首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There have been intensive attempts to establish reliable in vitro production (IVP) and cryopreservation methods of embryos in pigs. Although a great deal of progress has been made, current IVP systems and cryopreservation still suffer from insufficient cytoplasmic abilities of in vitro matured oocytes, polyspermic fertilization, poor quality of in vitro produced embryos and low efficiency of embryo cryopreservation. Compared to other mammalian species, pig oocytes and embryos are characterized by large amounts of lipid content stored mainly in the form of lipid droplets in the cytoplasm. This fact has a negative influence on biotechnological applications on porcine oocytes and embryos. In this review, we will discuss recent studies about methods and techniques for modifying porcine embryo IVP system and embryo cryopreservation that produces high quality of pig blastocysts using in vitro maturation, in vitro fertilization, in vitro culture, microsurgical manipulation, addition of protein, the use of cytoskeleton stabilizing agents and various physical methods. The presented methods and techniques make it possible to modify the characteristics of oocytes and embryos and thus may become major tools in mammalian gamete and embryo agricultural or biotechnological applications in the future.  相似文献   

2.
In vitro production (IVP) has been shown to affect embryonic gene expression and often result in large offspring syndrome (LOS) in cattle and sheep. To dissect the effects of in vitro maturation, fertilization and culture on bovine embryos, we compared the expression profiles of single blastocysts generated by: (1) in vitro maturation, fertilization and culture (IVF); (2) in vivo maturation, fertilization and in vitro culture (IVD); and (3) in vivo maturation, fertilization and development (AI). To conduct expression profiling, total RNA was isolated from individual embryos, linearly amplified and hybridized to a custom bovine cDNA microarray containing approximately 6,300 unique genes. There were 306, 367, and 200 genes differentially expressed between the AI and IVD, IVF and IVD, and AI and IVF comparisons, respectively. Interestingly, 44 differentially expressed genes were identified between the AI embryos and both the IVF and IVD embryos, making these potential candidates for LOS. There were 60 genes differentially expressed between the IVF embryos and the AI and IVD embryos. The Gene Ontology category "RNA processing" was over-represented among the genes that were down-regulated in the IVF embryos, indicating an effect of in vitro oocyte maturation/fertilization on the ability to transcribe maternal RNA stores. A culture effect on the expression of genes involved in translation was also observed by the comparison of AI with IVD embryos.  相似文献   

3.
Progress in reproductive biotechnology in swine.   总被引:4,自引:0,他引:4  
H Niemann  D Rath 《Theriogenology》2001,56(8):1291-1304
This article summarizes recent progress in reproductive biotechnology in swine with special reference to in vitro production of embryos, generation of identical multiples, and transgenic pigs useful for xenotransplantation. In vitro production (in vitro maturation, in vitro fertilization, and in vitro culture) of viable porcine embryos is possible, although with much lower success rates than in cattle. The main problems are insufficient cytoplasmic maturation of porcine oocytes, a high proportion of polyspermic fertilization and a low proportion of blastocysts that, in addition, are characterized by a low number of cells, hampering their development in vivo upon transfer to recipients. Microsurgical bisection of morula and blastocyst stage embryos leads to a 2 to 3% monozygotic twinning rate of the transferred demiembryos, which is similar to that in rabbits and mice but considerably lower than in ruminants. It was found that with decreasing quality an increasing proportion of demi-embryos did not possess an inner cell mass. Porcine individual blastomeres derived from 4- and 8-cell embryos can be cultured in defined medium to the blastocyst stage. Leukemia inhibitory factor has been shown to be effective at defined embryonic stages and supports the formation of the inner cell mass in cultured isolated blastomeres in a concentration-dependent manner. For maintaining pregnancies with micromanipulated porcine embryos, it is not necessary to transfer extraordinarily high numbers of embryos. Porcine nuclear transfer is still struggling from the inefficiency of producing normally functioning blastocysts. Blastomeres, blastocyst-derived cells, fibroblasts and granulosa cells have been employed as donor cells in porcine nuclear transfer and have yielded blastocysts. Recently, the generation of the first piglets from somatic cell nuclear transfer has been achieved. DNA-microinjection into pronuclei of porcine zygotes has reliably resulted in the generation of transgenic pigs, which have special importance for the production of valuable pharmaceutical proteins in milk and xenotransplantation. It has been demonstrated that by expression of human complement regulatory proteins in transgenic pigs the hyperacute rejection response occurring after xenotransplantation can be overcome in a clinically relevant manner. Although biotechnological procedures in swine have recently undergone tremendous progress, the development is still lagging behind that in cattle and sheep. With regard to genetic engineering, considerable progress will originate from the possibility of employing homologous recombination in somatic cell lines and their subsequent use in nuclear transfer. In combination with the increasing knowledge in gene sequences this will allow in the foreseeable future widespread use in the pig industry either for agricultural or biomedical purposes.  相似文献   

4.
The beneficial properties of green tea and especially of its principal active polyphenol, epigallocatechin-3-gallate (EGCG), have led to an increased demand for dietary supplements with highly enriched EGCG concentrations. In order to investigate the possible reproductive-related consequence of EGCG supplementation, the effects of this catechin on in vitro maturation (IVM) and fertilization (IVF) of oocyte, using the pig as experimental model, were examined. In the first series of experiments EGCG, at concentrations ranging from 0 to 25 microg/ml, was added during in vitro maturation of pig oocytes. EGCG had no effect on nuclear maturation of pig oocytes and on fertilization traits considered after IVF at any of the doses tested. By contrast, a significant (p<0.05) decrease in the number of embryos that developed to blastocysts following parthenogenetic activation was recorded when 25 microg/ml EGCG was added to IVM medium; in addition this catechin concentration significantly (p<0.05) inhibited progesterone production by cumulus cells after 48 h of culture. When induction of sperm capacitation was performed in presence of EGCG, a significantly lower percentage of spermatozoa showing a Hsp70-capacitated pattern and a significant reduction of sperm H(2)O(2) production were evident at a concentration of 25 microg/ml EGCG (p<0.05). During gamete coincubation EGCG reduced, in a dose response manner, the number of reacted spermatozoa suspended in fertilization medium and increased the number of sperm bound to ZP. Supplementation of 10 microg/ml EGCG during IVF significantly increased the fertilization rate while higher EGCG concentrations (25 microg/ml) decreased the percentage of fertilized oocytes (p<0.05). In conclusion, our data suggest that high EGCG concentrations could affect in vitro maturation and fertilization in pig; it cannot be totally excluded that excessive EGCG concentrations could induce reproductive-related consequences also in vivo.  相似文献   

5.
Various factors, such as quality of the oocyte, oxygen tension, embryo density, and kind of energy substrate during in vitro production of embryos may affect the rate of preimplantation embryo development. In the present study we used 12553 bovine oocytes aspirated from slaughterhouse ovaries to evaluate various culture conditions that would increase in vitro production of advanced stages of preimplantation embryos. The morphological quality of the oocyte based on the compactness and number of layers of cumulus cells had significant positive effects on the rates of in vitro maturation, fertilization and development to the morula and blastocyst stages. None of the corona-enclosed or nude oocytes progressed beyond the 8- to 16-cell stage. The level of oxygen (5 or 20%) did not affect the proportion of one-cell embryos undergoing cleavage or progressing to morula and blastocyst stages. The rate of development of one-cell embryos originating from inferior quality oocytes was significantly improved when cultured in groups of 40 instead of 20 embryos per 0.5 mL medium. In the presence of cumulus cells, glucose had beneficial effects on in vitro maturation and subsequent development of IVM-IVF zygotes. The presence of serum improved the rate of in vitro development of one-cell embryos. Minimum Essential Medium supplemented with energy substrates according to the findings of metabolic studies was less effective in supporting in vitro maturation and subsequent development than TCM-199. In conclusion, morphological grading of immature oocytes is an appropriate selection criterion for their developmental ability. Embryo yields from low quality oocytes can be increased by culturing them in large groups. Serum is not essential for in vitro generation of embryos but its addition improves rates of success.  相似文献   

6.
Viability of equine embryos produced by oocyte maturation, intracytoplasmic sperm injection and embryo culture to the blastocyst stage in vitro was evaluated after transfer of embryos to recipient mares. No pregnancies were produced after transfer of five blastocysts that had been cultured in G media. Transfer of 10 blastocysts cultured in modified DMEM/F-12 medium produced five pregnancies and three live foals; the two lost pregnancies developed only trophoblast (based on transrectal ultrasonography). To evaluate the status of the inner cell mass, equine blastocysts produced in vivo and in vitro were assessed after differential staining. A discrete inner cell mass could not be appreciated in blastocysts of either source after staining; this was attributed to the presence of a network of cells within the trophoblastic vesicle. Because increased medium calcium concentrations have been reported to decrease the incidence of trophoblast-only pregnancy after transfer of equine nuclear transfer embryos, we investigated the effect of increased calcium concentrations during oocyte maturation or during embryo culture. Increasing calcium concentration of culture medium from 2 to 5.6mM during in vitro oocyte maturation did not affect maturation rate (75 and 68%, respectively) or blastocyst development after fertilization (23 and 27%). However, increasing calcium concentration (from 1.3 to 4.9 mM) of medium used for embryo culture significantly decreased blastocyst development (27% versus 13%, respectively) and adversely affected embryo morphology. More work is needed to optimize culture systems for in vitro production of equine embryos.  相似文献   

7.
The objective of the development of assisted reproduction techniques in dogs and cats is their application to non-domestic canine and feline species, most of which are considered threatened or endangered. Among these techniques, an entirely in vitro system for embryo production is effectively an important tool for conservation of wildlife. In the last decade, progress has been made in embryo production in carnivores. It has been shown that canine oocytes can resume meiosis in vitro and that these oocytes can be fertilized and developed in vitro, although at a much lower rate than most other domestic animal oocytes. The reason lies in the dissimilarities of reproductive physiology of the dog compared to other species and the lack of precise information concerning the oviductal environment, in which oocyte maturation, fertilization and early embryonic development take place. Successful in vitro embryo production in the domestic cat has been attained with oocytes matured in vitro, and kittens were born after transfer of IVM/IVF derived embryos. On the basis of these results the in vitro fertilization of oocytes has also been applied in several non-domestic feline species. The effectiveness of such protocols in the preservation of genetic material of rare species can be improved by developing better techniques for long-term storage of gametes. In dogs and cats sperm cells have been successfully frozen and the cryopreservation of oocytes would greatly increase their availability for a range of reproductive technologies. Cryopreserved cat oocytes can be fertilized successfully and their development in vitro after fertilization is enhanced when mature oocytes are frozen. Thus refined techniques of oocyte maturation and fertilization in vitro coupled with oocyte cryopreservation could allow for an easy establishment of genetic combinations when male and female gametes in the desired combination are not simultaneously available, and the propagation of endangered carnivores would be facilitated.  相似文献   

8.
Porcine follicular fluid (pFF), as a supplement of maturation media, has been shown several times to improve the in vitro production (IVP) of porcine embryos. As a transudate of serum, pFF contains locally produced factors in addition to the ones derived from serum. The objective of this study was to determine the additional positive effects of these pFF specific factors on the nuclear and cytoplasmic maturation of porcine oocytes. Follicular fluid and autologous serum were collected from sows in the preovulatory phase of the estrous cycle. Subsequently, oocytes from prepubertal gilts were matured in NCSU23 supplemented with either 10% pFF or 10% autologous serum derived from the same sow. Oocytes were then fertilized and the putative zygotes were cultured for 7 days. Nuclear maturation and cumulus expansion were assessed after the maturation culture. For evaluation of cytoplasmic maturation, oocyte glutathione (GSH) content, fertilization parameters and embryonic development were evaluated. After in vitro maturation (IVM) of the oocytes, both cumulus expansion rate and oocyte GSH content were increased for oocytes matured in pFF (P<0.05). More monospermic penetration was found when cumulus-intact oocytes had been matured in 10% pFF but this effect was lost after fertilization of cumulus denuded oocytes indicating that the pFF was acting through the cumulus. We speculate that the increased cumulus expansion and increased glutathione content, which were prevalent after IVM in pFF, are responsible for the positive effects on fertilization and the pre-implantation development of the embryos.  相似文献   

9.
Development of assisted reproductive technologies in horses has been relatively slow compared to other domestic species, namely ruminants and pigs. The scarce availability of abattoir ovaries and the lack of interest from horse breeders and breed associations have been the main reasons for this delay. Progressively though, the technology of oocyte maturation in vitro has been established followed by the application of ICSI to achieve fertilization in vitro. Embryo culture was initially performed in vivo, in the mare oviduct or in the surrogate sheep oviduct, to achieve the highest embryo development, in the range of 18-36% of the fertilised oocytes. Subsequently, the parallel improvement of in vitro oocyte maturation conditions and embryo culture media has permitted high rates of embryo development from in vitro matured and in vitro cultured ICSI embryos, ranging from 5 to 10% in the early studies to up to 38% in the latest ones. From 2003, with the birth of the first cloned equids, the technology of somatic cell nuclear transfer has also become established due to improvement of the basic steps of embryo production in vitro, including cryopreservation. Pregnancy and foaling rates are still estimated based on a small number of in vitro produced equine embryos transferred to recipients. The largest set of data on non-surgical embryo transfer of in vitro produced embryos, from ICSI of both abattoir and in vitro-matured Ovum Pick Up (OPU) oocytes, and from somatic cell nuclear transfer, has been obtained in our laboratory. The data demonstrate that equine embryos produced by OPU and then cryopreserved can achieve up to 69% pregnancy rate with a foaling rate of 83%. These percentages are reduced to 11 and 23%, respectively, for cloned embryos. In conclusion, extensive evidence exists that in vitro matured equine oocytes can efficiently develop into viable embryos and offspring.  相似文献   

10.
For production of viable somatic cell nuclear transferred (SCNT) miniature pig embryos, in vitro condition for controlling the quality of recipient oocytes derived from domestic pig ovaries should be evaluated. In the present study, to get information on optimal in vitro maturation (IVM) condition of oocytes, we investigated the effect of IVM duration of recipient oocytes on subsequent development of SCNT miniature pig embryos, the maturation-promoting factor (MPF) activity in recipient oocytes before and after SCNT, and the occurrence of premature chromosome condensation (PCC) and spindle morphologies of donor nuclei following SCNT. The optimal window of the IVM period in terms of in vitro developmental ability of SCNT embryos was determined to be 36-40 h after the start of IVM. The use of recipient oocytes matured for 36 and 40 h resulted in a high level of MPF activity before and after SCNT, and increased the occurrence of PCC in transferred nuclei compared to the use of oocytes matured for 44 and 52 h. The proportion of abnormal spindle-like structures increased as the IVM period was prolonged. In addition, SCNT embryos constructed from recipient cytoplasts obtained after 40 h of maturation by using fetal fibroblasts of miniature pigs were transferred to surrogate miniature pigs, and developed to full term. These results suggest that recipient oocytes matured for 36 h and 40 h effectively induce PCC with a normal cytoskeletal structure because of a high level of MPF activity; furthermore, the 40-h IVM period improves in vitro development of SCNT embryos to the blastocyst stage, resulting in the production of viable cloned miniature pigs.  相似文献   

11.
In vitro maturation and fertilization of cattle oocytes and subsequent in vitro culture of zygotes and embryos is discussed in the context of recent encouraging data. Mass production of embryos produced in this way in the future will have a great impact on animal production and animal breeding plans, for example the so-called MO-ET (multiple ovulation and embryo transfer) plan which aims at establishing nucleus breeding herds.  相似文献   

12.
In vitro systems are commonly used for the production of bovine embryos. Comparisons between in vivo and in vitro produced embryos illustrate that the morphology of preimplantation-stage embryos differ significantly, the survival of embryos and fetuses is decreased, the size distributions of the populations of conceptuses and fetuses are altered throughout gestation, and placental development is significantly changed. Taken together these findings indicate that exposure to some in vitro environments during the first 7 days of life can profoundly influence fetal and placental development in cattle. An understanding of how in vitro oocyte maturation, in vitro fertilization, and embryo culture systems influence both fetal and placental development should result in systems that consistently produce normal embryos, fetuses, and calves.  相似文献   

13.
In vitro production of embryos in swine.   总被引:4,自引:0,他引:4  
In recent years, progress has been achieved in the production of pig embryos through IVM and IVF techniques. Cytoplasmic maturation of oocytes has been improved by modifications to IVM procedures. However, the historical problem of polyspermic penetration still remains a major issue to be solved. Recent studies indicate that the type of IVF medium and certain modifications to that medium can reduce polyspermy. Efforts should be directed to increase the developmental competence and quality of embryos. At present, many embryo culture (EC) media are available that can overcome the historical 4-cell block and support development of early in vivo derived embryos to the blastocyst stage. In contrast, blastocyst development of in vitro produced embryos in these culture media varies significantly. Furthermore, morphology and cell numbers in in vitro produced blastocysts are inferior to their in vivo counterparts. However, several modifications to EC techniques have improved embryo quality and developmental competence. Testing embryo viability through surgical transfer to recipient animals has resulted in acceptable pregnancy rates with moderate litter sizes. Although reliable in vitro systems are available for the generation of pig embryos, the problem of polyspermy and poor embryo development hamper their large-scale implementation. Further research efforts should be directed to improve oocyte/embryo quality and the methods to minimize polyspermy through development of novel IVM, IVF, and EC techniques.  相似文献   

14.
Eckert J  Niemann H 《Theriogenology》1995,43(7):1211-1225
This study examined the role of protein supplementation at the various steps of the in vitro production of bovine embryos derived from two different morphological categories of COC. The basic medium was TCM 199 and was supplemented with hormones during maturation in vitro and either estrous cow serum (ECS), bovine serum albumin (BSA) at various concentrations or polyvinyl-alcohol (PVA). Fertilization in vitro was carried out using frozen-thawed semen or one bull in Fert-talp containing heparin, hypotaurin and epinephrine and either 6 mg/ml BSA or 1 mg/ml PVA. In vitro culture up to the blastocyst stage was performed in TCM 199 supplemented with either ECS, BSA or PVA. The first experiment investigated the influence of different medium-supplements (ECS, BSA or PVA) on nuclear maturation and revealed no significant differences among treatment groups nor between categories of COC (63.9% to 74.9% and 48.9% to 77.0%, respectively). The time course of in vitro fertilization was elucidated in Experiment 2 in medium supplemented with either protein or PVA during maturation and fertilization. Penetration was not affected (70.9% to 79.3% penetration 12 h after onset of oocyte-sperm-co-incubation), but formation of pronuclei was decreased (P < 0.05) 12 and 19 h after onset of oocyte-sperm-co-incubation and was retarded in medium supplemented with PVA (12 h: 63.8 vs 21.4 %; 19 h: 57.5 vs 20.8 %, respectively) while cleavage was not affected. In Experiment 3, six treatment groups were formed in which the two different morphological categories of cumulus-oocyte-complexes (COC) were incubated in basic medium supplemented with 1) ECS during maturation and embryo culture and BSA during fertilization; 2) PVA during maturation and embryo culture, fertilization medium with PVA; 3) PVA during maturation and embryo culture, fertilization medium with BSA; 4) BSA (1 mg/ml) during maturation, fertilization and embryo culture; 5) BSA (6 mg/ml) during maturation, fertilization and embryo culture; and 6) BSA (10 mg/ml) during maturation, fertilization and embryo culture. The rates of cleavage and the development to morulae or blastocysts did not differ (P > 0.05) among treatment groups and between both categories of COC and were showing a high degree of variability (cleavage 54.0% to 65.1% and 41.3% to 55.7%, respectively; morulae 25.3% to 53.0% and 26.0% to 51.2%, respectively; blastocysts 5.4% to 24.7% and 0.6% to 20.3%, respectively). Parthenogenetic activation only rarely occurred in medium containing PVA throughout all steps of in vitro production of bovine embryos (Experiment 4) and led to early cleavage stages (8%), but no development to morula- or blastocyst-stages was observed. It is concluded that 1) formation of pronuclei was retarded in medium lacking protein-supplementation, indicating that BSA is required for regular fertilization in vitro and 2) under our experimental conditions, protein-supplementation is not necessary for maturation and development up to the blastocyst stage in vitro.  相似文献   

15.
《Small Ruminant Research》2010,90(2-3):144-148
Assisted reproductive technologies (ART) such as artificial insemination (AI) and multiple ovulation and embryo transfer (MOET) have been used to increase reproductive efficiency and accelerate genetic gain. The principal limitations of MOET are due to variable female response to hormonal treatment, fertilization failures and premature regression of Corpora luteum. The in vitro production (IVP) of embryos offers the possibility of overcoming MOET limitations. The method of IVP of embryos involves three main steps: in vitro maturation of oocytes (IVM), in vitro fertilization of oocytes (IVF) with capacitated sperm and in vitro culture (IVC) of embryos up to blastocyst stage. Recovering oocytes from live selected females by laparoscopic ovum pick-up (LOPU) and breeding prepubertal females by juvenile in vitro embryo technology (JIVET) will allow a greater production of valuable goats. Also, IVP of goat embryos will provide an excellent source of embryos for basic research on development biology and for commercial applications of transgenic and cloning technologies. Different protocols of IVP of embryos have been used in goats. However oocyte quality is the main factor for embryos reaching blastocyst stage from IVM/IVF/IVC oocytes. One of the principal determinant factors in the results of blastocyst development is the age of the oocyte donor females. In goats, oocytes from prepubertal and adult females do not show differences in in vitro maturation and in vitro fertilization; however the percentage of oocytes reaching blastocyst stage ranges from 12 to 36% with oocytes from prepubertal and adult goats, respectively.  相似文献   

16.
The key research areas of the Department are: in vitro production of embryos, embryo cryopreservation, animal transgenesis, cloning, cytometric semen sexing and evaluation. Research has been focused on the in vitro production of animal embryos, including the development of complex methods for oocyte maturation, fertilization and embryo culture. Moreover, experiments on long-term culturing of late preantral and early antral bovine ovarian follicles have been developed. Studies on the cloning of genetically modified pigs with "humanized" immunological systems have been undertaken. A cloned goat was produced from oocytes reconstructed with adult dermal fibroblast cells. The novel technique of rabbit chimeric cloning for the production of transgenic animals was applied; additionally, the recipient-donor-cell relationship in the preimplantation developmental competences of feline nuclear transfer embryos has been studied. Regarding transgenic animal projects, gene constructs containing growth hormone genes connected to the mMt promoter were used. Modifications of milk composition gene constructs with tissue-specific promoters were performed. Moreover, pigs for xenotransplantation and animal models of human vascular diseases have been produced. Over the last 15 years, our flow cytometry research group has focused its work on new methods for sperm quality assessment and sex regulation. In the 1970s, our team initiated studies on embryo cryopreservation. As a result of vitrification experiments, the world's first rabbits and sheep produced via the transfer of vitrified embryos were born.  相似文献   

17.
In vitro systems for oocyte maturation, fertilization and embryo culture [in vitro production (IVP)] have the potential for more wide-spread use in creative breeding programs for dairy and beef cattle. However, one negative consequence of both IVP and somatic cell nuclear transfer (SCNT) in cattle and other species is that embryos, fetuses, placentas, and offspring can differ significantly in morphology and developmental competence compared with those from embryos produced in vivo. Fetuses and placentas derived from IVP and SCNT embryos may fall within the normal range of development, may have obvious abnormalities such as increased fetal and placental weights, or may have subtle abnormalities such as aberrant development of fetal skeletal muscle, placental blood vessels, and altered metabolism. Failures in physiologic and/or genetic mechanisms essential for proper fetal growth and survival outside of the uterus contribute significantly to pregnancy and neonatal losses. Oversized fetuses are at increased risk of death during parturition and the adverse consequences of severe dystocia may compromise the dam. Collectively, these abnormalities have been referred to as 'large offspring syndrome' or 'large calf syndrome'. Abnormal phenotypes resulting from IVP and SCNT embryos are stochastic in occurrence and they have not been consistently linked to aberrant expression of single genes or specific pathophysiology. Thus, reliable methods of early diagnosis of the condition are not yet available. The objective of this paper is to examine abnormal development of fetuses and placentas resulting from embryos produced using in vitro systems. The term 'abnormal offspring syndrome (AOS)' is introduced and a classification system of developmental outcomes is proposed to facilitate research efforts on the mechanisms of the various abnormal phenotypes. We also discuss potential genetic and physiologic mechanisms that may contribute to abnormal phenotypes following transfer of IVP and SCNT embryos.  相似文献   

18.
Bovine morulae and blastocysts were either produced in vitro through maturation, fertilization and culture of immature oocytes recovered from slaughterhouse-derived ovaries, collected in vivo or obtained after 24 h in vitro culture of in vivo collected embryos. The morulae and blastocysts were classified into four categories of embryo quality and two stages of embryonic development. Embryos were frozen by a controlled freezing method using 10% glycerol as a cryoprotectant. The ability of individual embryos to withstand freeze/thawing was measured immediately before and after cryopreservation by changes in CO2 production from (U-14C)glucose during a 2 h incubation period in a non-invasive closed system immediately before and after cryopreservation. Post-thaw survival was assessed by development in vitro during a 48 h culture period. Survival rates and oxidative metabolism after freeze/thawing were similar in embryos of the two developmental stages. However, after freeze/thawing, the rate of CO2 production of in vitro produced embryos was reduced to one half of their pre-freeze levels and was associated with poor survival rates. In vivo collected embryos had a significantly better tolerance to freezing and higher survival rates. However, when in vivo embryos were exposed to in vitro culture conditions, the rates of CO2 production and survival were significantly reduced. Pre-freeze embryo quality affected post-thaw in vitro development and metabolic activity markedly in embryos produced in vitro or pre-exposed to in vitro culture conditions. While there was no relationship between pre-freeze levels of CO2 production and post-thaw in vitro embryo development, all embryos which developed in vitro after freezing/thawing retained at least 58% of the pre-freeze levels of CO2 production regardless of their origin. Results of the present study indicate that embryos produced in vitro or pre-exposed to in vitro culture conditions are more sensitive to cryo-injury. This sensitivity is affected by embryo quality and is similarly reflected at the biochemical level. Determination of oxidative metabolism offers a feasibility for selection of viable morulae/blastocysts after freezing/thawing.  相似文献   

19.
20.
Techniques for in vitro production (IVP) of viable embryos have been thoroughly developed in several domestic species in view to improve breeding efficiency. When applied to wild life, these techniques may also help the maintenance of biodiversity through amplification of sparse animals offspring and facilitation of genetic material exchange. During the successive steps of IVP, i.e. oocyte in vitro maturation (IVM), fertilization (IVF) and early embryo development (IVD) to the blastocyst stage, gametes and embryos are faced with unusual environment, including oxidative stress, known to be detrimental to their survival. In the present study, starting from methods developed in domestic species, we have adapted IVP to produce viable red deer embryos. In a first experiment, cumulus cells were removed from in vitro matured oocytes either before or after IVF. The presence of cumulus cells during IVF did not affect final cleavage or development rates. In a second experiment, in vitro matured oocytes were fertilized in the presence of cumulus cells and cultured in SOFaaBSA medium alone or in the presence of ovine oviduct epithelial cell (oOEC) monolayer. Whereas, oviduct cells did not improve the cleavage rate, they significantly increased the rate of embryos reaching the blastocyst stage (from 3 to 25% of total oocytes). Ten blastocysts from oOEC coculture were transferred after freezing and thawing to five recipient hinds and gave rise to three pregnancies. The three pregnant hinds gave birth to three live and normal calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号