases of the Family A catalyze the addition of deoxynucleotides to a primer with high efficiency, processivity, and selectivity-properties that are critical to their function both in nature and in the laboratory. These polymerases tolerate many amino acid substitutions, even in regions that are evolutionarily conserved. This tolerance can be exploited to create DNA polymerases with novel properties and altered substrate specificities, using rational design and molecular evolution. These efforts have focused mainly on the Family A DNA polymerises -Taq, E. coli Pol I, and T7 - because they are widely utilized in biotechnology today. The redesign of polymerases often requires knowledge of the function of specific residues in the protein, including those located in six evolutionarily conserved regions. The most well characterized of these are motifs A and B, which regulate the fidelity of replication and the incorporation of nucleotide analogs such as dideoxynucleotides. Regions that remain to be more thoroughly characterized are motif C, which is critical for catalysis, and motifs 1, 2 and 6, all of which bind to DNA primer or template. Several recently identified mutants with abilities to incorporate nucleotides with bulky adducts have mutations that are not located within conserved regions and warrant further study. Analysis of these mutants will help advance our understanding of how DNA polymerases select bases with high fidelity.  相似文献   

9.
The molecular organization of the replication complex in archaea is similar to that in eukaryotes. Only two proteins homologous to subunits of eukaryotic replication factor C (RFC) have been detected in Pyrococcus abyssi (Pab). The genes encoding these two proteins are arranged in tandem. We cloned these two genes and co-expressed the corresponding recombinant proteins in Escherichia coli. Two inteins present in the gene encoding the small subunit (PabRFC-small) were removed during cloning. The recombinant protein complex was purified by anion-exchange and hydroxyapatite chromatography. Also, the PabRFC-small subunit could be purified, while the large subunit (PabRFC-large) alone was completely insoluble. The highly purified PabRFC complex possessed an ATPase activity, which was not enhanced by DNA. The Pab proliferating cell nuclear antigen (PCNA) activated the PabRFC complex in a DNA-dependent manner, but the PabRFC-small ATPase activity was neither DNA-dependent nor PCNA-dependent. The PabRFC complex was able to stimulate PabPCNA-dependent DNA synthesis by the Pabfamily D heterodimeric DNA polymerase. Finally, (i) the PabRFC-large fraction cross-reacted with anti-human-RFC PCNA-binding domain antibody, corroborating the conservation of the protein sequence, (ii) the human PCNA stimulated the PabRFC complex ATPase activity in a DNA-dependent way and (iii) the PabRFC complex could load human PCNA onto primed single-stranded circular DNA, suggesting that the PCNA-binding domain of RFC has been functionally conserved during evolution. In addition, ATP hydrolysis was not required either for DNA polymerase stimulation or PCNA-loading in vitro.  相似文献   

10.
Membrane-bound proteases are involved in various regulatory functions. Our previous study indicated that the N-terminal region of an open reading frame, PH1510 (residues 16-236, designated as 1510-N) from the hyperthermophilic archaeon Pyrococcus horikoshii, is a serine protease with a catalytic Ser-Lys dyad that specifically cleaves the C-terminal hydrophobic residues of a membrane protein, the stomatin-homolog PH1511. In humans, an absence of stomatin is associated with a form of hemolytic anemia known as hereditary stomatocytosis, but the function of stomatin is not fully understood. Here, we report the crystal structure of 1510-N in dimeric form. Each active site of 1510-N is rich in hydrophobic residues, which accounts for the substrate-specificity. The monomer of 1510-N shows structural similarity to one monomer of Escherichia coli ClpP, an ATP-dependent tetradecameric protease. But, their oligomeric forms are different. Major contributors to dimeric interaction in 1510-N are the alpha7 helix and beta9 strand, both of which are missing from ClpP. While the long handle region of ClpP contributes to the stacking of two heptameric rings, the corresponding L2 loop of 1510-N is disordered because the region has little interaction with other residues of the same molecule. The catalytic Ser97 of 1510-N is in almost the same location as the catalytic Ser97 of E.coli ClpP, whereas another residue, Lys138, presumably forming the catalytic dyad, is located in the disordered L2 region of 1510-N. These findings suggest that the binding of the substrate to the catalytic site of 1510-N induces conformational changes in a region that includes loop L2 so that Lys138 approaches the catalytic Ser97.  相似文献   

11.
Summary The DNA polymerase III holoenzyme is a complex, multisubunit enzyme that is responsible for the synthesis of most of the Escherichia coli chromosome. Through studies of the structure, function and regulation of this enzyme over the past decade, considerable progress has been made in the understanding of the features of a true replicative complex. The holoenzyme contains at least seven different subunits. Three of these, , and , compose the catalytic core. Apparently is the catalytic subunit and the product of the dnaE gene. Epsilon, encoded by dnaQ (mutD), is responsible for the proofreading 35 activity of the polymerase. The function of the B subunit remains to be established. The auxiliary subunits, , and , encoded by dnaN, dnaZ and dnaX, respectively, are required for the functioning of the polymerase on natural chromosomes. All of the proteins participate in increasing the processivity of the polymerase and in the ATP-dependent formation of an initiation complex. Tau causes the polymerase to dimerize, perhaps forming a structure that can coordinate leading and lagging strand synthesis at the replication fork. This dimeric complex may be asymmetric with properties consistent with the distinct requirements for leading and lagging strand synthesis.  相似文献   

12.
The catalytic core of Escherichia coli DNA polymerase III contains three tightly associated subunits (alpha, epsilon, and theta). The theta subunit is the smallest, but the least understood of the three. As a first step in a program aimed at understanding its function, the structure of the theta subunit has been determined by triple-resonance multidimensional NMR spectroscopy. Although only a small protein, theta was difficult to assign fully because approximately one-third of the protein is unstructured, and some sections of the remaining structured parts undergo intermediate intramolecular exchange. The secondary structure was deduced from the characteristic nuclear Overhauser effect patterns, the 3J(HN alpha) coupling constants and the consensus chemical shift index. The C-terminal third of the protein, which has many charged and hydrophilic amino acid residues, has no well-defined secondary structure and exists in a highly dynamic state. The N-terminal two-thirds has three helical segments (Gln10-Asp19, Glu38-Glu43, and His47-Glu54), one short extended segment (Pro34-Ala37), and a long loop (Ala20-Glu29), of which part may undergo intermediate conformational exchange. Solution of the three-dimensional structure by NMR techniques revealed that the helices fold in such a way that the surface of theta is bipolar, with one face of the protein containing most of the acidic residues and the other face containing most of the long chain basic residues. Preliminary chemical shift mapping experiments with a domain of the epsilon subunit have identified a loop region (Ala20-Glu29) in theta as the site of association with epsilon.  相似文献   

13.
DnaA protein binds specifically to a group of binding sites collectively called as DnaA boxes within the bacterial replication origin to induce local unwinding of duplex DNA. The DNA-binding domain of DnaA, domain IV, comprises the C-terminal 94 amino acid residues of the protein. We overproduced and purified a protein containing only this domain plus a methionine residue. This protein was stable as a monomer and maintained DnaA box-specific binding activity. We then analyzed its solution structure by CD spectrum and heteronuclear multi-dimensional NMR experiments. We established extensive assignments of the 1H, 13C, and 15N nuclei, and revealed by obtaining combined analyses of chemical shift index and NOE connectivities that DnaA domain IV contains six alpha-helices and no beta-sheets, consistent with results of CD analysis. Mutations known to reduce DnaA box-binding activity were specifically located in or near two of the alpha-helices. These findings indicate that the DNA-binding fold of DnaA domain IV is unique among origin-binding proteins.  相似文献   

14.
The secondary structure of DNA aptamer to Taq DNA polymerase was established as a hairpin. Both stem and loop structures of DNA ligand were shown to be involved in the interaction with Taq DNA polymerase. Moreover, the structure and sequence of DNA aptamer that was the most effective inhibitor of DNA polymerase activity were established. This crucial structure was evaluated as a GC-rich stem longer than 17 bp, and a loop consisting of 12 bases with strictly determined nucleotide sequence. It was demonstrated that nucleotide in position 23 counting from the 5"-end of DNA ligand was involved in direct contact with Taq DNA polymerase. The ability of optimized DNA aptamer TQ21-11 to form a complex with the enzyme was increased 5-fold in comparison to the initial aptamer.  相似文献   

15.
Summary Plasmid pClK1, a linear mitochondrial plasmid of Claviceps purpurea, was completely sequenced. The sequence contains two long open reading frames (ORF1, 3291 bp; ORF2, 2910 bp), and at least four smaller ORFs. The potential polypeptide derived from ORF1 shows homology to the family B type DNA polymerases. The product of ORF2 has significant homology to the mitochondrial RNA polymerase of yeast and RNA polymerases from bacteriophages. ORF1 and ORF2 show homology to URF3 and URF1 of the maize plasmids S1 and S2, respectively. No homology to any published protein sequence was found for the smaller ORFs. The origin of the terminal protein attached to the 5 ends of pClK1 remains open; several alternatives for its origin are discussed. The sequence data as a whole confirm the virus-like character of pClK1 already postulated from structural properties. Thus pClK1 together with S plasmids of maize and several other linear plasmids make up a distinct class of DNA species of plants and fungi probably derived from a common virus-like ancestor.  相似文献   

16.
Mitochondrial DNA polymerase (pol gamma) is the sole DNA polymerase responsible for replication and repair of animal mitochondrial DNA. Here, we address the molecular mechanism by which the human holoenzyme achieves high processivity in nucleotide polymerization. We have determined the crystal structure of human pol gamma-beta, the accessory subunit that binds with high affinity to the catalytic core, pol gamma-alpha, to stimulate its activity and enhance holoenzyme processivity. We find that human pol gamma-beta shares a high level of structural similarity to class IIa aminoacyl tRNA synthetases, and forms a dimer in the crystal. A human pol gamma/DNA complex model was developed using the structures of the pol gamma-beta dimer and the bacteriophage T7 DNA polymerase ternary complex, which suggests multiple regions of subunit interaction between pol gamma-beta and the human catalytic core that allow it to encircle the newly synthesized double-stranded DNA, and thereby enhance DNA binding affinity and holoenzyme processivity. Biochemical properties of a novel set of human pol gamma-beta mutants are explained by and test the model, and elucidate the role of the accessory subunit as a novel type of processivity factor in stimulating pol gamma activity and in enhancing processivity.  相似文献   

17.
18.
Nanoarchaeum equitans family B-type DNA polymerase (Neq DNA polymerase) is encoded by two separate genes, the large gene coding for the N-terminal part (Neq L) of Neq DNA polymerase and the small gene coding for the C-terminal part (Neq S), including a split mini-intein sequence. The two Neq DNA polymerase genes were cloned and expressed in Escherichia coli individually, together (for the Neq C), and as a genetically protein splicing-processed form (Neq P). The protein trans-spliced Neq C was obtained using the heating step at 80 degrees C after the co-expression of the two genes. The protein trans-splicing of the N-terminal and C-terminal parts of Neq DNA polymerase was examined in vitro using the purified Neq L and Neq S. The trans-splicing was influenced mainly by temperature, and occurred only at temperatures above 50 degrees C. The trans-splicing reaction was inhibited in the presence of zinc. Neq S has no catalytic activity and Neq L has lower 3'-->5' exonuclease activity; whereas Neq C and Neq P have polymerase and 3'-->5' exonuclease activities, indicating that both Neq L and Neq S are needed to form the active DNA polymerase that possesses higher proofreading activity. The genetically protein splicing-processed Neq P showed the same properties as the protein trans-spliced Neq C. Our results are the first evidence to show experimentally that natural protein trans-splicing occurs in an archaeal protein, a thermostable protein, and a family B-type DNA polymerase.  相似文献   

19.
We have cloned and sequenced the gene encoding the largest subunit of RNA polymerase II (RPB1) from Arabidopsis thaliana and partially sequenced genes from soybean (Glycine max). We have also determined the nucleotide sequence for a number of cDNA clones which encode the carboxyl terminal domains (CTDs) of RNA polymerase II from both soybean and Arabidopsis. The Arabidopsis RPB1 gene encodes a polypeptide of approximately 205 kDa, consists of 12 exons, and encompasses more than 8 kb. Predicted amino acid sequence shows eight regions of similarity with the largest subunit of other prokaryotic and eukaryotic RNA polymerases, as well as a highly conserved CTD unique to RNA polymerase II.The CTDs in plants, like those in most other eukaryotes, consist of tandem heptapeptide repeats with the consensus amino acid sequence PTSPSYS. The portion of RPB1 which encodes the CTD in plants differs from that of RPB1 of animals and lower eukaryotes. All the plant genes examined contain 2–3 introns within the CTD encoding regions, and at least two plant genes contain an alternatively spliced intron in the 3 untranslated region. Several clustered amino acid substitutions in the CTD are conserved in the two plant species examined, but are not found in other eukaryotes. RPB1 is encoded by a multigene family in soybean, but a single gene encodes this subunit in Arabidopsis and most other eukaryotes.  相似文献   

20.
A population of Tn5 mutagenised Rhizobium leguminosarum cells was screened for mutants affected in protein secretion by introducing a plasmid carrying the Erwinia chrysanthemi prtB gene and screening for mutants defective in secretion of the protease PrtB. One such mutant (A301) also appeared to be defective in secretion of the R. leguminosarum nodulation protein NodO. Genetic analysis showed that the defect in A301 was caused by the Tn5 insertion. However the DNA sequence adjacent to the site of Tn5 insertion had significant homology to the Escherichia coli polA gene, which encodes DNA polymerase I. The mutant A301 showed increased sensitivity to ultraviolet light, a characteristic of polA mutants of E. coli. The apparent defect in secretion by A301 was due to a large decrease in the copy number of the IncQ group replicon on which prtB and nodO were cloned and this decreased the total amounts of PrtB or NodO protein synthesised and secreted by the polA mutant. The polA mutant had a lower growth rate than the parent strain on both rich and minimal media, but there was no obvious effect of the polA mutation on the symbiosis of R. leguminosarum bv. viciae with pea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号