首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L1 cell adhesion molecule (L1CAM) is aberrantly expressed in malignant tumors and plays important roles in tumor progression. Thus, L1CAM could serve as a therapeutic target and anti-L1CAM antibodies may have potential as anticancer agents. However, L1CAM is expressed in neural cells and the druggability of anti-L1AM antibody must be validated at the earliest stages of preclinical study. Here, we generated a human monoclonal antibody that is cross-reactive with mouse L1CAM and evaluated its pharmacokinetic properties and anti-tumor efficacy in rodent models. First, we selected an antibody (Ab4) that binds human and mouse L1CAM from the human naïve Fab library using phage display, then increased its affinity 45-fold through mutation of 3 residues in the complementarity-determining regions (CDRs) to generate Ab4M. Next, the affinity of Ab4M was increased 1.8-fold by yeast display of single-chain variable fragment containing randomly mutated light chain CDR3 to generate Ab417. The affinities (KD) of Ab417 for human and mouse L1CAM were 0.24 nM and 79.16 pM, respectively. Ab417 specifically bound the Ig5 domain of L1CAM and did not exhibit off-target activity, but bound to the peripheral nerves embedded in normal human tissues as expected in immunohistochemical analysis. In a pharmacokinetics study, the mean half-life of Ab417 was 114.49 h when a single dose (10 mg/kg) was intravenously injected into SD rats. Ab417 significantly inhibited tumor growth in a human cholangiocarcinoma xenograft nude mouse model and did not induce any adverse effect in in vivo studies. Thus, Ab417 may have potential as an anticancer agent.  相似文献   

2.
The crystal structure of the Fab fragment of a rat monoclonal antibody, number 192, with a very high affinity (Kd = 0.05 nM) for the main immunogenic region of the human muscle acetylcholine receptor (AChR), has been determined and refined to 2.4 A resolution by X-ray crystallographic methods. The overall structure is similar to a Fab (NC6.8) from a murine antibody, used as a search model in molecular replacement. Structural comparisons with known antibody structures showed that the conformations of the hypervariable regions H1, H2, L1, L2, L3 of Fab192 adopt the canonical structures 1, 1, 2, 1, and 1, respectively. The surface of the antigen-binding site is relatively planar, as expected for an antibody against a large protein antigen, with an accessible area of 2865 A2. Analysis of the electrostatic surface potential of the antigen-binding site shows that the bottom of the cleft formed in the center of the site appears to be negatively charged. The structure will be useful in the rational design of very high affinity humanized mutants of Fab192, appropriate for therapeutic approaches of the model autoimmune disease myasthenia gravis.  相似文献   

3.
Jel 42 is a monoclonal antibody specific for histidine-containing protein, a small phosphocarrier protein required for sugar transport in Escherichia coli. Fab fragments prepared from this antibody by papain digestion consisted of three major isoelectric forms which were separated on a chromatofocusing column. Two of these forms produced large crystals in space group P21 and unit cell dimensions a = 117.48 A, b = 66.56 A, c = 67.31 A, and beta = 118.7 degrees, with two Fab fragments per asymmetric unit. Data were collected to 3.5-A resolution. The structure of Fab Jel 42 was solved by the Molecular Replacement method (least-squares refined to R = 0.282) using the known structure of Fab HED 10 (12) as the search model; the amino acid residues of the hypervariable and elbow regions of Fab HED 10 were omitted from the starting model. A Fourier map calculated at this stage revealed electron density which corresponded to the hypervariable loops forming the antigen-binding crevice and the elbow region of Fab Jel 42. The elbow angles for the two independent Fab molecules are 159 and 167 degrees, similar to that of the Fab HED 10 search model which has an elbow angle of 162 degrees. There is no local noncrystallographic axis of symmetry relating the two molecules in the asymmetric unit.  相似文献   

4.
Human IgG2 antibodies display disulfide-mediated structural isoforms   总被引:1,自引:0,他引:1  
In this work, we present studies of the covalent structure of human IgG2 molecules. Detailed analysis showed that recombinant human IgG2 monoclonal antibody could be partially resolved into structurally distinct forms caused by multiple disulfide bond structures. In addition to the presently accepted structure for the human IgG2 subclass, we also found major structures that differ from those documented in the current literature. These novel structural isoforms are defined by the light chain constant domain (C(L)) and the heavy chain C(H)1 domain covalently linked via disulfide bonds to the hinge region of the molecule. Our results demonstrate the presence of three main types of structures within the human IgG2 subclass, and we have named these structures IgG2-A, -B, and -A/B. IgG2-A is the known classic structure for the IgG2 subclass defined by structurally independent Fab domains and hinge region. IgG2-B is a structure defined by a symmetrical arrangement of a (C(H)1-C(L)-hinge)(2) complex with both Fab regions covalently linked to the hinge. IgG2-A/B represents an intermediate form, defined by an asymmetrical arrangement involving one Fab arm covalently linked to the hinge through disulfide bonds. The newly discovered structural isoforms are present in native human IgG2 antibodies isolated from myeloma plasma and from normal serum. Furthermore, the isoforms are present in native human IgG2 with either kappa or lambda light chains, although the ratios differ between the light chain classes. These findings indicate that disulfide structural heterogeneity is a naturally occurring feature of antibodies belonging to the human IgG2 subclass.  相似文献   

5.
Three-dimensional structures were determined for three crystal forms of the antigen binding fragment (Fab) of anti-fluorescein antibody 4-4-20 in complex with fluorescein. These included 1) a triclinic (P1) form crystallized in 47% (v/v) 2-methyl-2,4-pentanediol (MPD); 2) a triclinic (P1) form crystallized in 16% (w/v) poly(ethylene glycol), molecular weight 3350 (PEG); and 3) a monoclinic (P21) form crystallized in 16% PEG. Solvent molecules were added to the three models and the structures were refined to their diffraction limits (1.75-A, 1.78-A, and 2.49-A resolution for the MPD, triclinic PEG, and monoclinic PEG forms, respectively). Comparisons of these structures were interesting because 4-4-20 exhibited a lower antigen-binding affinity in 47% MPD (Ka = 1.3 x 10(8) M-1) than in either 16% PEG (Ka = 2.9 x 10(9) M-1) or phosphate-buffered saline (Ka = 1.8 x 10(10) M-1). Even though the solution behavior of the antibody was significantly different in MPD and PEG, the crystal structures were remarkably similar. In all three structures, the fluorescein-combining site was an aromatic slot formed by tyrosines L32, H96, and H97 and tryptophans L96 and H33. In addition, several active site constituents formed an electrostatic network with the ligand. These included a salt link between arginine L34 and one of fluorescein's enolate oxygen atoms, a hydrogen bond between histidine L27d and the second enolic group, a hydrogen bond between tyrosine L32 and the phenylcarboxylate group, and two medium range (approximately 5 A) electrostatic interactions with lysine L50 and arginine H52. The only major difference between the triclinic MPD and PEG structures was the degree of hydration of the antigen-combining site. Three water molecules participated in the above electrostatic network in the MPD structure, while eight were involved in the PEG structure. Based on this observation, we believe that 4-4-20 exhibits a lower affinity in MPD due to the depletion of the hydration shell of the antigen-combining site.  相似文献   

6.
We have examined the reactions of a panel of nine monoclonal anti-idiotype antibodies with the surface immunoglobulin in situ on guinea pig L2C leukemic lymphocytes. Equilibrium binding constants were shown to range between 10(7) and 10(8) M-1 for univalent Fab' gamma fragments and between 10(8) and 10(9) M-1 for intact IgG. Saturation of the cell surface binding sites was achieved with 2.9 X 10(5) Fab' gamma molecules/cell and 1.2 X 10(5) IgG molecules/cell for each antibody, a result that is consistent with a bivalent mode of interaction for the IgG. Despite these overall similarities in binding characteristics antibodies showed striking differences in their ability to clear Ig from the cell surface by antigenic modulation in vitro. This suggested differences in the readiness with which the antibodies cross-linked neighboring surface Ig molecules. Such an interpretation was supported by differences in the times required to achieve bivalent binding at 0 degree C, and in the rates at which labeled antibody dissociated from the cell surface in the presence or absence of an excess of unlabeled antibody. The data are consistent with there being two functionally distinct types of anti-idiotype antibody: those that form predominantly intra-Ig bridges, with each antibody Fab being linked to an Fab on one target molecule ("monogamous" binding) and not favoring modulation; and those that form predominantly inter-Ig bridges ("bigamous" binding) and favor modulation. The nature of interaction is presumably dictated by the orientation of the particular idiotope concerned. This distinction could be of great importance in the therapeutic use of anti-idiotype to ablate B cell neoplasms.  相似文献   

7.
A monoclonal antibody raised against purified ricin B chain, 75/3B12, blocked ricin toxicity 30- to 100-fold in vitro. The 75/3B12 IgG and F(ab')2 blocked ricin binding to cell surface galactose-containing receptors. The 75/3B12 Fab bound ricin D with a Ka of 10(7) M-1, and this binding was blocked by asialofetuin, lactose, and N-acetylgalactosamine--molecules which interact with the ricin galactose-binding site--but not by fetuin, sucrose, or glucose. The 75/3B12 Fab contained no detectable carbohydrate and, according to several lines of evidence, did not bind ricin via Ig carbohydrate determinants. The monoclonal antibody appears to recognize a galactose-binding site on ricin D via the variable region of the antibody. The 75/3B12 Fab bound ricin E only 1/50 as well as ricin D and bound the Ricinus agglutinin only 1/80 as well as ricin D. The antibody specificity indicates that structural differences exist in the galactose-binding sites of the Ricinus communis lectins. Abrin and other lectins which bind galactose or N-acetylgalactosamine were not significantly bound by the monoclonal antibody. In vitro, the antibody blocked the nontarget toxicity of immunotoxins similarly to lactose. However, in vivo, unlike lactose, the 75/3B12 antibody protected mice from ricin toxicity.  相似文献   

8.
The three-dimensional crystal structure of the complex between the Fab from the monoclonal anti-lysozyme antibody D1.3 and the antigen, hen egg white lysozyme, has been refined by crystallographic techniques using x-ray intensity data to 2.5-A resolution. The antibody contacts the antigen with residues from all its complementarity determining regions. Antigen residues 18-27 and 117-125 form a discontinuous antigenic determinant making hydrogen bonds and van der Waals interactions with the antibody. Water molecules at or near the antigen-antibody interface mediate some contacts between antigen and antibody. The fine specificity of antibody D1.3, which does not bind (K alpha less than 10(5) M-1) avian lysozymes where Gln121 in the amino acid sequence is occupied by His, can be explained on the basis of the refined model.  相似文献   

9.
Myasthenia gravis is a neuromuscular disorder caused by an antibody-mediated autoimmune response to the muscle-type nicotinic acetylcholine receptor (AChR). The majority of monoclonal antibodies (mAbs) produced in rats immunized with intact AChR compete with each other for binding to an area of the alpha-subunit called the main immunogenic region (MIR). The availability of a complex between the AChR and Fab198 (Fab fragment of the anti-MIR mAb198) would help understand how the antigen and antibody interact and in designing improved antibody fragments that protect against the destructive activity of myasthenic antibodies. In the present study, we modeled the Torpedo AChR/Fab198 complex, based primarily on the recent 4A resolution structure of the Torpedo AChR. In order to computationally dock the two structures, we used the ZDOCK software. The total accessible surface area change of the complex compared to those of experimentally determined antigen-antibody complexes indicates an intermediate size contact surface. CDRs H3 and L3 seem to contribute most to the binding, while L2 seems to contribute least. These data suggest mutagenesis experiments aimed at validating the model and improving the binding affinity of Fab198 for the AChR.  相似文献   

10.
Autoantibody responses against conformational epitopes of myelin/oligodendrocyte glycoprotein (MOG) possess myelin destructive potential, as demonstrated in the marmoset model of human multiple sclerosis (MS) and in some rodent models of experimental allergic encephalomyelitis. We have previously characterized monoclonal Fab fragments specific for conformational epitopes of MOG that were derived from a combinatorial antibody library generated from a MOG-immune marmoset. In this paper, we address the molecular heterogeneity of humoral responses against MOG in this outbred model of MS by studying additional antibody clones derived from a genetically unrelated animal. We find that all MOG-specific IgGkappa Fab fragments, unrelated to genetic make-up, utilize a restricted set of variable region genes, IGHV1 and IGHV3 for the H chain and IGKV1, IGKV3, and IGKV5 for the L chain. Despite these restricting factors, diversity within these antibody repertoires can be observed, predominantly within the H-chain CDR3 regions. Our findings suggest that only a limited set of Ig genes is necessary to launch a diverse, destructive humoral immune response against a single CNS antigen in primates. These results are the first to contribute to a better understanding of how myelin-directed and potentially destructive autoantibody responses may develop in human MS.  相似文献   

11.
Immunoglobulin (Ig)-binding bacterial proteins have attracted theoretical interest for their role in molecular host-parasite interactions, and they are widely used as tools in immunology, biochemistry, medicine, and biotechnology. Protein L of the anaerobic bacterial species Peptostreptococcus magnus binds Ig light chains, whereas streptococcal protein G has affinity for the constant (Fc) region of IgG. In this report, Ig binding parts of protein L and protein G were combined to form a hybrid molecule, protein LG, which was found to bind a large majority of intact human Igs as well as Fc and Fab fragments, and Ig light chains. Binding to Ig was specific, and the affinity constants of the reactions between protein LG and human IgG, IgGFc fragments, and kappa light chains, determined by Scatchard plots, were 5.9 x 10(9), 2.2 x 10(9), and 2.0 x 10(9) M-1, respectively. The binding properties of protein LG were more complete as compared with previously described Ig-binding proteins when also tested against mouse and rat Igs. This hybrid protein thus represents a powerful tool for the binding, detection, and purification of antibodies and antibody fragments.  相似文献   

12.
Antibodies to DNA are characteristic of the autoimmune disease systemic lupus erythematosus (SLE) and they also serve as models for the study of protein-DNA recognition. Anti-DNA antibodies often play an important role in disease pathogenesis by mediating kidney damage via antibody-DNA immune complex formation. The structural underpinnings of anti-DNA antibody pathogenicity and antibody-DNA recognition, however, are not well understood, due in part to the lack of direct, experimental three-dimensional structural information on antibody-DNA complexes. To address these issues for anti-single-stranded DNA antibodies, we have determined the 2.1 A crystal structure of a recombinant Fab (DNA-1) in complex with dT5. DNA-1 was previously isolated from a bacteriophage Fab display library from the immunoglobulin repertoire of an SLE-prone mouse. The structure shows that DNA-1 binds oligo(dT) primarily by sandwiching thymine bases between Tyr side-chains, which allows the bases to make sequence-specific hydrogen bonds. The critical stacking Tyr residues are L32, L49, H100, and H100A, while His L91 and Asn L50 contribute hydrogen bonds. Comparison of the DNA-1 structure to other anti-nucleic acid Fab structures reveals a common ssDNA recognition module consisting of Tyr L32, a hydrogen bonding residue at position L91, and an aromatic side-chain from the tip of complementarity determining region H3. The structure also provides a framework for interpreting previously determined thermodynamics data, and this analysis suggests that hydrophobic desolvation might underlie the observed negative enthalpy of binding. Finally, Arg side-chains from complementarity determining region H3 appear to play a novel role in DNA-1. Rather than forming ion pairs with dT5, Arg contributes to oligo(dT) recognition by helping to maintain the structural integrity of the combining site. This result is significant because antibody pathogenicity is thought to be correlated to the Arg content of anti-DNA antibody hypervariable loops.  相似文献   

13.
Mutations in the L1 gene induce a spectrum of human neurological disorders due to abnormal development of several brain structures and fiber tracts. Among its binding partners, L1 immunoglobulin superfamily adhesion molecule (Ig CAM) associates with neuropilin-1 (NP-1) to form a semaphorin3A (Sema3A) receptor and soluble L1 converts Sema3A-induced axonal repulsion into attraction. Using L1 constructs containing missense pathological mutations, we show here that this reversion is initiated by a specific trans binding of L1 to NP-1, but not to L1 or other Ig CAMs, and leads to activation of the NO/cGMP pathway. We identified the L1-NP-1-binding site in a restricted sequence of L1 Ig domain 1, as a peptide derived from this region could reverse Sema3A repulsive effects. A pathological L1 missense mutation located in this sequence specifically disrupts both L1-NP-1 complex formation and Sema3A reversion, suggesting that the cross-talk between L1 and Sema3A might participate in human brain development.  相似文献   

14.
The refined structure of the Fab fragment of the monoclonal antibody CRIS-I (IgG2a kappa) against the leukocyte differentiation antigen CD5, determined at 1.9 A resolution with an agreement R-factor of 18.3%, reveals a variant of the canonical conformations proposed for the light chain complementarity determining region L3 (CDR-L3). This is the first Fab structure available with a kappa light chain in which the CDR-L3 lacks the key proline residue in either position 94 or 95. The conformation found could be significant for about 10% of the murine IgG molecules with kappa light chains without proline in their CDR-L3 sequences.  相似文献   

15.
Rheumatoid factors (RF) are autoantibodies that recognize epitopes in the Fc region of immunoglobulin (Ig) G and that correlate with the clinical severity of rheumatoid arthritis (RA). Here we report the X-ray crystallographic structure, at 3 A resolution, of a complex between the Fc region of human IgG1 and the Fab fragment of a monoclonal IgM RF (RF61), derived from an RA patient and with a relatively high affinity for IgG Fc. In the complex, two Fab fragments bind to each Fc at epitopes close to the C terminus, and each epitope comprises residues from both Cgamma3 domains. A central role in the unusually hydrophilic epitope is played by the side-chain of Arg355, accounting for the subclass specificity of RF61, which recognizes IgG1,-2, and -3 in preference to IgG4, in which the corresponding residue is Gln355. Compared with a previously determined complex of a lower affinity RF (RF-AN) bound to IgG4 Fc, in which only residues at the very edge of the antibody combining site were involved in binding, the epitope bound by RF61 is centered in classic fashion on the axis of the V(H):V(L) beta-barrel. The complementarity determining region-H3 loop plays a key role, forming a pocket in which Arg355 is bound by two salt-bridges. The antibody contacts also involve two somatically mutated V(H) residues, reinforcing the suggestion of a process of antigen-driven maturation and selection for IgG Fc during the generation of this RF autoantibody.  相似文献   

16.
mAb-131 is a monoclonal antibody that binds with high affinity (K alpha = 7.4 x 10(9) M-1) to the 8-residue peptide hormone angiotensin II, the major effector of the renin/angiotensin system. mAb-131 is a member of a well characterized idiotypic antibody network since it was raised as an anti-anti-idiotype of an antibody raised against angiotensin II. mAb-131 Fabs prepared with papain contain four major charge isoforms that can be separated by pH gradient elution from an anion-exchange column. Diffraction quality isomorphous crystals of two of the isoforms and of the Fab.peptide complexes have been grown. The crystals diffract to 3.5 A resolution, are tetragonal, space group P4(1) (or P4(3] with cell dimensions a = b = 78.6 A, c = 125.2 A, and have two Fab molecules per asymmetric unit. By using a different buffer, a second crystal form has been grown which diffracts to 3.3 A. It also belongs to space group P4(1) (or P4(3] but has cell dimensions of a = b = 109.6 A and c = 125.2 A. Knowledge of the three-dimensional structure of this Fab and of the peptide.Fab complex will give insight into two problems: 1) the recognition of small peptide hormones (which exist as random coils in solution) with high affinity by proteins, and 2) the nature of conservation of antibody combining sites in idiotypic networks.  相似文献   

17.
The human combinatorial antibody library Fab 1 (HuCAL-Fab 1) was generated by transferring the heavy and light chain variable regions from the previously constructed single-chain Fv library (Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., W?lle, J., Plückthun, A., and Virnek?s, B. (2000) J. Mol. Biol. 296, 57-86), diversified in both complementarity-determining regions 3 into a novel Fab display vector, yielding 2.1 x 10(10) different antibody fragments. The modularity has been retained in the Fab display and screening plasmids, ensuring rapid conversion into various antibody formats as well as antibody optimization using prebuilt maturation cassettes. HuCAL-Fab 1 was challenged against the human fibroblast growth factor receptor 3, a potential therapeutic antibody target, against which, to the best of our knowledge, no functional antibodies could be generated so far. A unique screening mode was designed utilizing recombinant functional proteins and cell lines differentially expressing fibroblast growth factor receptor isoforms diversified in expression and receptor dependence. Specific Fab fragments with subnanomolar affinities were isolated by selection without any maturation steps as determined by fluorescence flow cytometry. Some of the selected Fab fragments completely inhibit target-mediated cell proliferation, rendering them the first monoclonal antibodies against fibroblast growth factor receptors having significant function blocking activity. This study validates HuCAL-Fab 1 as a valuable source for the generation of target-specific antibodies for therapeutic applications.  相似文献   

18.
Although there is X‐ray crystallographic evidence that the interaction between major histocompatibility complex (MHC, in humans HLA) class I molecules and T cell receptors (TCR) or killer cell Ig‐like receptors (KIR) may be accompanied by considerable changes in the conformation of selected residues or even entire loops within TCR or KIR, conformational changes between receptor‐bound and ‐unbound MHC class I molecules of comparable magnitude have not been observed so far. We have previously determined the structure of the MHC class I molecule HLA‐A1 bound to a melanoma antigen‐encoding gene (MAGE)‐A1‐derived peptide in complex with a recombinant antibody fragment with TCR‐like specificity, Fab‐Hyb3. Here, we compare the X‐ray structure of HLA‐A1:MAGE‐A1 with that complexed with Fab‐Hyb3 to gain insight into structural changes of the MHC molecule that might be induced by the interaction with the antibody fragment. Apart from the expulsion of several water molecules from the interface, Fab‐Hyb3 binding results in major rearrangements (up to 5.5 Å) of heavy chain residues Arg65, Gln72, Arg145, and Lys146. Residue 65 is frequently and residues 72 and 146 are occasionally involved in TCR binding‐induced conformational changes, as revealed by a comparison with MHC class I structures in TCR‐liganded and ‐unliganded forms. On the other hand, residue 145 is subject to a reorientation following engagement of HLA‐Cw4 and KIR2DL1. Therefore, conformational changes within the HLA‐A1:MAGE‐A1:Fab‐Hyb3 complex include MHC residues that are also involved in reorientations in complexes with natural ligands, pointing to their central importance for the peptide‐dependent recognition of MHC molecules.  相似文献   

19.
Murine splenic B lymphocytes are induced to proliferate and undergo polyclonal activation in the presence of Fc fragments, AHGG, antigen-antibody complexes, and CH3 fragments derived from plasmin digestion of human Ig. The unifying feature of the polyclonal antibody response induced by these agents is that in all cases a portion of the constant region of the Ig molecule (ie, Fc region) is present. Fragments of Ig lacking the Fc piece, such as Fab and F(ab′)2 were found not to be stimulatory. In addition, a model is proposed to account for the regulatory effects of antigen-antibody complexes on an ongoing humoral immune response.  相似文献   

20.
The X-ray structure of the Fab fragment from the anti-c-myc antibody 9E10 was determined both as complex with its epitope peptide and for the free Fab. In the complex, two Fab molecules adopt an unusual head to head orientation with the epitope peptide arranged between them. In contrast, the free Fab forms a dimer with different orientation. In the Fab/peptide complex the peptide is bound to one of the two Fabs at the "back" of its extended CDR H3, in a cleft with CDR H1, thus forming a short, three-stranded antiparallel beta-sheet. The N- and C-terminal parts of the peptide are also in contact with the neighboring Fab fragment. Comparison between the CDR H3s of the two Fab molecules in complex with the peptide and those from the free Fab reveals high flexibility of this loop. This structural feature is in line with thermodynamic data from isothermic titration calorimetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号