首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Ser/Thr-Pro motif is a widespread phosphorylated site in proteins, and its reversible phosphorylation is an important regulatory progress in many cell cycles and signal transduction. Recent research reveals that phosphorylation affects the local conformation of the peptide and its binding with the substrate through peptidyl--prolyl cis/trans isomerization. In order to further explore the effect of the phosphate group with different charges, four model peptides containing non- and phosphorylated Ser/Thr-Pro motif were synthesized using the classical solid-phase method. 1H-NMR, TOCSY, and ROESY were employed to characterize the conformation of the model peptides in solution with different pH value and analyze the peptidyl--prolyl isomerization at a molecular level. The results demonstrate that phosphorylation increases the cis conformation in the peptide and the maximum cis/trans ratio is obtained when the phosphate group has two negative charges. Furthermore, the experiments prove that the phosphorylation introduces a hydrogen bond between the phosphate and the NH of Ser/Thr residue, and the charges of the phosphate affect certain conformations of the phosphorylated Ser/Thr-Pro motif.  相似文献   

2.
T-cell receptor (TCR) recognition of the myelin basic protein (MBP) peptide presented by major histocompatibility complex (MHC) protein HLA-DR2a, one of the MHC class II alleles associated with multiple sclerosis, is highly variable. Interactions in the trimolecular complex between the TCR of the MBP83-99-specific T cell clone 3A6 with the MBP-peptide/HLA-DR2a (abbreviated TCR/pMHC) lead to substantially different proliferative responses when comparing the wild-type decapeptide MBP90-99 and a superagonist peptide, which differs mainly in the residues that point toward the TCR. Here, we investigate the influence of the peptide sequence on the interface and intrinsic plasticity of the TCR/pMHC trimolecular and pMHC bimolecular complexes by molecular dynamics simulations. The intermolecular contacts at the TCR/pMHC interface are similar for the complexes with the superagonist and the MBP self-peptide. The orientation angle between TCR and pMHC fluctuates less in the complex with the superagonist peptide. Thus, the higher structural stability of the TCR/pMHC tripartite complex with the superagonist peptide, rather than a major difference in binding mode with respect to the self-peptide, seems to be responsible for the stronger proliferative response.  相似文献   

3.
《Journal of molecular biology》2019,431(24):4941-4958
The coreceptor CD8αβ can greatly promote activation of T cells by strengthening T-cell receptor (TCR) binding to cognate peptide-MHC complexes (pMHC) on antigen presenting cells and by bringing p56Lck to TCR/CD3. Here, we demonstrate that CD8 can also bind to pMHC on the T cell (in cis) and that this inhibits their activation. Using molecular modeling, fluorescence resonance energy transfer experiments on living cells, biochemical and mutational analysis, we show that CD8 binding to pMHC in cis involves a different docking mode and is regulated by posttranslational modifications including a membrane-distal interchain disulfide bond and negatively charged O-linked glycans near positively charged sequences on the CD8β stalk. These modifications distort the stalk, thus favoring CD8 binding to pMHC in cis. Differential binding of CD8 to pMHC in cis or trans is a means to regulate CD8+ T-cell responses and provides new translational opportunities.  相似文献   

4.
Although several species of the Synurophyceae have been associated with taste and odor problems in potable water supplies, electron microscopic-based field studies linked problematic blooms only toSynura petersenii Korshikov. Eventually, the organic compoundtrans-2,cis-6-nonadienal was implicated to cause the associated cucumberlike odors. The objective of this study was to survey unialgal cultures of various Synurophycean species for the occurrence oftrans-2,cis-6-nonadienal. The compound was detected throughout a 24-day growth assay with aS. petersenii isolate, but was not detected in an identical assay withSynura sphagnicola (Korshikov) Korshikov. In separate 24-day cultures,trans-2,cis-6-nonadienal was detected in two isolates from theS. petersenii species complex, but was not detected in isolates of twoMallomonas or fourSynura taxa not from theS. petersenii complex. These results support the hypothesis that production oftrans-2,cis-6-nonadienal is unique to taxa within theS. petersenii complex. When contrast-enhancing optics and specific specimen preparation techniques are employed, light microscopy can be used to distinguish taxa in theS. petersenii complex from all other Synurophycean taxa. These methods are suggested as an efficient way to monitortrans-2,cis-6-nonadienal-producing taxa in potable water supplies.Author for correspondence  相似文献   

5.
Model tetrapeptide system was designed to investigate the cis/trans isomerization of peptidyl-prolyl imide bond of Ser–Pro motif. To establish the side-chain O-phosphorylation effect in regulating the peptides conformations, molecular dynamics (MD) simulations where carried out on the designed tetrapeptides and their corresponding phosphorylated forms by MD Insight II Discovery3 approach. The most stable configurations and the statistic cis/trans concentration distribution demonstrated that the phosphorylation evidently influences the peptidyl-prolyl imide bond isomerization and works as a key effect in regulating the peptide conformations. The charge state and the site provided for the charge of the phosphate moiety might be an important key. The results also demonstrated that phosphorylation changes the cis conformation ratio of the peptide and the maximum cis value is obtained when the phosphate group has no negative charge.  相似文献   

6.
The influence of lithium cations on the cis/trans isomerization of prolyl peptide bonds was investigated in a quantitative manner in trifluoroethanol (TFE) and acetonitrile, employing NMR techniques. The focus was on various environmental and structural aspects, such as lithium cation and water concentrations, the type of the partner amino acid in the prolyl peptide bond, and the peptide sequence length. Comparison of the thermodynamic parameters of the isomerization in LiCl/TFE and TFE shows a lithium cation concentration dependence of the cis/trans ratio, which saturates at cation concentrations >200 mM. A pronounced increase in the cis isomer content in the presence of lithium cations occurs with the exception of peptides with Gly‐Pro and Asp‐Pro moieties. The cation effect appears already at the dipeptide level. The salt concentration can considerably be reduced in solvents with a lower number of nucleophilic centers like acetonitrile. The lithium cation effect decreases with small amounts of water and disappears at a water concentration of about 5%. The isomerization kinetics under the influence of lithium cations suggests a weak cation interaction with the carbonyl oxygen of the peptide bond. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Conformations of the cyclic tetrapeptide cyclo(L -Pro-Sar)2 in solution were studied by 1H- and 13C-nmr spectrometry and model building. The nmr data provide definite evidence that this cyclic peptide exists chiefly in two conformations, namely, a C2-symmetric conformation and an asymmetric structure. The former was demonstrated to be predominant in polar solvents (100% in Me2SO-d6). This structure contains all cis-peptide bond linkages and all trans′ Pro Cα?CO bonds. It represents the first cyclic tetrapeptide in which all four peptide bonds have been found in the cis-conformation. As the polarity of the solvent decreases, the population of C2-symmetric conformers decreases (88% in CD3CN and 65% in CDCl3). At the same time, a minor asymmetric conformer, characterized by cis-cis-cis-trans peptide bond sequences (two cis Sar-Pro bonds, one cis Pro-Sar bond, and one trans Pro-Sar bond), is seen to increase (9% in CD3CN and 30% in CDCl3). A proposed predominant conformation in solution for cyclo(L -Pro-Sar)2 was compared with a crystal structure, as reported in an accompanying paper. Both structures show striking overall similarities.  相似文献   

8.
P R Andrews 《Biopolymers》1971,10(11):2253-2267
The molecular orbital method PCILO is applied to eight. N-monsubstituted amides. Experimentally known geometric properties are reasonably predicted by minimization of total energy with respect to molecular geometry. The same procedure shows that molecular deformations during rotation around the peptide bond significantly lower calculated barriers. Experimental heats of activation and the free-energy changes associated with cis–trans isomerism are in good agreement with those calculated, which include qualitative estimates of configurational entropy contributions to the isomerism energies. Both the calculations and revised infrared data indicate that N-phenylurethane, which has been used as a model for the cis peptide bond, should be predominantly trans. However the variations in rotational barriers and cis–trans isomerism energies among the N-monosubstituted amides provide no reason to suppose that the cis peptide bond should be excluded from stable protein conformations.  相似文献   

9.
The substrate selectivity of several microbial lipases has been examined in the esterification of the conjugated linoleic acid (CLA) isomers cis-9,trans-11-, cis-9,cis-11-, trans-9,trans-11- and trans-10,cis-12-octadecadienoic acid with n-butanol in n-hexane. Lipases from Candida cylindracea and Mucor miehei had a preference for the cis-9,trans-11-octadecadienoic acid, while Chirazyme L-5, a Candida antarctica lipase A, accepted the trans-9,trans-11-fatty acid with a high selectivity. Moreover, lipase from Candida cylindracea and Chirazyme L-5 catalysed the esterification of the cis-9,trans-11-octadecadienoic acid with n-butanol faster than the corresponding reaction of the trans-10,cis-12-fatty acid.  相似文献   

10.
The conformations of the phytotoxic cyclic tetrapeptide tentoxin [cyclo-(L -MeAla1-L -Leu2-MePhe[(Z)Δ]3-Gly4 )] have been studied in aqueous solution by two-dimensional proton nmr at various temperatures. Contrary to what is observed in chloroform, tentoxin exhibits multiple exchanging conformations in water. Aggregation phenomena were also observed. Four conformations with different proportions (51, 37, 8, and 4%) were observed at ?5°C. Models were constructed from nmr parameters and restrained molecular dynamics simulations. All the models exhibit cis-trans-cis-trans conformation of the amide bond sequence. The conversion from one form to another is accomplished by a conformational peptide flip consisting of a 180° rotation of a nonmethylated peptide bond. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The mean dimensions of thecis N-methyl peptide unit have been arrived at by analysing the crystal structure data on compounds containing such units. These dimensions can be used as standard in conformational studies on cyclic peptides. While the bonds meeting at C are almost coplanar, those meeting at N show a slight pyramidal disposition. A comparison of the dimensions of the normal and N-methylatedcis peptide units show that there are perceptible differences in the parameters connected with N. In addition, the flexibility of thecis peptide unit has been analysed by studying the distribution of the parameters in different classes of compounds such as cyclic di, tri and higher peptides. The salient features are: (i) The angle CαCN in cyclic dipeptide and the angle CδNCα in higher peptides tend to be lower, when the peptide unit is associated with a prolyl residue; (ii) in cyclic tripeptides the internal anglesviz., CαCN and CNCα are significantly larger thereby increasing the intra-annular space; (iii) the bond Cα-C is distinctly shorter when it occurs in cyclic dipeptides. The results lead to the conclusion that thecis peptide unit takes up aneed-based flexibility in its dimension.  相似文献   

12.
trans-Cyclooctene, cis,trans-1,5-cyclooctadiene, and cis,trans-1,3-cyclooctadiene have been compared with the cis and cis,cis isomers and with 2,5-norbornadiene for competition with ethylene for binding in mung bean sprouts and tobacco and for action (induction of chlorophyll degradation) in banana. The compounds containing a trans double bond were much more effective in competition for binding and action than the cis and cis,cis compounds. trans-Cyclooctene and cis,trans-1,3-cyclooctadiene were in the general range of 50–90 times more effective than 2,5-norbornadiene.R.J. Reynolds Research Apprentice  相似文献   

13.
trans-Stilbene degradation was examined by the reaction using resting cells of microorganisms isolated through the enrichment culture using trans-stilbene. The strain SL3, showing the highest trans-stilbene-degrading activity, was identified as Arthrobacter sp. One of the reaction products was identified to be cis,cis-muconic acid. Arthrobacter sp. SL3 cells also transformed benzaldehyde, benzoic acid and catechol into cis,cis-muconic acid, suggesting that one benzene ring of trans-stilbene was converted into cis,cis-muconic acid via benzaldehyde formed by its Cα=Cβ bond cleavage.  相似文献   

14.
Summary We have found that besides the known cyclolinopeptides A (CLA) and B (CLB), there is a new cyclic peptide in linseed mill cake that we have named CLX. Its composition is very similar to that of CLA, a cyclic peptide with a distinct immunosuppressive activity. The sequence of this peptide has been established ascyclo(PPFFILLX), where X is a non-proteinaceous amino acid,N-methyl-4-aminoproline. this amino acid substitutes for two amino acid residues of CLA, mimicking a dipeptide moiety with a nonplanarcis amide bond. The non-proteinaceous amino acid X may mimic a transition state of the peptide bond which exists in such processes as, e.g., PPIase-catalysedcis/trans amide-Pro bond isomerisation.  相似文献   

15.
Summary The conformationalcis-trans equilibrium around the peptide bond in model tripeptides has been determined by 2D NMR methods (HOHAHA, ROESY). The study was limited to three different N-substituted amino acids in position 2, namely Pro (proline), Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), and N-MePhe (N-methylphenylalanine). In all cases the amino acid in position 1 was tyrosine and in position 3, phenylalanine. The results of our studies show that thecis-trans ratio depends mostly on the configuration of the amino acids forming the peptide bond undergoing thecis-trans isomerisation. The amino acid following the sequence (in position 3) does not have much influence on thecis-trans isomerisation, indicating that there is no interaction of the side chains between these amino acids. The model peptides with the L-Tyr-L-AA-(L-or D-)Phe (where AA is N-substituted amino acid) chiralities give 80–100% more of thecis form in comparison to the corresponding peptides with the D-Tyr-L-AA-(L-or D-)Phe chiralities. These results indicate that the incorporation of N-substituted amino acids in small peptides with the same chirality as the precedent amino acid involved in the peptide bound undergoing thecis/trans isomerisation moves the equilibrium to a significant amount of thecis form.  相似文献   

16.
The three-dimensional structure of demetallized concanavalin A has been determined at 2.5 Å resolution and refined to a crystallographic R-factor of 18%. The lectin activity of concanavalin A requires the binding of both a transition metal ion, generally Mn2+, and a Ca2+ ion in two neighboring sites in close proximity to the carbohydrate binding site. Large structural differences between the native and the metal-free lectin are observed in the metal-binding region and consequently for the residues involved in the specific binding of saccharides. The demetallization invokes a series of conformational changes in the protein backbone, apparently initiated mainly by the loss of the calcium ion. Most of the Mn2+ ligands retain their position, but the Ca2+ binding site is destroyed. The Ala207-Asp208 peptide bond, in the β-strand neighboring the metal-binding sites, undergoes a cis to trans isomerization. The cis conformation for this bond is a highly conserved feature among the leguminous lectins and is critically maintained by the Ca2+ ion in metal-bound concanavalin A. A further and major change adjacent to the isomerized bond is an expansion of the loop containing the monosaccharide ligand residues Leu99 and Tyr100. The dispersion of the ligand residues for the monosaccharide binding site (Asn14, Agr228, Asp208, Leu99, and Tyr100) in metalfree concanavalin A abolishes the lectin's ability to bind saccharides. Since the quaternary structure of legume lectins is essential to their biological role, the tetramer formation was analyzed. In the crystal (pH 5), the metal-free concanavalin A dimers associate into a tetramer that is similar to the native one, but with a drastically reduced number of inter-dimer interactions. This explains the tetramer dissociation into dimers below pH values of 6.5. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Peptide presentation by major histocompatibility complex (MHC) molecules is of central importance for immune responses, which are triggered through recognition of peptide-loaded MHC molecules (pMHC) by cellular ligands such as T-cell receptors (TCR). However, a unifying link between structural features of pMHC and cellular responses has not been established. Instead, pMHC/TCR binding studies suggest conformational and/or flexibility changes of the binding partners as a possible cause of differential T-cell stimulation, but information on real-time dynamics is lacking. We therefore probed the real-time dynamics of a MHC-bound nonapeptide (m9), by combining time-resolved fluorescence depolarization and molecular dynamics simulations. Here we show that the nanosecond dynamics of this peptide presented by two human MHC class I subtypes (HLA-B*2705 and HLA-B*2709) with differential autoimmune disease association varies dramatically, despite virtually identical crystal structures. The peptide dynamics is linked to the single, buried polymorphic residue 116 in the peptide binding groove. Pronounced peptide flexibility is seen only for the non-disease-associated subtype HLA-B*2709, suggesting an entropic control of peptide recognition. Thermodynamic data obtained for two additional peptides support this hypothesis.  相似文献   

18.
Vicinal disulfide rings (VDRs) occur when a disulfide bond forms between adjacent cysteine residues in a protein and results in a rare eight‐membered ring structure. This eight‐membered ring has been found to exist in four major conformations in solution, divided between cis and trans conformers. Some selenoenzymes use a special type of VDR in which selenium replaces sulfur, generating a vicinal selenosulfide ring (VSeSR). Here, we provide evidence that this substitution reduces ring strain, resulting in a strong preference for the trans conformation relative to cis in a VSeSR (cis:trans – 9:91). This was determined by using the ‘γ‐gauche effect’, which makes use of both 1H‐NMR and two‐dimensional (2D) NMR techniques for determining the amide bond conformeric ratio. The presence of selenium in a VSeSR also lowers the dihedral strain energy (DSE) of the selenosulfide bond relative to the disulfide bond of VDRs. While cis amide geometry decreases strain on the amide bond, it increases strain on the scissile disulfide bond of the VDR found in thioredoxin reductase from Drosophila melanogaster (DmTR). We hypothesize that the cis conformation of the VDR is the catalytically competent conformer for thiol/disulfide exchange. This hypothesis was investigated by computing the DSE of VDR and VSeSR conformers, the structure of which was determined by 2D NMR spectroscopy and energy minimization. The computed values of the VDR from DmTR are 16.5 kJ/mol DSE and 14.3 kJ/mol for the C+ and T? conformers, respectively, supporting the hypothesis that the enzyme uses the C+ conformer for thiol/disulfide exchange. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
One key step in the immune response against infected or tumor cells is the recognition of the T-cell receptor (TCR) by class I major histocompatibility complexes. The complex between the HLA-B8 molecule and the immunodominant peptide with sequence FLRGRAYGL, derived from the Epstein-Barr virus, with the LC13 TCR has been determined by X-ray diffraction. The complex has been used as a starting point in a molecular dynamics study in order to investigate the dynamics of the complex association and to explore the specific interactions of the complex formation. The analyzed structures provided evidence that the peptide adopts an open type β-turn conformation close to C-terminal part, which dominates peptide/TCR interactions. Conformational energy landscape analysis indicated the presence of two conformational clusters in the peptide’s structure, underlying the backbone flexibility of the peptide despite being surrounded by two receptors. The peptide/MHC/TCR interface was found to hold significant number of solvent molecules, more specifically the peptide has been found to have approximately seventeen hydrogen bonds with water molecules. The molecular dynamics simulation indicated the disruption of some MHC/TCR contacts, mainly with the CDR1α loop. However, several other interactions emerged that resulted in a stable association during the 20 ns trajectory, as revealed by the buried surface area analysis.  相似文献   

20.
To investigate early intermediates of β2‐microglobulin (β2m) amyloidogenesis, we solved the structure of β2m containing the amyloidogenic Pro32Gly mutation by X‐ray crystallography. One nanobody (Nb24) that efficiently blocks fibril elongation was used as a chaperone to co‐crystallize the Pro32Gly β2m monomer under physiological conditions. The complex of P32G β2m with Nb24 reveals a trans peptide bond at position 32 of this amyloidogenic variant, whereas Pro32 adopts the cis conformation in the wild‐type monomer, indicating that the cis to trans isomerization at Pro32 plays a critical role in the early onset of β2m amyloid formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号