首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background  

The distribution area of pearl millet in West and Central Africa (WCA) harbours a wide range of climatic and environmental conditions as well as diverse farmer preferences and pearl millet utilization habits which have the potential to lead to local adaptation and thereby to population structure. The objectives of our research were to (i) assess the geographical distribution of genetic diversity in pearl millet inbreds derived from landraces, (ii) assess the population structure of pearl millet from WCA, and (iii) identify those geographical parameters and environmental factors from the location at which landraces were sampled, as well as those phenotypic traits that may have affected or led to this population structure. Our study was based on a set of 145 inbred lines derived from 122 different pearl millet landraces from WCA.  相似文献   

3.
Over the past 10 years, resources have been established for the genetic analysis of pearl millet, Pennisetum glaucum (L.) R. Br., an important staple crop of the semi-arid regions of India and Africa. Among these resources are detailed genetic maps containing both homologous and heterologous restriction fragment length polymorphism (RFLP) markers, and simple sequence repeats (SSRs). Genetic maps produced in four different crosses have been integrated to develop a consensus map of 353 RFLP and 65 SSR markers. Some 85% of the markers are clustered and occupy less than a third of the total map length. This phenomenon is independent of the cross. Our data suggest that extreme localization of recombination toward the chromosome ends, resulting in gaps on the genetic map of 30 cM or more in the distal regions, is typical for pearl millet. The unequal distribution of recombination has consequences for the transfer of genes controlling important agronomic traits from donor to elite pearl millet germplasm. The paper also describes the generation of 44 SSR markers from a (CA)n-enriched small-insert genomic library. Previously, pearl millet SSRs had been generated from BAC clones, and the relative merits of both methodologies are discussed.  相似文献   

4.

Background and aims

Rice (Oryza sativa L.) and pearl millet (Pennisetum glaucum L.) biofortification breeding programs require accurate and convenient methods to identify nutrient dense genotypes. The aim of this study was to investigate energy-dispersive X-ray fluorescence spectrometry (EDXRF) for the measurement of zinc (Zn) and iron (Fe) concentration in whole grain rice and pearl millet.

Methods

Grain samples were obtained from existing biofortification breeding programs. Reference Zn and Fe concentrations obtained by inductively-coupled plasma-optical emission spectroscopy (ICP-OES) were used to calibrate the EDXRF instrument. Calibration was performed with 24 samples and separate calibrations were developed for rice and pearl millet. To validate calibrations, EDXRF analyses were conducted on an additional 40 samples of each species.

Results

EDXRF results were highly correlated with ICP-OES values for both Zn and Fe in both species (r2?=?0.79 to 0.98). EDXRF predicted Zn and Fe in rice to within 1.9 and 1.6?mg?kg?1 of ICP-OES values, and Zn and Fe in pearl millet to within 7.6 and 12.5?mg?kg?1 of ICP-OES values, at a 95% confidence level.

Conclusion

EDXRF offers a convenient, economical tool for screening Zn and Fe concentration in rice and pearl millet biofortification breeding programs.  相似文献   

5.
Pearl millet is an important component of food security in the semi-arid tropics and is assuming greater importance in the context of changing climate and increasing demand for highly nutritious food and feed. Molecular tools have been developed and applied for pearl millet on a limited scale. However, the existing tool kit needs to be strengthened further for its routine use in applied breeding programs. Here, we report enrichment of the pearl millet molecular linkage map by exploiting low-cost and high-throughput Diversity Arrays Technology (DArT) markers. Genomic representation from 95 diverse genotypes was used to develop a DArT array with circa 7,000 clones following PstI/BanII complexity reduction. This array was used to genotype a set of 24 diverse pearl millet inbreds and 574 polymorphic DArT markers were identified. The genetic relationships among the inbred lines as revealed by DArT genotyping were in complete agreement with the available pedigree data. Further, a mapping population of 140 F7 Recombinant Inbred Lines (RILs) from cross H 77/833-2 × PRLT 2/89-33 was genotyped and an improved linkage map was constructed by integrating DArT and SSR marker data. This map contains 321 loci (258 DArTs and 63 SSRs) and spans 1148 cM with an average adjacent-marker interval length of 3.7 cM. The length of individual linkage groups (LGs) ranged from 78 cM (LG 3) to 370 cM (LG 2). This better-saturated map provides improved genome coverage and will be useful for genetic analyses of important quantitative traits. This DArT platform will also permit cost-effective background selection in marker-assisted backcrossing programs as well as facilitate comparative genomics and genome organization studies once DNA sequences of polymorphic DArT clones are available.  相似文献   

6.
A monoclonal antibody, JIM 20, derived against an extensin type of hydroxyproline-rich glycoprotein (HRGP) from pea, showed high affinity for HRGP in pearl millet [Pennisetum glaucum (L.) R. Br.]. Electrophoretic separation of Tris–SDS extracted proteins from suspension cells of pearl millet revealed a range of PM-HRGP polypeptides having a glycan epitope, which reacted with JIM 20. A high molecular mass band, probably an HRGP aggregate or polymer, and a few low molecular mass polypeptides were recognized by JIM 20 during Western blot analysis. Treatment of pearl millet suspension cells with hydrogen peroxide in the presence of an endogenous peroxidase resulted in insolubilization of HRGP polypeptides with molecular weights between 45 and 33 kDa. To investigate the gene coding for an extensin type of HRGP, a fosmid-based genomic library of pearl millet having a fourfold genome coverage was constructed. A partial sequence of 378 bp of an HRGP gene was obtained by PCR amplification of pearl millet DNA with a primer pair designed from the conserved regions of monocotyledon extensin type of HRGPs. Screening the genomic library using the homologous probe developed from the 378-bp PCR product resulted in the isolation of five fosmid clones. Restriction mapping of these fosmids resulted in an 11.8-kb region around an HRGP gene in pearl millet. The newly characterized gene, PM-HRGP, had all the characteristic features of a monocotyledon extensin type of HRGP. An intron at the 3′ untranslated region of the gene was identified by cDNA cloning. Differential expression of the PM-HRGP gene was observed during compatible and incompatible interactions of pearl millet with the downy mildew pathogen Sclerospora graminicola (Sacc) Schroet. Induced expression of the gene was observed only in case of an incompatible interaction.  相似文献   

7.

Key message

Linkage analysis confirmed the association in the region of PHYC in pearl millet. The comparison of genes found in this region suggests that PHYC is the best candidate.

Abstract

Major efforts are currently underway to dissect the phenotype–genotype relationship in plants and animals using existing populations. This method exploits historical recombinations accumulated in these populations. However, linkage disequilibrium sometimes extends over a relatively long distance, particularly in genomic regions containing polymorphisms that have been targets for selection. In this case, many genes in the region could be statistically associated with the trait shaped by the selected polymorphism. Statistical analyses could help in identifying the best candidate genes into such a region where an association is found. In a previous study, we proposed that a fragment of the PHYTOCHROME C gene (PHYC) is associated with flowering time and morphological variations in pearl millet. In the present study, we first performed linkage analyses using three pearl millet F2 families to confirm the presence of a QTL in the vicinity of PHYC. We then analyzed a wider genomic region of ~100 kb around PHYC to pinpoint the gene that best explains the association with the trait in this region. A panel of 90 pearl millet inbred lines was used to assess the association. We used a Markov chain Monte Carlo approach to compare 75 markers distributed along this 100-kb region. We found the best candidate markers on the PHYC gene. Signatures of selection in this region were assessed in an independent data set and pointed to the same gene. These results foster confidence in the likely role of PHYC in phenotypic variation and encourage the development of functional studies.  相似文献   

8.
Hypersensitive response, cell death and release of hydrogen peroxide as measures of host and non‐host defense mechanisms upon inoculation with the downy mildew pathogen Sclerospora graminicola were studied histochemically at the light microscopy level. The materials consisted of coleoptile tissues of the highly susceptible (cv. HB3), highly resistant (cv. IP18293) and induced resistant pearl millet host seedlings and non‐host sorghum (cv. SGMN10/8) and cotyledon of french bean (cv. S9). Resistance up to 80% protection against the downy mildew pathogen was induced in the highly susceptible HB3 cultivar of pearl millet by treating the seeds with 2% aqueous leaf extract of Datura metel for 3 h. Time course study with the pathogen inoculated highly resistant pearl millet cultivar revealed the appearance of hypersensitive response in 20% of seedlings as necrotic spots as early as 2 h after inoculation. In contrast, a similar reaction was observed in the highly susceptible pearl millet cultivar only 8 h after inoculation with the pathogen. In induced resistant seedlings, appearance of hypersensitive response was recorded 4 h after inoculation. Delayed hypersensitive response was observed in both the non‐host species at 10 h after inoculation. Hypersensitive response in the seedlings of the highly resistant pearl millet cultivar 24 h after inoculation showed 100% hypersensitive response, which was not observed in susceptible and non‐host species, although the induced resistant seedlings showed 90% hypersensitive response after that period of time. Cell death in the tissues of the test seedlings was also observed to change with time. Statistical analysis revealed that the tissues of highly resistant pearl millet seedlings required 2.9 h to attain 50% cell death. Tissues of induced resistant and highly susceptible pearl millet seedlings required 4.65 and 6.50 h respectively. In non‐hosts, 50% cell death was not recorded. Quantification of hydrogen peroxide in the tissue periplasmic spaces of the test seedlings revealed 2.94 h as the time required for 50% hydrogen peroxide accumulation in the tissues of highly resistant pearl millet seedlings. Tissues of induced resistant and highly susceptible pearl millet seedlings needed 3.76 and 5.5 h respectively. Fifty percent hydrogen peroxide localisation in non‐hosts could not be recorded. These results suggested the involvement of hydrogen peroxide, cell death and hypersensitive response in pearl millet host defense against S. graminicola.  相似文献   

9.
We present data on the evolution of the Ac/Ds family of transposable elements in select grasses (Poaceae). A defective Ac-like element was cloned from a DNA library of the grass Pennisetum glaucum (pearl millet) and its entire 4531 bp sequence has been determined. When the pearl millet Ac-like sequence is aligned with the maize Ac sequence, it is found that there is approximately 70% DNA similarity in the central region spanning most of maize Ac exon II and all of exon III. In addition, there are two smaller regions of similarity at the Ac terminii. Besides these three major structural similarities, Pennisetum Ac has two large regions, one 5 and one 3, that show little similarity to Zea Ac. Furthermore, most of the sequences corresponding to intron II in maize Ac are absent in pearl millet Ac. Kimura's evolutionary distance between the central region of maize and pearl millet Ac sequences is estimated to be 0.429±0.020 nucleotide substitutions per site. This value is not significantly different from the average number of synonymous substitutions for coding regions of the Adh1 gene between maize and pearl millet, which is 0.395±0.051 nucleotide substitutions per site. If we assume Ac and Adh1 divergence times are equivalent between maize and pearl millet, then the above calculations suggest Ac-like sequences have probably not been strongly constrained by natural selection. Conserved DNA and amino acid sequence motifs are also examined. The level of DNA sequence divergence between maize and pearl millet Ac sequences, the estimated date when maize and pearl millet diverged (25–40 million years ago), coupled with their reproductive isolation/lack of current genetic exchange, all support the theory that Ac-like sequences have not been recently introduced into pearl millet from maize. Instead, Ac-like sequences were probably present in the progenitor of maize and pearl millet and have thus existed in the grasses for at least 25 million years.  相似文献   

10.
A critical step in the development of a reproducible Agrobacterium tumefaciens mediated transformation system for a recalcitrant species, such as pearl millet, is the establishment of optimal conditions for efficient T-DNA delivery into target tissue from which plants can be regenerated. A multiple shoot regeneration system, without any intervening callus phase, was developed and used as a tissue culture system for Agrobacterium-mediated transformation. Agrobacterium super virulent strain EHA105 harboring the binary vector pCAMBIA 1301 which contains a T-DNA incorporating the hygromycin phosphotransferase (hpt II) and β-glucuronidase (GUS) genes was used to investigate and optimize T-DNA delivery into shoot apices of pearl millet. A number of factors produced significant differences in T-DNA delivery; these included optical density, inoculation duration, co-cultivation time, acetosyringone concentration in co-cultivation medium and vacuum infiltration assisted inoculation. The highest transformation frequency of 5.79% was obtained when the shoot apex explants were infected for 30 min with Agrobacterium O.D.600 = 1.2 under a negative pressure of 0.5 × 105 Pa and co-cultivated for 3 days in medium containing 400 μM acetosyringone. Histochemical GUS assay and polymerase chain reaction (PCR) analysis confirmed the presence of the GUS gene in putative transgenic plants, while stable integration of the GUS gene into the plant genome was confirmed by Southern analysis. This is the first report showing reproducible, rapid and efficient Agrobacterium-mediated transformation of shoot apices and the subsequent regeneration of transgenic plants in pearl millet. The developed protocol will facilitate the insertion of desirable genes of useful traits into pearl millet.  相似文献   

11.

Background  

Identification of genes underlying drought tolerance (DT) quantitative trait loci (QTLs) will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL.  相似文献   

12.
Pearl millet (Pennisetum glaucum L. Br.) is the most important crop in India and Africa. Downy mildew disease of pearl millet caused by the oomycetous fungus Sclerospora graminicola (Sacc.) Schroet., is the major biological constraint in the production of pearl millet. Plasma membrane H+-ATPase is induced in resistant pearl millet against downy mildew pathogen. Sodium orthovanadate, an inhibitor of H+-ATPase, was used in this study to understand its effect on other known defence responses in pearl millet including H+-ATPase. Results suggest that vanadate down-regulates all defence responses tested, such as H+-ATPase (53 ± 5.0%), peroxidase (36 ± 5.6%), phenylalanine ammonia lyase (43 ± 4.5%), β-1,3 glucanase (25 ± 4.2%), lytic activity (32 ± 3.0%), hypersensitive response (57 ± 4.3%) and pathogen colonisation. These data indicate that the plasma membrane H+-ATPase may be a key step in the signaling pathway leading to defence activation in pearl millet against downy mildew disease.  相似文献   

13.
Genetic diversity of crop species in sub-Sahelian Africa is still poorly documented. Among such crops, pearl millet is one of the most important staple species. In Niger, pearl millet covers more than 65% of the total cultivated area. Analyzing pearl millet genetic diversity, its origin and its dynamics is important for in situ and ex situ germplasm conservation and to increase knowledge useful for breeding programs. We developed new genetic markers and a high-throughput technique for the genetic analysis of pearl millet. Using 25 microsatellite markers, we analyzed genetic diversity in 46 wild and 421 cultivated accessions of pearl millet in Niger. We showed a significantly lower number of alleles and lower gene diversity in cultivated pearl millet accessions than in wild accessions. This result contrasts with a previous study using iso-enzyme markers showing similar genetic diversity between cultivated and wild pearl millet populations. We found a strong differentiation between the cultivated and wild groups in Niger. Analyses of introgressions between cultivated and wild accessions showed modest but statistically supported evidence of introgressions. Wild accessions in the central region of Niger showed introgressions of cultivated alleles. Accessions of cultivated pearl millet showed introgressions of wild alleles in the western, central, and eastern parts of Niger.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.Cedric Mariac and Viviane Luong have contributed equally to this work.  相似文献   

14.
 The potential of DNA markers such as microsatellites, minisatellites and RAPDs was investigated in pearl millet [Pennisetum glaucum (L.) R. Br] with respect to their abundance and variability. Southern analysis, using 22 different di-, tri-, tetra- and penta-oligonucleotide probes and five minisatellite probes, identified (GATA)4 as the most useful probe for the detection of multiple polymorphic fragments among pearl millet cultivars and landraces from India. The clustering patterns of pearl millet cultivars and landraces based on (GATA)4 and RAPD (randomly amplified polymorphic DNA) markers differed. The landraces, representing eight states in India, could not be grouped based on their geographical distribution with the DNA markers. RAPD analysis revealed a high degree of genetic diversity among the cultivars and landraces employed in this study. The probability of an identical match by chance for any two genotypes using (GATA)4 and RAPDs was 3.02×10-20 for cultivars and 5.2×10-9 for landraces. The microsatellite (GATA)4 and RAPDs provide useful tools for genotype identification and for the assessment of genetic relationships in pearl millet. Received: 19 October 1997 / Accepted: 9 December 1997  相似文献   

15.

Background  

Cassava (Manihot esculenta Crantz), a starchy root crop grown in tropical and subtropical climates, is the sixth most important crop in the world after wheat, rice, maize, potato and barley. The repertoire of simple sequence repeat (SSR) markers for cassava is limited and warrants a need for a larger number of polymorphic SSRs for germplasm characterization and breeding applications.  相似文献   

16.
Downy mildew (DM) caused by Sclerospora graminicola is the most calamitous disease of pearl millet. Therefore, for introgression of DM resistance (DMR) in HHB 197 (MH-1302), an elite pearl millet hybrid, a marker-assisted breeding was undertaken by targeting three DMR loci on linkage groups (LGs) 1, 2 and 4. Breeding programme was initiated by crossing HBL 11 (DM susceptible), male parent of HHB 197 hybrid with ICMP 451 (DM-resistant) to produce true \(\hbox {F}_{1}\) plants. By conducting three rounds of backcrossing and selection, \(\hbox {BC}_{3}\hbox {F}_{1}\) lines were generated. Foreground selection was employed using six polymorphic simple sequence repeat (SSR) markers of the 18 total selected markers. Four of these markers were linked to LG 1, five to LG 2 and nine to LG 4. Background selection was performed in \(\hbox {BC}_{3}\hbox {F}_{1}\) generation using 33 polymorphic SSR markers of a total of 56 evenly spread SSR markers in the pearl millet genome to check recovery of recurrent parent genome. On the basis of genotypic selection (foreground as well as background) using selected SSR markers, agronomic performance in field and DM screening in greenhouse; 10 improved HBL 11 lines were selected and crossed with ICMA 97111 to produce DM-resistant HHB 197 hybrid versions. Six putatively improved HHB 197 hybrids were successfully tested in first year trials at Hisar and Bawal locations of Haryana and two selected versions with higher yield and zero DM incidence will be further tested in multilocation trials.  相似文献   

17.
Arachidonic acid (AA) induces hypersensitive response (HR) on coleoptile/root regions of two-day-old pearl millet seedlings. The response is comparable to the HR induced by the downy mildew pathogen, Sclerospora graminicola. A time gap in the appearance of cell necrosis among genotypes of pearl millet was related to the degree of resistance to downy mildew. Based on the time required for the development of necrotic spots induced by AA, the pearl millet genotypes were categorised as highly resistant/resistant (HR in 3–6 h), susceptible (HR in 7–12 h) and highly susceptible (HR in 13 h and above). The percentage disease incidence in each genotype was compared with the time required for the development of AA-induced HR. The appearance of hypersensitive cell necrosis was rapid in genotypes having high resistance to downy mildew and was slow in genotypes with high susceptibility. This simple method of screening various pearl millet genotypes in the absence of the pathogen aids in identifying the downy mildew resistant/susceptible host cultivars without the risk of introducing the virulent race of the pathogen.  相似文献   

18.
Plant Growth‐promoting Fungus (PGPF) Penicillium oxalicum was isolated from rhizosphere soil of pearl millet and was tested for its ability to promote growth and induce systemic resistance in pearl millet against downy mildew disease. The fungal isolate P. oxalicum UOM PGPF 16 was identified as P. oxalicum using ITS sequencing and morphological analysis and sequence was deposited at NCBI with accession number KF150220. Pearl millet susceptible seeds were treated with three different inducers (CS, CF and LCF) of PGPF P. oxalicum and all the inducers significantly reduced the downy mildew disease and enhanced plant growth. Among the inducers tested, CS treatment recorded highest seed germination of 91% and 1427 seedling vigour followed by LCF and CF treatments. The vegetative growth parameter and NPK uptake studies under greenhouse conditions revealed that the CS treatment of P. oxalicum remarkably enhanced the parameters tested when compared to control plants. A significant disease protection of 62% and 58% against downy mildew disease was observed in plants pretreated with CS of P. oxalicum under greenhouse and field conditions, respectively. The spatio‐temporal studies revealed that inducers P. oxalicum required a minimum of 3 days for developing maximum disease resistance which was maintained thereafter. The maximum Peroxidase (POX) activity (62.7 U) was observed at 24 h in seedlings treated with CS of PGPF P. oxalicum and the activity gradually reduced at later time points after pathogen inoculation. Chitinase (CHT) activity was significantly higher in inducer treated seedlings when compared to control seedlings inoculated with pathogen after 48 h and remained constant at all time points.  相似文献   

19.
 Pearl millet [Pennisetum glaucum (L.) R.Br.] is a warm-season grass used for food, feed, fodder and forage, primarily in countries of Africa and India but grown around the world. The two most-destructive diseases to pearl millet in the United States are rust (caused by Puccinia substriata var. indica) and pyricularia leaf spot (caused by Pyricularia grisea). Genes for disease resistance to both pathogens have been transferred into agronomically acceptable forage and grain cultivars. A study was undertaken to identify molecular markers for three rust loci and one pyricularia resistance locus. Three segregating populations were screened for RAPDs using random decamer primers and for RFLPs using a core set of probes detecting single-copy markers on the pearl millet map. The rust resistance gene Rr 1 from the pearl millet subspecies P. glaucum ssp. monodii was linked 8.5 cM from the RAPD OP-G8350. The linkage of two RFLP markers, Xpsm108 (15.5 cM) and Xpsm174 (17.7 cM), placed the Rr 1 gene on linkage-group 3 of the pearl millet map. Rust resistance genes from both Tift 89D2 and ICMP 83506 were placed on linkage-group 4 by determining genetic linkage to the RFLP marker Xpsm716 (4.9 and 0.0 cM, respectively). Resistance in ICMP 83506 was also linked to the RFLP marker Xpsm306 (10.0 cM), while resistance in Tift 89D2 was linked to RAPD markers OP-K19350 (8.8 cM) and OP-O8350 (19.6 cM). Fragments from OP-K19 and OP-O8 in the ICMP 83506 population, and Xpsm306 in the Tift 89D2 population, were monomorphic. Only one RAPD marker (OP-D11700, 5.6 cM) was linked to pyricularia leaf spot resistance. Attempts to detect polymorphisms with rice RFLP probes linked to rice blast resistance (Pyricularia oryzae; syn=P. grisea) were unsuccessful. Received: 19 May 1997 / Accepted: 21 October 1997  相似文献   

20.
Pearl millet (Pennisetum glaucum) is a staple crop in Sahelian Africa. Farmers usually grow varieties with different cycle lengths and complementary functions in Sahelian agrosystems. Both the level of genetic differentiation of these varieties and the domestication history of pearl millet have been poorly studied. We investigated the neutral genetic diversity and population genetic structure of early‐ and late‐flowering domesticated and wild pearl millet populations using 18 microsatellite loci and 8 nucleotide sequences. Strikingly, early‐ and late‐flowering domesticated varieties were not differentiated over their whole distribution area, despite a clear difference in their isolation‐by‐distance pattern. Conversely, our data brought evidence for two well‐differentiated genetic pools in wild pearl millet, allowing us to test scenarios with different numbers and origins of domestication using approximate Bayesian computation (ABC). The ABC analysis showed the likely existence of asymmetric migration between wild and domesticated populations. The model choice procedure indicated that a single domestication from the eastern wild populations was the more likely scenario to explain the polymorphism patterns observed in cultivated pearl millet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号