首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The translationally controlled tumor protein (TCTP) displays growth-promoting and antiapoptotic properties. To gain information on the role of TCTP in cancer disease, we studied the modulation of TCTP and cell survival under stress conditions on tumor cell lines of different origins. When cancer cells were exposed to a mild oxidative stress, such low doses of Arsenic trioxide (ATO) or hydrogen peroxide (H2O2), up-regulation of TCTP was observed in cells survived to the treatment. Differently, a strong oxidative hit provided by ATO combined with glutathione (GSH) depletion or condition of glucose deprivation caused a down-modulation of TCTP followed by cell death.Clones with a forced expression of TCTP or with silenced TCTP were obtained from the breast cancer cell line MDA-MB-231. The sensitivity to oxidative stress was strongly enhanced in down-modulated TCTP cells while decreasing in cells with high levels of TCTP.Together these results indicate that TCTP is a survival factor that protects cancer cells from oxidative stress-induced cell-death. We propose TCTP as a “stress hallmark” that may be exploited as a therapeutic target to decrease the resistance of cancer cells to anticancer therapy.  相似文献   

2.
3.
Osmolytes of the polyol series are known to accumulate in biological systems under stress and stabilize the structures of a wide variety of proteins. While increased surface tension of aqueous solutions has been considered an important factor in protein stabilization effect, glycerol is an exception, lowering the surface tension of water. To clarify this anomalous effect, the effect of a series of polyols on the thermal stability of a highly thermolabile two domain protein yeast hexokinase A has been investigated by differential scanning calorimetry and by monitoring loss in the biological activity of the enzyme as a function of time. A larger increase in the T(m) of domain 1 compared with that of domain 2, varying linearly with the number of hydroxyl groups in polyols, has been observed, sorbitol being the best stabilizer against both thermal as well as urea denaturation. Polyols help retain the activity of the enzyme considerably and a good correlation of the increase in T(m) (DeltaT(m)) and the retention of activity with the increase in the surface tension of polyol solutions, except glycerol, which breaks this trend, has been observed. However, the DeltaT(m) values show a linear correlation with apparent molal heat capacity and volume of aqueous polyol solutions including glycerol. These results suggest that while bulk solution properties contribute significantly to protein stabilization, interfacial properties are not always a good indicator of the stabilizing effect. A subtle balance of various weak binding and exclusion effects of the osmolytes mediated by water further regulates the stabilizing effect. Understanding these aspects is critical in the rational design of stable protein formulations.  相似文献   

4.
Hyperthermophile proteins commonly have higher numbers of surface ionic interactions than homologous proteins from other domains of life. PfuTIM, a triosephosphate isomerase (TIM) from the hyperthermophile archaeon, Pyrococcus furiosus, contains an intricate network of 4 ion pairs in its 4th beta/alpha unit, (β/α)4, whereas MbuTIM, a triosephosphate isomerase from a psychrophile archaeon, Methanococcoides burtonii, lacks this network. Notably, (β/α)4 is the first element of the structure formed during folding of certain TIM-type (beta/alpha)8 barrel proteins. Previously, we have shown that elimination of PfuTIM's ion pair network in PfuTIM significantly decreases its kinetic structural stability. Here, we describe the reciprocal experiment in which this ion pair network is introduced into MbuTIM, to produce MutMbuTIM. Recombinant MbuTIM displays multi-state unfolding with apparent Tm values of autonomous structural elements approaching, or above, 70 °C, when a temperature scanning rate of 90 °C/h is used. The protein displays significant intrinsic kinetic stability, i.e., there is a marked temperature scan rate-dependence of the Tm values associated with unfolding transitions. The Tm values drop by as much as ~ 10 °C when the temperature scanning rate is lowered to 5 °C/h. MutMbuTIM, incorporating PfuTIM's ion pair network, shows significantly higher apparent Tm values (raised by 4–6 °C over those displayed by MbuTIM). MutMbuTIM also displays significantly higher kinetic thermal stability. Thus, it appears that the thermal stability of triosephosphate isomerase can be increased, or decreased, by either enhancing, or reducing, the strength of ion pair interactions stabilizing (β/α)4, presumably through reduced cooperativity (and increased autonomy) in unfolding transitions.  相似文献   

5.
Xu L  Zhang Z  Zhou X  Yin X  Yang L  Zhao D 《Gene》2011,485(2):102-105
The resistance or susceptibility of sheep to scrapie is associated with polymorphisms of the prion protein gene (PRNP), particularly, single nucleotide polymorphisms (SNPs) in amino acid positions 136, 154 and 171. The prion protein (PrP) gene sequence and the deduced amino acid alignment of prion protein in Tan sheep, a local Chinese sheep breed traditionally raised in Ningxia, northwestern China, were determined and variability of the PrP amino acids sequence was analyzed in this study. The PrP nucleic acids and amino acids sequences of 112 Tan sheep were highly homogenous, although polymorphism of the PrP gene was detected at several sites, particularly codons 106, 154, and 171. The analysis of both sequences revealed that the most predominant allele at codons 136, 154 and 171 in Tan sheep was ARQ, which was known to be associated with high susceptibility to scrapie in sheep. The result suggests that Tan sheep is potentially susceptible to scrapie. Our findings provide valuable information for future breeding projects to scrapie resistance in Tan sheep.  相似文献   

6.
We earlier documented the structural and functional characterization of PeIF5B factor from Pisum sativum that shows strong homology to the universal translation initiation factor eIF5B (Rasheedi et al., 2007, 2010 [12] and [13]). We now show that PeIF5B is an unusually thermo-stable protein resisting temperatures up to 95 °C. PeIF5B prevents thermal aggregation of heat labile proteins, such as citrate synthase (CS) and NdeI, under heat stress or chemical denaturation conditions and promotes their functional folding. It also prevents the aggregation of DTT induced insulin reduction. GTP appears to stimulate PeIF5B-mediated chaperone activity. In-vivo, PeIF5B over expression significantly enhances, the viability of Escherichia coli cells after heat stress (50 °C). These observations lead us to conclude that PeIF5B, in addition to its role in protein translation, has chaperone like activity and could be likely involved in protein folding and protection from stress.  相似文献   

7.
The non-structural protein encoded by the M RNA segment (NSm) of tomato spotted wilt virus (TSWV) has been implicated in cell-to-cell movement of nucleocapsids through modified plasmodesmata. Recently, DnaJ-like proteins from Nicotiana tabacum (tobacco) and Arabidopsis thaliana have been identified as NSm interacting host proteins, implying an involvement of molecular chaperones during systemic spread of the virus or other, presently unknown NSm-mediated virus functions. Examination of additional TSWV host plants and improvement of yeast two-hybrid interaction trap experiments led to the isolation of a DnaJ-like protein from Lycopersicon esculentum (tomato) and the identification of a protein from A. thaliana sharing some homologies with myosin and kinesin-like polypeptides. Sequence alignments of the tomato DnaJ-like protein unveiled the corresponding gene as an orthologue to the tobacco and A. thaliana DnaJ genes, substantiating that NSm interacting DnaJ-like polypeptides, identified from three different TSWV host species, apparently form a subgroup distinct from archetypical DnaJ chaperones. Increased levels of DnaJ-like proteins could be detected in TSWV systemically infected leaves and in plants exposed to heat shock, showing that the NSm interacting DnaJ-like chaperones are inducible upon biotic and abiotic stress. All together, the identification of DnaJ-like proteins and a protein resembling myosin and kinesin as NSm interacting plant proteins is in accordance with results accomplished for movement proteins from other plant attacking viruses showing an involvement of molecular chaperones and the cytoskeleton in at least intracellular trafficking.  相似文献   

8.
Temperature is one of the most important environmental factors affecting the growth and survival of microorganisms and in light of current global patterns is of particular interest. Here, we highlight studies revealing how vitamin B12 (cobalamin)-producing bacteria increase the fitness of the unicellular alga Chlamydomonas reinhardtii following an increase in environmental temperature. Heat stress represses C. reinhardtii cobalamin-independent methionine synthase (METE) gene expression coinciding with a reduction in METE-mediated methionine synthase activity, chlorosis and cell death during heat stress. However, in the presence of cobalamin-producing bacteria or exogenous cobalamin amendments C. reinhardtii cobalamin-dependent methionine synthase METH-mediated methionine biosynthesis is functional at temperatures that result in C. reinhardtii death in the absence of cobalamin. Artificial microRNA silencing of C. reinhardtii METH expression leads to nearly complete loss of cobalamin-mediated enhancement of thermal tolerance. This suggests that methionine biosynthesis is an essential cellular mechanism for adaptation by C. reinhardtii to thermal stress. Increased fitness advantage of METH under environmentally stressful conditions could explain the selective pressure for retaining the METH gene in algae and the apparent independent loss of the METE gene in various algal species. Our results show that how an organism acclimates to a change in its abiotic environment depends critically on co-occurring species, the nature of that interaction, and how those species interactions evolve.  相似文献   

9.
刘瑞  赵浪  冶贵生  马玉花 《广西植物》2024,44(2):235-244
花青素还原酶(anthocyanidin reductase, ANR)是合成黄酮类物质的关键酶之一,为明确其编码基因结构及干旱胁迫下的表达模式和黄酮类物质含量及二者之间的相关性,该文从中国沙棘转录组数据中筛选获得1个ANR基因,命名为HrANR基因。采用生物信息学软件对基因序列及编码蛋白进行分析,并对不同胁迫下各组织中HrANR基因的表达量和叶中黄酮类化合物含量进行相关性分析。结果表明:(1)中国沙棘HrANR基因ORF为1 017 bp,编码338个氨基酸,为稳定的亲水性蛋白,其ANR同源蛋白具有明显的科属特性。(2)干旱胁迫下HrANR基因在中国沙棘根、茎、叶中均有表达,但表达趋势不同,其中在根中的表达呈先升高后降低再升高的趋势,在茎中呈持续下降的趋势,在叶中呈先升高后持续降低的趋势。(3)通过芦丁标准曲线获得不同胁迫程度下中国沙棘叶内黄酮类的含量,表明黄酮类含量呈先持续上升,随后略有下降,复水后上升至最高点的变化趋势,表明干旱胁迫初期叶黄酮类含量与干旱胁迫呈正相关,在严重胁迫下黄酮类含量与胁迫呈负相关。(4)叶和茎的HrANR基因表达量与黄酮类含量呈负相关(P=-0.751,P=-0.934),根中呈正相关(P=0.444)。综上表明,中国沙棘HrANR基因的表达及黄酮类含量变化与其抗旱性密切相关,其结果为中国沙棘抗旱机制的阐明提供了依据。  相似文献   

10.
Recently the rice (Oryza sativa L.) OsPR1a and OsPR1b genes were primarily characterized against jasmonic acid, ethylene and protein phosphatase 2A inhibitors. The dicot PR1 are recognized as reliable marker genes in defence/stress responses, and we also propose OsPR1 as marker genes in rice, a model monocot crop genus. Therefore, to gain further insight into the expression/regulation of OsPR1 genes, we characterized their activation against signalling molecules such as salicylic acid (SA), abscisic acid (ABA) and hydrogen peroxide (H2O2), and the blast pathogen Magnaporthe grisea. Here, we report that SA and H2O2 strongly induced the mRNA level of both OsPR1 genes, whereas ABA was found to be moderately effective. These inductions were specific in nature and required a de novo synthesized protein factor. A potential interaction amongst the signalling molecules in modulating the expression of OsPR1 genes was observed. Moreover, a specific induction of OsPR1 expression in an incompatible versus compatible host-pathogen interaction was also found. Finally, based on our present and previous results, a model of OsPR1 expression/regulation has been proposed, which reveals their essential role in defence/stress responses in rice and use as potent gene markers.  相似文献   

11.
The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Ser171 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by ∼5-fold and decreases in the rate constant for product release of ∼2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure.  相似文献   

12.
Hsu YC  Ip MM 《Cellular signalling》2011,23(12):2013-2020
Conjugated linoleic acid (CLA) has shown chemopreventive activity in several tumorigenesis models, in part through induction of apoptosis. We previously demonstrated that the t10,c12 isomer of CLA induced apoptosis of TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum (ER) stress pathways, and that the AMP-activated protein kinase (AMPK) played a critical role in the apoptotic effect. In the current study, we focused on the upstream pathways by which AMPK was activated, and additionally evaluated the contributing role of oxidative stress to apoptosis. CLA-induced activation of AMPK and/or induction of apoptosis were inhibited by infection of TM4t cells with an adenovirus expressing a peptide which blocks the interaction between the G protein coupled receptor (GPCR) and Gαq, by the phospholipase C (PLC) inhibitor U73122, by the inositol trisphosphate (IP3) receptor inhibitor 2-APB, by the calcium/calmodulin-dependent protein kinase kinase α (CaMKK) inhibitor STO-609 and by the intracellular Ca2+ chelator BAPTA-AM. This suggests that t10,c12-CLA may exert its apoptotic effect by stimulating GPCR through Gαq signaling, activation of phosphatidylinositol-PLC, followed by binding of the PLC-generated IP3 to its receptor on the ER, triggering Ca2+ release from the ER and finally stimulating the CaMKK–AMPK pathway. t10,c12-CLA also increased oxidative stress and lipid peroxidation, and antioxidants blocked its apoptotic effect, as well as the CLA-induced activation of p38 MAPK, a downstream effector of AMPK. Together these data elucidate two major pathways by which t10,c12-CLA induces apoptosis, and suggest a point of intersection of the two pathways both upstream and downstream of AMPK.  相似文献   

13.
O-linked N-acetylglucosaminyltransferase (OGT)-mediated protein O-GlcNAcylation has been revealing various aspects of functional significance in biological processes, such as cellular signaling and activation of immune system. We found that OGT is maintained as S-nitrosylated form in resting cells, and its denitrosylation is triggered in innate immune response of lipopolysaccharide (LPS)-treated macrophage cells. S-nitrosylation of OGT strongly inhibits its catalytic activity up to more than 80% of native OGT, and denitrosylation of OGT leads to protein hyper-O-GlcNAcylation. Furthermore, blockage of increased protein O-GlcNAcylation results in significant loss of nitric oxide and cytokine production. We propose that denitrosylation of S-nitrosylated OGT is a direct mechanism for upregulation of OGT activity by which immune defense is critically controlled in LPS-stimulated innate immune response.  相似文献   

14.
类糖原合成酶激酶(SKs)属于丝氨酸/苏氨酸类蛋白激酶,在植物器官发育、激素信号传导过程中十分重要,并参与生物胁迫、非生物胁迫的应答过程。大叶落地生根中的胎生苗发育过程,同时具备胚胎发生和器官发生的特征,是研究无性生殖的理想模型。为了更好地理解大叶落地生根中胎生苗发育的分子机制,该研究利用RACE-PCR技术,从大叶落地生根中克隆了1个新的基因KdSK。该基因具有423个氨基酸残基,分子量为47.79 kD,等电点为8.37,其开放阅读框长为1 272 bp。其蛋白与黄瓜的同源性最高,属于植物类GSK3/shaggy蛋白激酶家族的第Ⅳ类,与苜蓿(MSK4)蛋白在进化关系上最近,且与拟南芥(AtSK4-1、AtKSK4-2)聚为一枝。保守域结构分析表明,KdSK蛋白具有明显的蛋白激酶的结构域,包括蛋白激酶的ATP结构域和丝氨酸/苏氨酸蛋白激酶活化结构域。实时荧光定量PCR分析表明,该蛋白基因在大叶落地生根的根中表达量最高,且受渗透胁迫(甘露醇)的诱导上调表达。该研究首次从大叶落地生根中克隆出KdSK基因,该研究结果为进一步研究该基因的功能打下了基础。  相似文献   

15.
氧化铈纳米颗粒(CeO2NPS),因具有较强的自由基清除能力和抗氧化酶特性,已被证明可提高植物的耐盐性,但其对辣椒种子引发作用和机制尚不明确。为揭示CeO2NPS种子引发处理辣椒对盐胁迫下的萌发及幼苗生长的影响,以辣椒品种(Capsicum annuum)茂蔬360为试验材料,设置了7个CeO2NPS浓度(0、0.05、0.1、0.2、0.3、0.4、0.5 mmol·L-1),以未引发处理组为对照,研究不同浓度CeO2NPS种子引发处理后对盐胁迫下辣椒种子萌发、幼苗生物量和生理生化指标的影响。结果表明:(1)0.5 mmol·L-1 CeO2NPS种子引发处理后的种子,其可溶性蛋白质、脯氨酸含量和过氧化氢酶(CAT)活性、抗坏血酸(AsA)含量和AsA/DHA比值显著提高,超氧阴离子(O2-)含量显著降低; 盐胁迫下,该处理种子的发芽率、发芽势、发芽指数、活力指数最大。(2)0.4 mmol·L-1 CeO2NPS种子引发处理的幼苗在盐胁迫下的鲜重、干重和根长最大,幼苗的可溶性蛋白质、AsA含量和AsA/DHA比值均显著提高。综上认为,CeO2NPS引发处理不仅可通过降低种子水势、促进贮藏物质代谢和提高抗氧化能力提高种子在盐胁迫下的发芽率,还可在苗期通过增强蛋白合成和抗坏血酸-谷胱甘肽循环(AsA-GSH)促进盐胁迫下幼苗的生长。  相似文献   

16.
化感作用是外来植物土荆芥( Chenopodium ambrosioides)成功入侵的机制之一。为了探讨土荆芥挥发油的化感作用机制,该文以蚕豆( Vicia faba)叶的下表皮为材料,将表皮条孵育在分别含土荆芥挥发油、α-萜品烯和对伞花素的MES [2-( N-morpholino) ethanesulfonic acid]缓冲液中,25℃下光照培养30 min,采用吖啶橙/溴乙锭( AO/EB)双荧光染色法和Feulgen染色法,研究土荆芥挥发油、α-萜品烯和对伞花素对保卫细胞活性和细胞核形态的影响。结果表明:在土荆芥挥发油、α-萜品烯和对伞花素的作用下,蚕豆气孔保卫细胞活性降低,细胞核出现固缩、畸形或降解等细胞凋亡特征。随着处理剂量增加,保卫细胞活性显著下降,核异常率显著增加,表明土荆芥挥发油、α-萜品烯和对伞花素均对蚕豆保卫细胞具有细胞毒性,其中,挥发油毒性最大,α-萜品烯的毒性次之,对伞花素的毒性最小;Caspase抑制剂Z-VAD-FMK可缓解挥发油、α-萜品烯和对伞花素对保卫细胞的毒性,提高细胞活性,这种缓解效应随着抑制剂浓度的增加而增大。由此可见,土荆芥挥发油、α-萜品烯和对伞花素诱导蚕豆保卫细胞发生了Caspase依赖性的细胞凋亡。  相似文献   

17.
Wang X  Li Y  Ji W  Bai X  Cai H  Zhu D  Sun XL  Chen LJ  Zhu YM 《Journal of plant physiology》2011,168(11):1241-1248
Tonoplast intrinsic protein (TIP) is a subfamily of the aquaporin (AQP), also known as major intrinsic protein (MIP) family, and regulates water movement across vacuolar membranes. Some reports have implied that TIP genes are associated with plant tolerance to some abiotic stresses that cause water loss, such as drought and high salinity. In our previous work, we found that an expressed sequence tag (EST) representing a TIP gene in our Glycine soja EST library was inducible by abiotic stresses. This TIP was subsequently isolated from G. soja with cDNA library screening, EST assembly and PCR, and named as GsTIP2;1. The expression patterns of GsTIP2;1 in G. soja under low temperature, salt and dehydration stress were different in leaves and roots. Though GsTIP2;1 is a stress-induced gene, overexpression of GsTIP2;1 in Arabidopsis thaliana depressed tolerance to salt and dehydration stress, but did not affect seedling growth under cold or favorable conditions. Higher dehydration speed was detected in Arabidopsis plants overexpressing GsTIP2;1, implying GsTIP2;1 might mediate stress sensitivity by enhancing water loss in the plant. Such a result is not identical to previous reports, providing some new information about the relationship between TIP and plant abiotic stress tolerance.  相似文献   

18.
Protein kinase Cα (PKCα) is a classical PKC isoform whose involvement in cell death is not completely understood. Bax, a major member of the Bcl-2 family, is required for apoptotic cell death and regulation of Bax translocation and insertion into the outer mitochondrial membrane is crucial for regulation of the apoptotic process. Here we show that PKCα increases the translocation and insertion of Bax c-myc (an active form of Bax) into the outer membrane of yeast mitochondria. This is associated with an increase in cytochrome c (cyt c) release, reactive oxygen species production (ROS), mitochondrial network fragmentation and cell death. This cell death process is regulated, since it correlates with an increase in autophagy but not with plasma membrane permeabilization. The observed increase in Bax c-myc translocation and insertion by PKCα is not due to Bax c-myc phosphorylation, and the higher cell death observed is independent of the PKCα kinase activity. PKCα may therefore have functions other than its kinase activity that aid in Bax c-myc translocation and insertion into mitochondria. Together, these results give a mechanistic insight on apoptosis regulation by PKCα through regulation of Bax insertion into mitochondria.  相似文献   

19.
成团泛菌YS19是从水稻“越富”品种中分离的一种优势内生细菌,与宿主水稻互作时具有多种促生作用,其形成的共质体(symplasmata)结构与菌体抗逆及与宿主互作有重要意义.研究发现了一种在YS19共质体形成阶段高表达的差异蛋白,对其用肽指纹图谱进行鉴定,发现其属于周质空间麦芽糖结合蛋白家族.克隆了该蛋白质的基因,重组表达并分离纯化了该蛋白质,发现它是一种兼职功能蛋白,其不仅参与麦芽糖的ABC运输系统,而且在强酸环境下不易发生变性沉淀,并可通过疏水面的显著暴露结合底物蛋白来发挥分子伴侣活性,这些兼职功能构成了菌体抗逆生存适应性的重要分子基础.  相似文献   

20.
In this study, the gene encoding Bacillus sp. HJ171 uracil-DNA glycosylase (Bsp HJ171 UDG) was cloned and sequenced. The Bsp HJ171 UDG gene consists of a 738-bp DNA sequence, which encodes for a protein that is 245-amino-acid residues in length. The deduced amino acid sequence of the Bsp HJ171 UDG had a high sequence similarity with other bacterial UDGs. The molecular mass of the protein derived from this amino acid sequence was 27.218 kDa. The Bsp HJ171 UDG gene was expressed under the control of a T7lac promoter in the pTYB1 plasmid in Escherichia coli BL21 (DE3). The expressed enzyme was purified in one step using the Intein Mediated Purification with an Affinity Chitin-binding Tag purification system. The optimal temperature range, pH, NaCl concentration, and KCl concentration of the purified enzyme was 20–25°C, 8.0, 25 and 25 mM, respectively. The half-life of the enzyme at 40°C and 50°C were approximately 131 and 45 s, respectively. These heat-labile characteristics enabled Bsp HJ171 UDG to control carry-over contamination in the polymerase chain reaction product (PCR) without losing the PCR product. G.A. Kim and M.S. Lee contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号