首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:探讨S100A9在乙型肝炎病毒X(HBx)介导的HepG2细胞增殖及迁移中的作用。方法:用表达HBx蛋白的重组腺病毒AdHBx感染HepG2细胞后,用CCK-8实验检测细胞增殖能力及划痕愈合实验检测细胞迁移能力;在HepG2/AdHBx细胞中转染S100A9-siRNA及其对照siRNA后,检测HepG2细胞增殖及迁移能力;在HepG2/Ad HBx和对照组HepG2/AdGFP细胞中,采用Real-time PCR及Western Blot检测S100A9基因及蛋白的表达情况;在HepG2/AdHBx细胞中,加入不同剂量的NF-κB抑制剂BAY11-7082后,检测各组中S100A9的基因及蛋白表达情况。结果:HBx促进HepG2细胞的增殖与迁移; S100A9-siRNA抑制S100A9的表达后,HBx促进HepG2细胞的增殖与迁移的作用降低,HBx介导的HepG2细胞的增殖与迁移部分依赖于S100A9; S100A9基因及蛋白表达在HepG2/AdHBx中较对照组HepG2/Ad GFP显著升高,HBx可致S100A9表达增加;抑制NF-κB转录活性后,AdHBx+BAY11-7082组S100A9基因及蛋白表达较对照组显著降低,阻断NF-κB转录活性可部分抑制HBx调控的S100A9表达。结论:HBx可调控S100A9的表达且与NF-κB活化有关,S100A9参与HBx介导的HepG2细胞的增殖与迁移。  相似文献   

2.
S100A8 and S100A9 (S100A8/A9) are low-molecular weight members of the S100 family of calcium-binding proteins. Recent studies have reported S100A8/A9 promote tumorigenesis. We have previously reported that S100A8/A9 is mostly expressed in stromal cells and inflammatory cells between gastric tumor cells. However, the role of environmental S100A8/A9 in gastric cancer has not been defined. We observed in the present study the effect of S100A8/A9 on migration and invasion of gastric cancer cells. S100A8/ A9 treatment increased migration and invasionat lower concentrations that did not affect cell proliferation and cell viability. S100A8/A9 caused activation of p38 mitogenactivated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The phosphorylation of p38 MAPK was not affected by the NF-κB inhibitor Bay whereas activation of NF-κB was blocked by p38 MAPK inhibitor SB203580, indicating that S100A8/A9-induced NF-κB activation is mediated by phosphorylation of p38 MAPK. S100A8/A9-induced cell migration and invasion was inhibited by SB203580 and Bay, suggesting that activation of p38 MAPK and NF-κB is involved in the S100A8/A9 induced cell migration and invasion. S100A8/A9 caused an increase in matrix metalloproteinase 2 (MMP2) and MMP12 expression, which were inhibited by SB203580 and Bay. S100A8/A9-induced cell migration and invasion was inhibited by MMP2 siRNA and MMP12 siRNA, indicating that MMP2 and MMP12 is related to the S100A8/A9 induced cell migration and invasion. Taken together, these results suggest that S100A8/A9 promotes cell migration and invasion through p38 MAPKdependent NF-κB activation leading to an increase of MMP2 and MMP12 in gastric cancer.  相似文献   

3.
Hippophae rhamnoides has been extensively used in oriental traditional medicines for treatment of asthma, skin diseases, gastric ulcers, and lung disorders. In this study, we isolated casuarinin from the leaves of H.rhamnoides and examined the effect of casuarinin on the TNF-α-induced ICAM-1 expression in a human keratinocytes cell line HaCaT. Pretreatment with casuarinin inhibited TNF-α-induced protein and mRNA expression of ICAM-1 and subsequent monocyte adhesiveness in HaCaT cells. Casuarinin significantly inhibited TNF-α-induced NF-κB activation. In addition, casuarinin inhibited activation of ERK and p38 MAPK in a dose-dependent manner. Furthermore, pretreatment with casuarinin decreased TNF-α-induced pro-inflammatory mediators, such as IL-1β, IL-6, IL-8, and MCP-1. These results demonstrated that casuarinin exerts its anti-inflammatory activity by suppressing TNF-α-induced expression of ICAM-1 and pro-inflammatory cytokines/chemokines via blockage of activation of NF-κB and ERK/p38 MAPK and can be used as a therapeutic agent against inflammatory skin diseases.  相似文献   

4.
S100A8/A9 activate key genes and pathways in colon tumor progression   总被引:1,自引:0,他引:1  
The tumor microenvironment plays an important role in modulating tumor progression. Earlier, we showed that S100A8/A9 proteins secreted by myeloid-derived suppressor cells (MDSC) present within tumors and metastatic sites promote an autocrine pathway for accumulation of MDSC. In a mouse model of colitis-associated colon cancer, we also showed that S100A8/A9-positive cells accumulate in all regions of dysplasia and adenoma. Here we present evidence that S100A8/A9 interact with RAGE and carboxylated glycans on colon tumor cells and promote activation of MAPK and NF-κB signaling pathways. Comparison of gene expression profiles of S100A8/A9-activated colon tumor cells versus unactivated cells led us to identify a small cohort of genes upregulated in activated cells, including Cxcl1, Ccl5 and Ccl7, Slc39a10, Lcn2, Zc3h12a, Enpp2, and other genes, whose products promote leukocyte recruitment, angiogenesis, tumor migration, wound healing, and formation of premetastatic niches in distal metastatic organs. Consistent with this observation, in murine colon tumor models we found that chemokines were upregulated in tumors, and elevated in sera of tumor-bearing wild-type mice. Mice lacking S100A9 showed significantly reduced tumor incidence, growth and metastasis, reduced chemokine levels, and reduced infiltration of CD11b(+)Gr1(+) cells within tumors and premetastatic organs. Studies using bone marrow chimeric mice revealed that S100A8/A9 expression on myeloid cells is essential for development of colon tumors. Our results thus reveal a novel role for myeloid-derived S100A8/A9 in activating specific downstream genes associated with tumorigenesis and in promoting tumor growth and metastasis.  相似文献   

5.
It is now known that the function of the caspase family of proteases is not restricted to effectors of programmed cell death. For example, there is a significant non-apoptotic role for caspase-3 in cell differentiation. Our own studies in the developing lens show that caspase-3 is activated downstream of the canonical mitochondrial death pathway to act as a molecular switch in signaling lens cell differentiation. Importantly, for this function, caspase-3 is activated at levels far below those that induce apoptosis. We now have provided evidence that regulation of caspase-3 for its role in differentiation induction is dependent on the insulin-like growth factor-1 receptor (IGF-1R) survival-signaling pathway. IGF-1R executed this regulation of caspase-3 by controlling the expression of molecules in the Bcl-2 and inhibitor of apoptosis protein (IAP) families. This effect of IGF-1R was mediated through NFκB, demonstrated here to function as a crucial downstream effector of IGF-1R. Inhibition of expression or activation of NFκB blocked expression of survival proteins in the Bcl-2 and IAP families and removed controls on the activation state of caspase-3. The high level of caspase-3 activation that resulted from inhibiting this IGF-1R/NFκB signaling pathway redirected cell fate from differentiation toward apoptosis. These results provided the first evidence that the IGF-1R/NFκB cell survival signal is a crucial regulator of the level of caspase-3 activation for its non-apoptotic function in signaling cell differentiation.  相似文献   

6.
7.
The aim of this study was to investigate the response to and the physiological consequences of copper-mediated cross-linking of S100A2 and S100A4, two members of the S100 family of EF-hand calcium-binding proteins. As demonstrated by electrophoresis and mass spectrometry techniques S100A2 and S100A4 show formation of cross-links due to copper-mediated oxidation of cysteine residues. For S100A4, but not for S100A2, this results in both increased activation of NFκB and secretion of TNF-α in human A375 and, to a higher extent, in RAGE-transfected melanoma cells. The data suggest that a prooxidative tumor microenvironment enhances proinflammatory and prometastatic action of S100A4.  相似文献   

8.
9.
We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NFκB) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NFκB activation, as indicated by NFκB DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NFκB DNA binding after 1 h of ventilation and decreased NFκB DNA binding after 2 h of ventilation, as compared with controls. The early activation of NFκB during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NFκB activation using SN50 reversed these protective effects. NFκB activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the cytoprotective effects of hydrogen against apoptotic and inflammatory signaling pathway activation during VILI.  相似文献   

10.
11.
Malignant transformation results in abnormal cell cycle regulation and uncontrolled growth in head and neck squamous cell carcinoma (HNSCC) and other cancers. S100A8/A9 (calprotectin) is a calcium-binding heterodimeric protein complex implicated in cell cycle regulation, but the specific mechanism and role in cell cycle control and carcinoma growth are not well understood. In HNSCC, S100A8/A9 is downregulated at both mRNA and protein levels. We now report that downregulation of S100A8/A9 correlates strongly with a loss of cell cycle control and increased growth of carcinoma cells. To show its role in carcinogenesis in an in vitro model, S100A8/A9 was stably expressed in an S100A8/A9-negative human carcinoma cell line (KB cells, HeLa-like). S100A8/A9 expression increases PP2A phosphatase activity and p-Chk1 (Ser345) phosphorylation, which appears to signal inhibitory phosphorylation of mitotic p-Cdc25C (Ser216) and p-Cdc2 (Thr14/Tyr15) to inactivate the G2/M Cdc2/cyclin B1 complex. Cyclin B1 expression then downregulates and the cell cycle arrests at the G2/M checkpoint, reducing cell division. As expected, S100A8/A9-expressing cells show both decreased anchorage-dependent and -independent growth and mitotic progression. Using shRNA, silencing of S100A8/A9 expression in the TR146 human HNSCC cell line increases growth and survival and reduces Cdc2 inhibitory phosphorylation at Thr14/Tyr15. The level of S100A8/A9 endogenous expression correlates strongly with the reduced p-Cdc2 (Thr14/Tyr14) level in HNSCC cell lines, SCC-58, OSCC-3 and UMSCC-17B. S100A8/A9-mediated control of the G2/M cell cycle checkpoint is, therefore, a likely suppressive mechanism in human squamous cell carcinomas and may suggest new therapeutic approaches.  相似文献   

12.
The human toll like receptor 9 (TLR9) detects differences between microbial and host DNA, based on unmethylated deoxycytidyl deoxyguanosine dinucleotide (CpG) motifs, leading to activation of both innate and adaptive immune mechanisms. The synthetic TLR9 agonist, CpG-ODN, can substitute for microbial DNA in these responses, and is in clinical trials as an immunomodulatory agent in diseases as diverse as infections, cancer and allergic disorders. Human TLR9 is expressed on cells of haematopoietic origin (principally plasmacytoid dendritic cells and B cells), but has also been described as being expressed on a number of other cell types. In order to clarify the expression and function of TLR9 in a range of cells of both haematopoietic and non-haematopoietic origin, we investigated the level of expression of TLR9 mRNA, and the ability of the cells to respond to CpG-ODN by upregulation of cell surface markers, cytokine production, cellular proliferation and activation of NFκB. Our data show that the cellular response to CpG-ODN depended on a threshold level of expression of TLR9. TLR9 was widely expressed amongst B cell tumours (with the exception of myeloma cell lines), but we did not find either threshold levels of expression of TLR9 or responses to CpG-ODN in several myeloma or myeloid tumour cell lines or any non-haematological tumour cell lines tested in our study. TLR9-positive cells varied significantly in their responses to CpG-ODN, and the level of TLR9 expression beyond the threshold did not correlate with the magnitude of the response to CpG-ODN. Finally, CpG-ODN induced NFκB activation and increased cellular proliferation in Hek293 cells that had been stably transfected with hTLR9, but did not affect the expression of surface markers or synthesis of IL-6, IL-10 or TNF-α. Thus both haematological and non-haematological cells expressing appropriate levels of TLR9 respond to CpG-ODN, but the nature of the TLR9-mediated response is dependent on cell type.  相似文献   

13.
Keratinocytes, one of major cell types in the skin, can be induced by TNF-α and IFN-γ to express thymus- and activation-regulated chemokine (TARC/CCL17), which is considered to be a pivotal mediator in the inflammatory responses during the development of inflammatory skin diseases, such as atopic dermatitis (AD). In this study, we examined the effect of 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG), isolated from the barks of Juglans mandshurica, on TNF-α/IFN-γ induced CCL17 expression in the human keratinocyte cell line HaCaT. Pretreatment of HaCaT cells with PGG suppressed TNF-α/IFN-γ-induced protein and mRNA expression of CCL17. PGG significantly inhibited TNF-α/IFN-γ-induced NF-κB activation as well as STAT1 activation. Furthermore, pretreatment with PGG resulted in significant reduction in expression of CXCL9, 10, and 11 in the HaCaT cells treated with IFN-γ. These results suggest that PGG may exert anti-inflammatory responses by suppressing TNF-α and/or IFN-γ-induced activation of NF-κB and STAT1 in the keratinocytes and might be a useful tool in therapy of skin inflammatory diseases.  相似文献   

14.
Y Ge  Y Xu  W Sun  Z Man  L Zhu  X Xia  L Zhao  Y Zhao  X Wang 《Gene》2012,508(2):157-164
Toll-like receptors (TLRs) and the nuclear factor-kappa B (NF-κB) signaling transduction pathway play important roles in the pathogenesis of several chronic inflammatory diseases, but its function in oral lichen planus (OLP) remains unclear. In this study, we examined the expression of TLR4 and NF-κB-p65 and inflammatory cytokines TNF-α and IL-1β by immunohistochemistry in OLP tissues, and found that TLR4 and NF-κB-p65 were significantly upregulated in OLP compared to normal oral mucosa (P<0.05). We used keratinocytes HaCaT stimulated with lipopolysaccharide (LPS) to simulate the local OLP immune environment to some extent. RT-PCR and immunoblotting analyses showed significant activation of TLR4 and NF-κB-p65 in the circumstance of LPS-induced inflammatory response. The high expression of TLR4 and NF-κB-p65 are correlated with expression of cytokines TNF-α and IL-1β (P<0.05). We further showed that NF-κB could act as an anti-apoptotic molecule in OLP. We conclude that TLR4 and the NF-κB signaling pathway may interact with the perpetuation of OLP. Steroids and cyclosporine are effective in the treatment of symptomatic OLP. However, there was some weak evidence for the mechanism over Dexamethasone (DeX) and Cyclosporine A (CsA) for the palliation of symptomatic OLP. In the present study, we found that Dexamethasone and Cyclosporine A negatively regulated NF-κB signaling pathway under LPS simulation in HaCaT cells by inhibiting TLR4 expression, on the other hand, Cyclosporine A could inhibit HaCaT cell proliferation by the induction of the apoptosis of HaCaT cells to protect OLP from the destruction of epidermal cells effectively.  相似文献   

15.
The calcium binding S100A8/A9 complex (MRP8/14; calgranulin) is considered as an important proinflammatory mediator in acute and chronic inflammation and has recently gained attention as a molecular marker up-regulated in various human cancers. Here, we report that S100A8/A9 is expressed in breast cancer cell lines and is up-regulated by interleukin-1beta and tumor necrosis factor-alpha in SKBR3 and MCF-7 cells. We identified the phospholipid-binding protein annexin A6 as a potential S100A8/A9 binding protein by affinity chromatography. This finding was verified by Southwestern overlay experiments and by coimmunoprecipitation with the S100A8/A9-specific monoclonal antibody 27E10. Immunocytochemical experiments demonstrated that S100A8/A9 and annexin A6 colocalize in SKBR3 breast cancer cells predominantly in membranous structures. Upon calcium influx both S100A8/A9 and annexin A6 are exposed on the cell surface of SKBR3 cells. Subcellular fractionation studies suggested that after A23187 stimulation membrane association of S100A8/A9 is not enhanced. However, both S100A8/A9 and annexin A6 are exposed on the cell surface of SKBR3 cells upon calcium influx. Experiments with artificial liposomes indicated that S100A8/A9 is able to associate with membranes independently of both annexin A6 and independently of calcium. Finally, cell surface expression of S100A8/A9 could not be observed in A23187-treated A431 and HaCaT cells. Both cell lines are known to be devoid of annexin A6. Repression of annexin A6 expression by small interfering RNA in SKBR3 cells abolishes the cell surface exposition of S100A8/A9 upon calcium influx, suggesting that annexin A6 contributes to the calcium-dependent cell surface exposition of the membrane associated-S100A8/A9 complex.  相似文献   

16.
Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.  相似文献   

17.
Cell migration is the hallmark of cancer regulating anchorage independent growth and invasiveness of tumor cells. Hyaluronan (HA), an ECM polysaccharide is shown to regulate this process. In the present report, we demonstrated, supplementation of purified recombinant hyaluronan binding protein 1(HABP1/p32/gC1qR) from human fibroblast cDNA enhanced migration potential of highly invasive melanoma (B16F10) cells. Exogenous HABP1 adhered to the cell surface transiently and was shown to interact and colocalize with αvβ3 integrin, a regulatory molecule of cell migration. In HABP1 treated cells, the phosphorylation of nuclear factor inducing kinase (NIK) and IκBα was observed, followed by nuclear translocation of p65 subunit of NFκB, along with its DNA-binding and transactivation, resulting in upregulation of MT1-MMP expression and finally MMP-2 activation. To substantiate our findings, prior to HABP1 treatment, the expression of NIK was reduced by small interfering RNA mediated knockdown and confirmed the inhibition of nuclear translocation of p65 subunit of NFκB and upregulation of MT1-MMP expression. In addition, the use of curcumin, an anti-cancer drug, or GRGDSP, the blocking peptide along with exogenous HABP1, inhibited such NFκB-dependent pathway, confirming that HABP1-induced cell migration is αvβ3 integrin-mediated and downstream signaling by NFκB. Finally, we translated the in vitro data in mice model and observed enhanced tumor growth with higher MT1-MMP expression and MMP-2 activation in the tumors upon injection of HABP1 treated melanoma cells. The treatment of curcumin, the anticancer drug along with HABP1, inhibited the migration, expression of MT1-MMP and activation of MMP-2 and finally tumor growth supports the involvement of HABP1 in tumor formation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号