首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Calcium-dependent protein kinases (CDPKs), the most abundant serine/threonine kinases in plants, are found in various subcellular localizations, which suggests that this family of kinases may be involved in multiple signal transduction pathways. A complete analysis to try to understand the molecular basis of the presence of CDPKs in various localizations in the cell has not been accomplished yet. It has been suggested that myristoylation may be responsible for membrane association of CDPKs. In this study, we used a rice CDPK, OSCPK2, which has a consensus sequence for myristoylation at the N-terminus, to address this question. We expressed wild-type OSCPK2 and various mutants in different heterologous systems to investigate the factors that affect its membrane association. The results show that OSCPK2 is myristoylated and palmitoylated and targeted to the membrane fraction. Both modifications are required, myristoylation being essential for membrane localization and palmitoylation for its full association. The fact that palmitoylation is a reversible modification may provide a mechanism for regulation of the subcellular localization. OSCPK2 is the first CDPK shown to be targeted to membranes by an src homology domain 4 (SH4) located at the N-terminus of the molecule.  相似文献   

2.
Evolutionary conservation of N-terminal N-myristoylation within protein families indicates significant functional impact of this lipid posttranslational modification for function. In the MYRbase study (Maurer-Stroh et al. (2004) Genome Biology 5, R21), protein families with relevance to asymmetric cell division in animals and the group of plant calcium-dependent protein kinases (CPKs) have surfaced with many predicted myristoylated members. Here, we describe experimental in vitro verification of predicted myristoylation and explore its impact on subcellular localization for these targets in vivo. Our results confirm that, indeed, Numb isoform A, Neuralized isoforms C and D from Drosophila melanogaster and two Neuralized-like homologues from Mus musculus have the capability for N-terminal myristoylation in vitro and in vivo (in fly tissue and in mouse 3T3 cells respectively) whereas other isoforms such as Neuralized A and B have not. The latter two cases are an example of different potential of various isoforms for posttranslational modifications. Additionally, the Arabidopsis thaliana CDPKs CPK6, CPK9 and CPK13 are shown to be substrates for myristoylation in vitro, which also affects their subcellular localization (in Arabidopsis protoplasts and tobacco leaves). At the same time, CPK6 and CPK13 do not appear to be substrates of a NMT1-like enzyme; the reasons for differing substrate specificities of NMT homologues in plants are derived from the evolutionary divergence of their N-myristoyl transferase sequences. As a methodical advance, we describe a fast and very sensitive technique (compared to traditional autoradiography) for in vitro testing of myristoylation based on thin layer chromatography read-out of the incorporated radioactive myristoyl anchor with subsequent Western blotting detection for protein yield determination using the same membrane.  相似文献   

3.
Calcium-dependent protein kinases (CDPK) are a major group of calcium-stimulated kinases found in plants and some protists. Many CDPKs are membrane-associated, presumably because of lipid modifications at their amino termini. We investigated the subcellular location and myristoylation of AtCPK5, a member of the Arabidopsis CDPK family. Most AtCPK5 was associated with the plasma membrane as demonstrated by two-phase fractionation of plant microsomes and by in vivo detection of AtCPK5-GFP fusion proteins. AtCPK5 was a substrate for plant N-myristoyltransferase and myristoylation was prevented by converting the glycine at the proposed site of myristate attachment to alanine (G2A). In transgenic plants, a G2A mutation completely abolished AtCPK5 membrane association, indicating that myristoylation was essential for membrane binding. The first sixteen amino acids of AtCPK5 were sufficient to direct plasma membrane localization. In addition, differentially phosphorylated forms of AtCPK5 were detected both in planta and after expression of AtCPK5 in a cell-free plant extract. Our results demonstrate that AtCPK5 is myristoylated at its amino terminus and that myristoylation is required for membrane binding.  相似文献   

4.
5.
6.
Lee YJ  Kim DH  Kim YW  Hwang I 《The Plant cell》2001,13(10):2175-2190
Certain small outer envelope membrane proteins of chloroplasts are encoded by the nuclear genome without a cleavable N-terminal transit peptide. We investigated in vivo the targeting mechanism of AtOEP7, an Arabidopsis homolog of the small outer envelope membrane protein. AtOEP7 was expressed as a fusion protein with the green fluorescent protein (GFP) either transiently in protoplasts or stably in transgenic plants. In either case, fluorescence microscopy of transformed cells and protein gel blot analysis of fractionated proteins confirmed that the AtOEP7:GFP fusion protein was targeted to the chloroplast outer envelope membrane. In vivo targeting experiments revealed that two regions, the transmembrane domain (TMD) and its C-terminal neighboring seven-amino acid region, were necessary and sufficient for targeting to the chloroplast outer membrane. Substitution of aspartic acid or lysine residues with glycine residues or scrambling of the amino acid sequence of the seven-amino acid region caused mistargeting to the plasma membrane. Although the amino acid sequence of the TMD is not important for targeting, amino acid residues with large side chains inhibited targeting to the chloroplasts and resulted in the formation of large aggregates in the protoplasts. In addition, introduction of a proline residue within the TMD resulted in inhibition of targeting. Finally, a fusion protein, AtOEP7:NLS:GFP, was targeted efficiently to the chloroplast envelope membranes despite the presence of a nuclear localization signal. On the basis of these results, we conclude that the seven-amino acid region and the TMD are determinants for targeting to the chloroplast outer envelope membrane. The seven-amino acid region plays a critical role in AtOEP7 evading the endomembrane system and entering the chloroplast pathway, and the TMD plays critical roles in migration to the chloroplasts and/or subsequent insertion into the membrane.  相似文献   

7.
Ishitani M  Liu J  Halfter U  Kim CS  Shi W  Zhu JK 《The Plant cell》2000,12(9):1667-1678
The salt tolerance gene SOS3 (for salt overly sensitive3) of Arabidopsis is predicted to encode a calcium binding protein with an N-myristoylation signature sequence. Here, we examine the myristoylation and calcium binding properties of SOS3 and their functional significance in plant tolerance to salt. Treatment of young Arabidopsis seedlings with the myristoylation inhibitor 2-hydroxymyristic acid caused the swelling of root tips, mimicking the phenotype of the salt-hypersensitive mutant sos3-1. In vitro translation assays with reticulocyte showed that the SOS3 protein was myristoylated. Targeted mutagenesis of the N-terminal glycine-2 to alanine prevented the myristoylation of SOS3. The functional significance of SOS3 myristoylation was examined by expressing the wild-type myristoylated SOS3 and the mutated nonmyristoylated SOS3 in the sos3-1 mutant. Expression of the myristoylated but not the nonmyristoylated SOS3 complemented the salt-hypersensitive phenotype of sos3-1 plants. No significant difference in membrane association was observed between the myristoylated and nonmyristoylated SOS3. Gel mobility shift and (45)Ca(2)+ overlay assays demonstrated that SOS3 is a unique calcium binding protein and that the sos3-1 mutation substantially reduced the capacity of SOS3 to bind calcium. The resulting mutant SOS3 protein was not able to interact with the SOS2 protein kinase and was less capable of activating it. Together, these results strongly suggest that both N-myristoylation and calcium binding are required for SOS3 function in plant salt tolerance.  相似文献   

8.
Gravin, a multivalent A-kinase anchoring protein (AKAP), localizes to the cell periphery in several cell types and is postulated to target PKA and other binding partners to the plasma membrane. An N-terminal myristoylation sequence and three regions rich in basic amino acids are proposed to mediate this localization. Reports indicating that phorbol ester affects the distribution of SSeCKS, the rat orthologue of gravin, further suggest that PKC may also regulate the subcellular distribution of gravin, which in turn may affect PKA distribution. In this study, quantitative confocal microscopy of cells expressing full-length and mutant gravin-EGFP constructs lacking the proposed targeting domains revealed that either the N-myristoylation site or the polybasic regions were sufficient to target gravin to the cell periphery. Moreover, phorbol ester treatment induced redistribution of gravin-EGFP from the cell periphery to a juxtanuclear vesicular compartment, but this required the presence of the N-myristoylation site. Confocal microscopy further revealed that not only did gravin-EGFP target a PKA RII-ECFP construct to the cell periphery, but PKC activation resulted in redistribution of the gravin and PKA constructs to the same subcellular site. It is postulated that this dynamic response by gravin to PKC activity may mediate PKC dependent control of PKA activity.  相似文献   

9.
Specific recognition of the Pseudomonas syringae effector proteins AvrPto and AvrPtoB in tomato is mediated by Pto kinase resulting in induction of defense responses, including hypersensitive cell death via a signaling pathway requiring the nucleotide-binding leucine-rich repeats protein Prf. Pto is a myristoylated protein, and N-myristoylation is required for signaling. Here we demonstrated a role for N-myristoylation in controlling Pto kinase activity. A myristoylated peptide corresponding to Pto residues 2-10 significantly impaired the kinase activity of N-truncated Pto. We show that kinase inhibition was specific to the myristoylated form of the peptide and that free myristate supplied in trans was a potent suppressor of Pto kinase activity. Thus, myristate, but not Pto residues 2-10, contributes to suppression of kinase activity in vitro. Accordingly, elimination of the in vivo myristoylation potential of Pto de-repressed kinase activity. The increased potency of free myristate relative to the myristoylated N-peptide inhibitor suggested that the peptide moiety is antagonistic to repression by myristate. Suppression of related protein kinases by myristate declined with similarity to Pto, and the inhibitory activity could be attributed to hydrophobicity. We present evidence that inhibition of Pto by the myristoylated N-peptide is mediated through a previously identified surface regulatory patch. The data show a role for negative regulation of Pto by N-myristoylation, in addition to the previously demonstrated positive role, and are consistent with a model in which the acylated N terminus is sequestered in the catalytic cleft prior to release by Pto activation.  相似文献   

10.
Actin filaments and chloroplasts in guard cells play roles in stomatal function. However, detailed actin dynamics vary, and the roles that they play in chloroplast localization during stomatal movement remain to be determined. We examined the dynamics of actin filaments and chloroplast localization in transgenic tobacco expressing green fluorescent protein (GFP)-mouse talin in guard cells by time-lapse imaging. Actin filaments showed sliding, bundling and branching dynamics in moving guard cells. During stomatal movement, long filaments can be severed into small fragments, which can form longer filaments by end-joining activities. With chloroplast movement, actin filaments near chloroplasts showed severing and elongation activity in guard cells during stomatal movement. Cytochalasin B treatment abolished elongation, bundling and branching activities of actin filaments in guard cells, and these changes of actin filaments, and as a result, more chloroplasts were localized at the centre of guard cells. However, chloroplast turning to avoid high light, and sliding of actin fragments near the chloroplast, was unaffected following cytochalasin B treatment in guard cells. We suggest that the sliding dynamics of actin may play roles in chloroplast turning in guard cells. Our results indicate that the stochastic dynamics of actin filaments in guard cells regulate chloroplast localization during stomatal movement.  相似文献   

11.
Mesophyll protoplasts isolated from primary leaves of wheat seedlings were used to follow the localization of proteases and the breakdown of chloroplasts during dark-induced senescence. Protoplasts were readily obtained from leaf tissue, even after 80% of the chlorophyll and protein had been lost. Intact chloroplasts and vacuoles could be isolated from the protoplasts at all stages of senescence. All the proteolytic activity associated with the degradation of ribulose bisphosphate carboxylase in the protoplasts could be accounted for by that localized within the vacuole. Moreover, this localization was retained late into senescence. Protoplasts isolated during leaf senescence first showed a decline in photosynthesis, then a decline in ribulose bisphosphate carboxylase activity, followed by a decline in chloroplast number. There was a close correlation between the decline in chloroplast number and the loss of chlorophyll and soluble protein per protoplast, suggesting a sequential degradation of chloroplasts during senescence. Ultrastructural studies indicated a movement of chloroplasts in toward the center of the protoplasts during senescence. Thus, within senescing protoplasts, chloroplasts appeared either to move into invaginations of the vacuole or to be taken up into the vacuole.  相似文献   

12.
Chloroplasts change their intracellular distribution in response to light intensity. Previously, we isolated the chloroplast unusual positioning1 (chup1) mutant of Arabidopsis (Arabidopsis thaliana). This mutant is defective in normal chloroplast relocation movement and shows aggregation of chloroplasts at the bottom of palisade mesophyll cells. The isolated gene encodes a protein with an actin-binding motif. Here, we used biochemical analyses to determine the subcellular localization of full-length CHUP1 on the chloroplast outer envelope. A CHUP1-green fluorescent protein (GFP) fusion, which was detected at the outermost part of mesophyll cell chloroplasts, complemented the chup1 phenotype, but GFP-CHUP1, which was localized mainly in the cytosol, did not. Overexpression of the N-terminal hydrophobic region (NtHR) of CHUP1 fused with GFP (NtHR-GFP) induced a chup1-like phenotype, indicating a dominant-negative effect on chloroplast relocation movement. A similar pattern was found in chloroplast OUTER ENVELOPE PROTEIN7 (OEP7)-GFP transformants, and a protein containing OEP7 in place of NtHR complemented the mutant phenotype. Physiological analyses of transgenic Arabidopsis plants expressing truncated CHUP1 in a chup1 mutant background and cytoskeletal inhibitor experiments showed that the coiled-coil region of CHUP1 anchors chloroplasts firmly on the plasma membrane, consistent with the localization of coiled-coil GFP on the plasma membrane. Thus, CHUP1 localization on chloroplasts, with the N terminus inserted into the chloroplast outer envelope and the C terminus facing the cytosol, is essential for CHUP1 function, and the coiled-coil region of CHUP1 prevents chloroplast aggregation and participates in chloroplast relocation movement.  相似文献   

13.
Protein phosphorylation is a major mode of regulation of metabolism, gene expression and cell architecture. In chloroplasts, reversible phosphorylation of proteins is known to regulate a number of prominent processes, for instance photosynthesis, gene expression and starch metabolism. The complements of the involved chloroplast protein kinases (cpPKs) and phosphatases (cpPPs) are largely unknown, except 6 proteins (4 cpPKs and 2 cpPPs) which have been experimentally identified so far. We employed combinations of programs predicting N-terminal chloroplast transit peptides (cTPs) to identify 45 tentative cpPKs and 21 tentative cpPPs. However, test sets of 9 tentative cpPKs and 13 tentative cpPPs contain only 2 and 7 genuine cpPKs and cpPPs, respectively, based on experimental subcellular localization of their N-termini fused to the reporter protein RFP. Taken together, the set of enzymes known to be involved in the reversible phosphorylation of chloroplast proteins in A. thaliana comprises altogether now 6 cpPKs and 9 cpPPs, the function of which needs to be determined in future by functional genomics approaches. This includes the calcium-regulated PK CIPK13 which we found to be located in the chloroplast, indicating that calcium-dependent signal transduction pathways also operate in this organelle.Key Words: Arabidopsis thaliana, chloroplast, chloroplast transit peptide, protein kinase, protein phosphatase, protein phosphorylation, proteomics.  相似文献   

14.
蛋白质的亚细胞定位信息对于深入了解该蛋白质的功能具有重要意义。本文对一个预测的拟南芥叶绿体未知功能基因At4g22890 编码蛋白进行了叶绿体定位研究。我们克隆了该基因5′端长208 bp 的DNA 片段, 与绿色荧光蛋白(GFP) 基因构建重组表达载体pMON530-cTP-GFP, 经农杆菌介导转化拟南芥。转基因植株经激光共聚焦显微镜观察, GFP 荧光仅在叶绿体中观察到, 表明所克隆的DNA 序列编码的多肽能够将At4g22890 编码蛋白质引导进入叶绿体, 由此推测该蛋白质为叶绿体蛋白质。  相似文献   

15.
We generated a set of GFP-tagged chimeras between protein kinase D2 (PKD2) and protein kinase D3 (PKD3) to examine in live cells the contribution of their C-terminal region to their intracellular localization. We found that the catalytic domain of PKD2 and PKD3 can localize to the nucleus when expressed without other kinase domains. However, when the C-terminal tail of PKD2 was added to its catalytic domain, the nuclear localization of the resulting protein was inhibited. In contrast, the nuclear localization of the CD of PKD3 was not inhibited by its C-terminal tail. Furthermore, the exchange of the C-terminal tail of PKD2 and PKD3 in the full-length proteins was sufficient to exchange their intracellular localization. Collectively, these data demonstrate that the short C-terminal tail of these kinases plays a critical role in determining their cytoplasmic/nuclear localization.  相似文献   

16.
小麦叶片中叶绿体细胞分裂素结合蛋白的定位张华敏,刘愚,王美琪,沈允钢(中国科学院上海植物生理研究所,上海200032)关键词:小麦叶片细胞,CTK结合蛋白,放射自显影,胶体金自从Berridge等(1970)首次在高等植物的核糖体上发现了细胞分裂素(...  相似文献   

17.
为了探究甘蓝型油菜中钙依赖蛋白激酶(calcium dependent protein kinase, CPK)在植物对逆境响应中的作用和机制,同时为油菜品质的升级改良发掘新的基因资源,开展了对于BnaCPK6研究的分子生物学试验。首先,通过在本氏烟草中瞬时表达BnaCPK6与GFP融合蛋白来检测它的亚细胞定位情况;其次,利用双分子荧光互补(Bimolecular fluorescence complementation)试验来检测BnaCPK6与ABA信号通路中转录因子BanABF1/3/4、BnaABI5、BnaAREB3的相互作用情况。结果显示BnaCPK6具有典型的钙依赖蛋白激酶特征,N端具有潜在的棕榈酰化和豆蔻酰化位点,并且与AtCPK6在进化上有着很高的同源性。亚细胞定位的结果发现BnaCPK6主要分布于细胞膜和细胞核中。同时,双分子荧光互补试验还发现BnaCPK6与调控ABA信号转导的关键转录因子BnaABF3/4、BnaABI5以及BnaAREB3之间存在相互作用。本研究为进一步研究BnaCPK6在ABA信号通路中的作用提供了依据。  相似文献   

18.
Protein S-palmitoylation, the covalent lipid modification of the side chain of Cys residues with the 16-carbon fatty acid palmitate, is the most common acylation of proteins in eukaryotic cells. This post-translational modification provides an important mechanism for regulating protein subcellular localization, stability, trafficking, translocation to lipid rafts, aggregation, interaction with effectors and other aspects of protein function. In addition, N-terminal myristoylation and C-terminal prenylation, two well-studied post-translational modifications, frequently precede protein S-palmitoylation at a nearby spot of the polypeptide chain. Whereas N-myristoylation and prenylation are considered essentially irreversible attachments, S-palmitoylation is a tightly regulated, reversible modification. In addition, the unique reversibility of protein palmitoylation also allows proteins to rapidly shuttle between intracellular membrane compartments in a process controlled, in some cases, by the DHHC family of palmitoyl transferases. Recent cotransfection experiments using the DHHC family of protein palmitoyl transferases as well as RNA interference results have revealed that these enzymes, frequently localized to the Golgi apparatus, tightly control subcellular trafficking of acylated proteins. In this article we will give an overview of how protein palmitoylation regulates protein trafficking and subcellular localization.  相似文献   

19.
An RNA-binding protein of 28 kDa (28RNP) was previously isolated from spinach chloroplasts and found to be required for 3' end-processing of chloroplast mRNAs. The amino acid sequence of 28RNP revealed two approximately 80 amino-acid RNA-binding domains, as well as an acidic- and glycine-rich amino terminal domain. Upon analysis of the RNA-binding properties of the 'native' 28RNP in comparison to the recombinant bacterial expressed protein, differences were detected in the affinity to some chloroplastic 3' end RNAs. It was suggested that post-translational modification can modulate the affinity of the 28RNP in the chloroplast to different RNAs. In order to determine if phosphorylation accounts for this post-translational modification, we examined if the 28RNP is a phosphoprotein and if it can serve as a substrate for protein kinases. It was found that the 28RNP was phosphorylated when intact chloroplasts were metabolically labeled with [32P] orthophosphate, and that recombinant 28RNP served as an excellent substrate in vitro for protein kinase isolated from spinach chloroplasts or recombinant alpha subunit of maize casein kinase II. The 28RNP was apparently phosphorylated at one site located in the acidic domain at the N-terminus of the protein. Site-directed mutagenesis of the serines in that region revealed that the phosphorylation of the protein was eliminated when serine number 22 from the N-terminus was changed to tryptophan. RNA-binding analysis of the phosphorylated 28RNP revealed that the affinity of the phosphorylated protein was reduced approximately 3-4-fold in comparison to the non-phosphorylated protein. Therefore, phosphorylation of the 28RNP modulates its affinity to RNA and may play a significant role in its biological function in the chloroplast.  相似文献   

20.
Chloroplast precursor proteins encoded in the nucleus depend on their targeting sequences for delivery to chloroplasts. There exist different routes to the chloroplast outer envelope, but a common theme is the involvement of molecular chaperones. Hsp90 (heat-shock protein 90) delivers precursors via its receptor Toc64, which transfers precursors to the core translocase in the outer envelope. In the present paper, we identify an uncharacterized protein in Arabidopsis thaliana OEP61 which shares common features with Toc64, and potentially provides an alternative route to the chloroplasts. Sequence analysis indicates that OEP61 possesses a clamp-type TPR (tetratricopeptide repeat) domain capable of binding molecular chaperones, and a C-terminal TMD (transmembrane domain). Phylogenetic comparisons show sequence similarities between the TPR domain of OEP61 and those of the Toc64 family. Expression of mRNA and protein was detected in all plant tissues, and localization at the chloroplast outer envelope was demonstrated by a combination of microscopy and in vitro import assays. Binding assays show that OEP61 interacts specifically with Hsp70 (heat-shock protein 70) via its TPR clamp domain. Furthermore, OEP61 selectively recognizes chloroplast precursors via their targeting sequences, and a soluble form of OEP61 inhibits chloroplast targeting. We therefore propose that OEP61 is a novel chaperone receptor at the chloroplast outer envelope, mediating Hsp70-dependent protein targeting to chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号