首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When myo-[3H]inositol-prelabelled primary-cultured murine bone-marrow-derived macrophages were challenged with platelet-activating factor (PAF; 200 ng/ml), there was a rapid (2.5-fold at 10 s) rise in the intracellular concentration of D-myo-[3H]inositol 1,4,5-trisphosphate, followed by a rise in myo-[3H]inositol tetrakisphosphate. myo-[3H]Inositol tetrakisphosphate fractions were isolated by high-performance anion-exchange chromatography from myo-[3H]inositol-prelabelled chick erythrocytes and primary-cultured macrophages. In both cases [3H]iditol and [3H]inositol were the only significant products (greater than 90% of recovered radioactivity) after oxidation to completion with periodic acid, reduction with NaBH4 and dephosphorylation with alkaline phosphatase. The presence of [3H]inositol after this procedure is consistent with the occurrence of [3H]inositol 1,3,4,5-tetrakisphosphate in the cell extracts, whereas [3H]iditol could only be derived from D- or L-inositol 1,4,5,6-tetrakisphosphate. When [3H]inositol tetrakisphosphate fractions obtained from (A) unstimulated macrophages, (B) macrophages that had been stimulated with PAF for 40s or (C) chick erythrocytes were subjected to the above procedure, radioactivity was recovered in these polyols in the following proportions: A, 60-90% in iditol, with 10-40% in inositol; B, total radioactivity increased by a factor of 9.8, 94% being recovered in inositol and 8% in iditol; C, 70-80% in iditol and 20-30% in inositol. [3H]Iditol derived from myo-[3H]inositol tetrakisphosphate fractions from macrophages and chick erythrocytes was oxidized to sorbose by L-iditol dehydrogenase (L-iditol:NAD+2-oxidoreductase, 1.1.1.14) at the same rate as authentic L-iditol. D-[14C]Iditol, derived from D-myo-inositol 1,4,5-trisphosphate, was not oxidized by L-iditol dehydrogenase. This result indicates that the [3H]iditol was derived from L-myo-inositol inositol 1,4,5,6-tetrakisphosphate. The data are consistent with rapid PAF-sensitive synthesis of D-myo-[3H]inositol 1,3,4,5-tetrakisphosphate in macrophages, and demonstrate that L-myo-inositol 1,4,5,6-tetrakisphosphate is synthesized in both mammalian and avian cells. The levels of L-myo-[3H]inositol 1,4,5,6-tetrakisphosphate in primary-cultured macrophages are not acutely sensitive to PAF.  相似文献   

2.
High performance liquid chromatography analysis of supernatants from acid-quenched [3H]inositol-labeled parotid acinar cells revealed an inositol pentakisphosphate and three inositol tetrakisphosphates. Two of the latter were identified as the 1,3,4,5 and 1,3,4,6 isomers, whereas the third was probably a mixture of unknown proportions of the 3,4,5,6/1,4,5,6 enantiomeric pair. Methacholine (100 microM) produced a 40-50-fold increase in the levels of inositol trisphosphate (mainly the 1,3,4 isomer) and inositol 1,3,4,5-tetrakisphosphate, but inositol 1,3,4,6-tetrakisphosphate only increased 5-fold. Levels of inositol 3,4,5,6/1,4,5,6-tetrakisphosphate and inositol pentakisphosphate were unaffected by agonist stimulation. Thus, in parotid cells, an agonist-induced increase in both inositol trisphosphate and inositol 1,3,4,6-tetrakisphosphate formation does not result in an increase in the rate of formation of inositol pentakisphosphate. Following the addition of 100 microM atropine to methacholine-stimulated parotid cells, the levels of [3H]inositol 1,3,4,5-tetrakisphosphate fell rapidly, returning to basal levels within 5 min. Inositol trisphosphate was metabolized more slowly and was still elevated 20-fold above basal 5 min after the addition of atropine. Inositol 1,3,4,6-tetrakisphosphate was metabolized much more slowly (t1/2 approximately 15 min). Inositol 1,3,4-trisphosphate metabolism was examined in parotid homogenates as well as in 100,000 x g cytosolic and particulate fractions. Inositol 1,3,4-trisphosphate was both dephosphorylated and phosphorylated. Two inositol tetrakisphosphate products were formed, namely the 1,3,4,6 and 1,3,4,5 isomers. Over 90% of both kinase and phosphatase activities were found in the cytosolic fractions. The ratio of activities of kinase to phosphatase decreased as the levels of inositol 1,3,4-trisphosphate substrate were increased from 1 nM to 10 microM. These data led to the conclusion that the kinetic parameters of the inositol 1,3,4-trisphosphate kinases and phosphatases are such that in stimulated cells, dephosphorylation of inositol 1,3,4-trisphosphate is greatly favored. Inositol 1,3,4-trisphosphate kinase activity was potently inhibited by inositol 3,4,5,6-tetrakisphosphate (IC50 = 0.1-0.2 microM), which leads us to propose that inositol 3,4,5,6-tetrakisphosphate is an endogenous inhibitor of the kinase.  相似文献   

3.
Metabolism of inositol 1,4,5-trisphosphate was investigated in permeabilized guinea-pig hepatocytes. The conversion of [3H]inositol 1,4,5-trisphosphate to a more polar 3H-labelled compound occurred rapidly and was detected as early as 5 s. This material co-eluted from h.p.l.c. with inositol 1,3,4,5 tetrakis[32P]phosphate and is presumably an inositol tetrakisphosphate. A significant increase in the 3H-labelled material co-eluting from h.p.l.c. with inositol 1,3,4-trisphosphate occurred only after a definite lag period. Incubation of permeabilized hepatocytes with inositol 1,3,4,5-tetrakis[32P]phosphate resulted in the formation of 32P-labelled material that co-eluted with inositol 1,3,4-trisphosphate; no inositol 1,4,5-tris[32P]phosphate was produced, suggesting the action of a 5-phosphomonoesterase. The half-time of hydrolysis of inositol 1,3,4,5-tetrakis[32P]phosphate of approx. 1 min was increased to 3 min by 2,3-bisphosphoglyceric acid. Similarly, the rate of production of material tentatively designed as inositol 1,3,4-tris[32P]phosphate from the tetrakisphosphate was reduced by 10 mM-2,3-bisphosphoglyceric acid. In the absence of ATP there was no conversion of [3H]inositol 1,4,5-trisphosphate to [3H]inositol tetrakisphosphate or to [3H]inositol 1,3,4-trisphosphate, which suggests that the 1,3,4 isomer does not result from isomerization of inositol 1,4,5-trisphosphate. The results of this study suggest that the origin of the 1,3,4 isomer of inositol trisphosphate in isolated hepatocytes is inositol 1,3,4,5-tetrakisphosphate and that inositol 1,4,5-trisphosphate is rapidly converted to this tetrakisphosphate. The ability of 2,3-bisphosphoglyceric acid, an inhibitor of 5-phosphomonoesterase of red blood cell membrane, to inhibit the breakdown of the tetrakisphosphate suggests that the enzyme which removes the 5-phosphate from inositol 1,4,5-trisphosphate may also act to convert the tetrakisphosphate to inositol 1,3,4-trisphosphate. It is not known if the role of inositol 1,4,5-trisphosphate kinase is to inactivate inositol 1,4,5-trisphosphate or whether the tetrakisphosphate product may have a messenger function in the cell.  相似文献   

4.
Addition of 1 mM-carbachol to [3H]inositol-labelled rat parotid slices stimulated rapid formation of [3H]inositol 1,3,4,5-tetrakisphosphate, the accumulation of which reached a peak 20 s after stimulation, and then declined rapidly towards a new steady state. The initial rate of formation of inositol 1,3,4,5-tetrakisphosphate was slower than that for inositol 1,4,5-trisphosphate. The radioactivity in [3H]inositol 1,3,4,5-tetrakisphosphate fell quickly in carbachol-stimulated and then atropine-blocked parotid slices, suggesting that it is rapidly metabolized during stimulation. Parotid homogenates rapidly dephosphorylated inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate and, less rapidly, inositol 1,3,4-trisphosphate. Inositol 1,3,4,5-tetrakisphosphate was specifically hydrolysed to a compound with the chromatographic properties of inositol 1,3,4-trisphosphate. The only 3H-labelled phospholipids that we could detect in parotid slices labelled with [3H]inositol for 90 min were phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Parotid homogenates synthesized inositol tetrakisphosphate from inositol 1,4,5-trisphosphate. This activity was dependent on the presence of ATP. We suggest that, during carbachol stimulation of parotid slices, the key event in inositol lipid metabolism is the activation of phosphatidylinositol 4,5-bisphosphate-specific phospholipase C. The inositol 1,4,5-trisphosphate thus liberated is metabolized in two distinct ways; by direct hydrolysis of the 5-phosphate to form inositol 1,4-bisphosphate and by phosphorylation to form inositol 1,3,4,5-tetrakisphosphate and hence, by hydrolysis of this tetrakisphosphate, to form inositol 1,3,4-trisphosphate.  相似文献   

5.
When [3H]inositol-prelabelled rat parotid-gland slices were stimulated with carbachol, noradrenaline or Substance P, the major inositol trisphosphate produced with prolonged exposure to agonists was, in each case, inositol 1,3,4-trisphosphate. Much lower amounts of radioactivity were present in the inositol 1,4,5-trisphosphate fraction separated by anion-exchange h.p.l.c. Analysis of the inositol trisphosphate head group of phosphatidylinositol bisphosphate in [32P]Pi-labelled parotid glands showed the presence of phosphatidylinositol 4,5-bisphosphate, but no detectable phosphatidylinositol 3,4-bisphosphate. Carbachol-stimulated [3H]inositol-labelled parotid glands contained an inositol polyphosphate with the chromatographic properties and electrophoretic mobility of an inositol tetrakisphosphate, the probable structure of which was determined to be inositol 1,3,4,5-tetrakisphosphate. Since an enzyme in erythrocyte membranes is capable of degrading this tetrakisphosphate to inositol 1,3,4-trisphosphate, it is suggested to be the precursor of inositol 1,3,4-trisphosphate in parotid glands.  相似文献   

6.
Evidence is presented to show that acid extracts of avian erythrocytes prelabelled for 24-48 h with myo-[3H]inositol contain the following myo-[3H]inositol trisphosphates (expressed as a percentage of total myo-[3H]inositol trisphosphates extracted): 36% myo-[3H]inositol 1,4,5-trisphosphate; 33.7% myo-[3H]inositol 1,3,4-trisphosphate; 13% myo-[3H]inositol 3,4,5-trisphosphate; 9.7% myo-[3H]inositol 3,4,6-trisphosphate; 4.4% myo-[3H]inositol 1,4,6-trisphosphate and 3.3% myo-[3H]inositol 1,3,6-trisphosphate. The only phosphatidyl-myo-[3H]inositol bisphosphate that could be detected in [3H]Ins-prelabelled avian erythrocytes was phosphatidyl-myo-[3H]inositol 4,5-bisphosphate. Cellular myo-[3H]inositol 3,4,5-trisphosphate may be synthesized by dephosphorylation of myo-[3H]inositol 3,4,5,6-tetrakisphosphate. D- and L-myo-[3H]inositol 1,4,6-trisphosphate and D- and L-myo-[3H]inositol 1,3,6-trisphosphate may be dephosphorylation products of myo-[3H]inositol 1,3,4,6-tetrakisphosphate.  相似文献   

7.
myo-[3H]Inositol 1,3,4,5,6-pentakisphosphate can be made from myo-[3H]inositol 1,4,5-trisphosphate in a rat brain homogenate or soluble fraction. Although D-myo-inositol 3,4,5,6-tetrakisphosphate can be phosphorylated by a soluble rat brain enzyme to give myo-inositol 1,3,4,5,6-pentakisphosphate, it is not an intermediate in the pathway from myo-inositol 1,4,5-trisphosphate. The intermediates in the above pathway are myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 1,3,4-trisphosphate and myo-inositol 1,3,4,6-tetrakisphosphate [Shears, Parry, Tang, Irvine, Michell & Kirk (1987) Biochem. J. 246, 139-147; Balla, Guillemette, Baukal & Catt (1987) J. Biol. Chem. 262, 9952-9955], and it is catalysed by soluble kinase activities of similar anion-exchange mobility and Mr value. Compounds with chromatographic and chemical properties consistent with the structures myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 1,3,4,6-tetrakisphosphate and myo-inositol 3,4,5,6-tetrakisphosphate are present in avian erythrocytes, human 1321 N1 astrocytoma cells and primary-cultured murine bone-marrow-derived macrophages. The amounts of these inositol tetrakisphosphates rise upon muscarinic cholinergic stimulation of the astrocytoma cells or stimulation of macrophages with platelet-activating factor.  相似文献   

8.
In adrenal glomerulosa cells, angiotensin II stimulates rapid increases in inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4), followed by slower increases in two additional inositol tetrakisphosphate (InsP4) isomers. One of these InsP4 isomers was previously identified as Ins-1,3,4,6-P4 and shown to be a precursor of inositol pentakisphosphate (InsP5). Analysis of the third InsP4 isomer, purified from cultured bovine adrenal cells labeled with [3H]inositol and stimulated by angiotensin II, revealed that the polyol produced by periodate oxidation, borohydrate reduction, and dephosphorylation was [3H]iditol. This finding is consistent with precursor structures of either Ins-1,4,5,6-P4 or Ins-3,4,5,6-P4 (= L-Ins-1,4,5,6-P4) for the third InsP4 isomer. The [3H]iditol was readily converted to [3H]sorbose by the stereospecific enzyme, L-iditol dehydrogenase, indicating that it originated from Ins-3,4,5,6-P4. Chicken erythrocytes labeled with [3H]inositol also contained high levels of Ins-1,3,4,6-P4 and Ins-3,4,5,6-P4, as well as InsP5, but only small amounts of Ins-1,3,4,5-P4. Both [3H]Ins-1,3,4,6-P4 and [3H]Ins-3,4,5,6-P4, but not [3H]Ins-1,3,4,5-P4, were phosphorylated to form InsP5 in permeabilized bovine glomerulosa cells. In addition, InsP5 itself was slowly dephosphorylated to Ins-1,4,5,6-P4, indicating that its structure is Ins-1,3,4,5,6-P5. These results demonstrate that the higher inositol phosphates are metabolically interrelated and are linked to the receptor-regulated InsP3 response by the conversion of Ins-1,3,4-P3 through Ins-1,3,4,6-P4 to Ins-1,3,4,5,6-P5. The source of Ins-3,4,5,6-P4, the other precursor of InsP5, is not yet known but its elevation in angiotensin II-stimulated glomerulosa cells suggests that its formation is also influenced by agonist-regulated processes.  相似文献   

9.
Small amounts of a higher inositol phosphate with chromatographic properties of [3H]inositol (1,3,4,5,6)pentakisphosphate were formed from [3H]inositol (1,4,5)trisphosphate added to homogenates of ovarian follicles of Xenopus laevis, and from [3H]inositol (1,3,4,5)tetrakisphosphate after injection into follicular oocytes. Other intermediate forms of inositol tetrakisphosphate were not detectable. [3H]inositol (1,3,4,5,6)pentakisphosphate prepared from chicken erythrocytes was metabolized in homogenates to an inositol tetrakisphosphate eluting later than the (1,3,4,5) isomer. Activation of receptors in ovarian follicles of Xenopus laevis with acetylcholine or stimulation with injected GTP gamma S caused formation not only of inositol trisphosphate and its expected metabolites but also of small amounts of inositol pentakisphosphate. These results suggest that the latter may be formed from metabolites of inositol (1,4,5)trisphosphate in this tissue during receptor activation.  相似文献   

10.
Carbachol stimulation of muscarinic receptors in rat cortical slices prelabelled with myo-[2-3H]inositol caused the rapid formation of a novel inositol polyphosphate. Evidence derived from its chromatographic behaviour, and from the structure of the products formed in partial dephosphorylation experiments, suggests that it is probably D-myo-inositol 1,3,4,5-tetrakisphosphate. An enzyme in human red cell membranes specifically removes the 5-phosphate from it to form inositol 1,3,4-trisphosphate. It is suggested that inositol 1,3,4,5-tetrakisphosphate is likely to be a second messenger, and that it is the precursor of inositol 1,3,4-trisphosphate and possibly of inositol 1,4,5-trisphosphate.  相似文献   

11.
Activation of the cAMP messenger system was found to cause specific changes in angiotensin-II (All)-induced inositol phosphate production and metabolism in bovine adrenal glomerulosa cells. Pretreatment of [3H]inositol-labeled glomerulosa cells with 8-bromo-cAMP (8Br-cAMP) caused both short and long term changes in the inositol phosphate response to stimulation by All. Exposure to 8Br-cAMP initially caused dose-dependent enhancement (ED50 = 0.7 microM) of the stimulatory action of All (50 nM; 10 min) on the formation of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and its immediate metabolites. This effect of 8Br-cAMP was also observed in permeabilized [3H]inositol-labeled glomerulosa cells in which degradation of Ins(1,4,5)P3 was inhibited, consistent with increased activity of phospholipase-C. Continued exposure to 8Br-cAMP for 5-16 h caused selective enhancement of the All-induced increases in D-myo-inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P4] and myo-inositol 1,4,5,6-tetrakisphosphate. The long term effect of 8Br-cAMP on the 6-phosphorylated InsP4 isomers, but not the initial enhancement of Ins(1,4,5)P3 formation, was inhibited by cycloheximide. The characteristic biphasic kinetics of All-induced Ins(1,4,5)P3 formation were also changed by prolonged treatment with 8Br-cAMP to a monophasic response in which Ins(1,4,5)P3 increased rapidly and remained elevated during All stimulation. In permeabilized glomerulosa cells treated with 8Br-cAMP for 16 h, the conversion of D-myo-inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] to Ins(1,3,4,6)P4 was consistently increased, whereas dephosphorylation of Ins(1,4,5)P3 to D-myo-inositol 1,4-bisphosphate and of D-myo-inositol 1,3,4,5-tetrakisphosphate to Ins(1,3,4)P3, was reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Rat-1 fibroblasts transformed with the v-src oncogene show a 6-fold increase in the apparent amount of an inositol polyphosphate which has a high performance liquid chromatography (HPLC) elution characteristic of the D/L-myo-inositol 1,4,5,6-tetrakisphosphate enantiomeric pair (Johnson, R.M., Wasilenko, W.J., Mattingly, R.R., Weber, M.J., and Garrison, J.C. (1989) Science 246, 121-124). By chemical and enzymatic analysis, the structure of this compound produced in both normal and v-src-transformed rat-1 fibroblasts has been determined to be principally D-myoinositol 1,4,5,6-tetrakisphosphate (D-Ins(1,4,5,6)P4). Chronic stimulation with endothelin-1 in the presence of Li+ significantly increased the amount of D/L-Ins(1,4,5,6)P4 only in the v-src-transformed rat-1 cells, suggesting that production of this compound may be remotely coupled to long term agonist-induced phosphatidylinositol turnover. Further evidence for such a link is provided by the progressive loss of D-Ins(1,4,5,6)P4 from the normal cells deprived of serum stimulation. To define a possible synthetic pathway for D-Ins(1,4,5,6)P4, cytosolic extracts of normal and v-src-transformed cells were incubated with [3H]inositol polyphosphates, and the reaction products were identified by HPLC elution and chemical analysis. Although inositol 1,3,4-trisphosphate 6-kinase activity was prominent in extracts of both normal and transformed cells, only the cytosol from v-src-transformed cells ultimately formed measurable amounts of D-Ins(1,4,5,6)P4 from [3H]inositol 1,3,4-trisphosphate. Approximately 6% of 0.1 microM inositol 1,3,4-trisphosphate was converted to D-Ins(1,4,5,6)P4 during a 2-h incubation at 37 degrees C. Inositol pentakisphosphate was identified as a likely intermediate in this conversion, and extracts of both normal and transformed cells converted [3H]inositol 1,3,4,5,6-pentakisphosphate to D-Ins(1,4,5,6)P4. The synthetic pathway described is consistent with the long term regulation of D/L-Ins(1,4,5,6)P4 levels in rat-1 fibroblasts seen in response to src transformation, serum withdrawal, and chronic endothelin treatment, and identifies several new potential interactions between the pathways of inositol polyphosphate metabolism and those of src transformation.  相似文献   

13.
Lysed mouse thymocytes release [3H]inositol 1,4,5 trisphosphate from [3H]inositol-labelled phosphatidyl inositol 4,5-bisphosphate in response to GTP gamma S, and rapidly phosphorylate [3H]inositol 1,4,5-trisphosphate to [3H]inositol 1,3,4,5-tetrakisphosphate. The rate of phosphorylation is increased approximately 7-fold when the free [Ca2+] in the lysate is increased from 0.1 to 1 microM, the range in which the cytosolic free [Ca2+] increases in intact thymocytes in response to the mitogen concanavalin A. Stimulation of the intact cells with concanavalin A also results in a rapid and sustained increase in the amount of inositol 1,3,4,5-tetrakisphosphate, and a much smaller transient increase in 1,4,5-trisphosphate. Lowering [Ca2+] in the medium from 0.4 mM to 0.1 microM before addition of concanavalin A reduces accumulation of inositol 1,3,4,5-tetrakisphosphate by at least 3-fold whereas the increase in inositol 1,4,5-trisphosphate is sustained rather than transient. The data imply that in normal medium the activity of the inositol 1,4,5-trisphosphate kinase increases substantially in response to the rise in cytosolic free [Ca2+] generated by concanavalin A, accounting for both the transient accumulation of inositol 1,4,5-trisphosphate and the sustained high levels of inositol 1,3,4,5-tetrakisphosphate. Inositol 1,3,4,5-tetrakisphosphate is a strong candidate for the second messenger for Ca2+ entry across the plasma membrane. This would imply that the inositol polyphosphates regulate both Ca2+ entry and intracellular Ca2+ release, with feedback control of the inositol polyphosphate levels by Ca2+.  相似文献   

14.
Inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) metabolism has been studied in liver homogenates and in 100,000 x g supernatant and particulate fractions. When liver homogenates were incubated in an "intracellular" medium containing 5 mM MgATP, equal proportions of Ins(1,3,4)P3 were dephosphorylated and phosphorylated. Two inositol tetrakisphosphate (InsP4) products and an inositol pentakisphosphate (InsP5) were detected. The InsP4 isomers were unequivocally identified as inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) and inositol 1,3,4,6-tetrakisphosphate (Ins(1,3,4,6)P4) by high performance liquid chromatography separation of inositol phosphates, periodate oxidation, alkaline hydrolysis, and stereo-specific polyol dehydrogenase. Ins(1,3,4)P3 5-kinase is a novel enzyme activity and accounted for 16% of the total Ins(1,3,4)P3 phosphorylation. Ins(1,3,4,6)P4 was also shown to be further phosphorylated to inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5) by a kinase not previously known to occur in liver. About 75% of Ins(1,3,4)P3 kinase activities were soluble and were partly purified by anion-exchange fast protein liquid chromatography. The two Ins(1,3,4)P3 kinase activities eluted as a single peak that was well resolved from Ins(1,3,4)P3 phosphatase, Ins(1,3,4,6)P4 5-kinase, and Ins(1,3,4,5)P4 5-phosphatase activities. A further novel observation was that 10 microM Ins(1,3,4,5)P4 inhibited Ins(1,3,4)P3 kinase activities by 60%.  相似文献   

15.
Anion-exchange h.p.l.c. analysis of [3H]inositol phosphates derived from glucose-stimulated isolated pancreatic islets that had been prelabelled with myo-[3H]inositol revealed that the predominant inositol trisphosphate was the 1,3,4-isomer [Ins(1,3,4)P3]. The 1,4,5-isomer [Ins(1,4,5)P3] was also detectable, as was a more polar inositol phosphate with the chromatographic properties of inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. Glucose-induced accumulation of Ins(1,3,4)P3 was augmented by Li+ and occurred after maximal accumulation of Ins(1,4,5)P3. These findings suggest a possible role for Ins(1,3,4)P3 or its probable precursor Ins(1,3,4,5)P4 in stimulus-secretion coupling in pancreatic islets.  相似文献   

16.
The action of carbachol on the generation of inositol trisphosphate and tetrakisphosphate isomers was investigated in dog-thyroid primary cultured cells radiolabelled with [3H]inositol. The separation of the inositol phosphate isomers was performed by reverse-phase high pressure liquid chromatography. The structure of inositol phosphates co-eluting with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] standards was determined by enzymatic degradation using a purified Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphatase. The data indicate that Ins(1,3,4,5)P4 was the only [3H]inositol phosphate which co-eluted with a [32P]Ins(1,3,4,5)P4 standard, whereas 80% of the [3H]InsP3 co-eluting with an Ins(1,4,5)P3 standard was actually this isomer. In the presence of Li+, carbachol led to rapid increases in [3H]Ins(1,4,5)P4. The level of Ins(1,4,5)P3 reached a peak at 200% of the control after 5-10 s of stimulation and fell to a plateau that remained slightly elevated for 2 min. The level of Ins(1,3,4,5)P4 reached its maximum at 20s. The level of inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] increased continuously for 2 min after the addition of carbachol. Inositol-phosphate generation was also investigated under different pharmacological conditions. Li+ largely increased the level of Ins(1,3,4)P3 but had no effect on Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin, which stimulates dog-thyroid adenylate cyclase and cyclic-AMP accumulation, had no effect on the generation of inositol phosphates. The absence of extracellular Ca2+ largely decreased the level of Ins(1,3,4,5)P4 as expected considering the Ca2(+)-calmodulin sensitivity of the Ins(1,4,5)P3 3-kinase. Staurosporine, an inhibitor of protein kinase C, increased the levels of Ins(1,4,5)P3, Ins(1,3,4,5)P4 and Ins(1,3,4)P3. This supports a negative feedback control of diacyglycerol on Ins(1,4,5)P3 generation.  相似文献   

17.
When [3H]inositol-prelabelled N1E-115 cells were stimulated with carbamylcholine (CCh) (100 microM), high K+ (60 mM), and prostaglandin E1 (PGE1) (10 microM), a transient increase in [3H]inositol pentakisphosphate (InsP5) accumulation was observed. The accumulation reached its maximum level at 15 s and had declined to the basal level at 2 min. CCh, high K+, and PGE1 also caused accumulations of [3H]inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], [3H]inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P4], and [3H]inositol hexakisphosphate (InsP6). Muscarine and CCh induced accumulations of [3H]Ins(1,4,5)P3, [3H]-Ins(1,3,4,6)P4, [3H]InsP5, and [3H]InsP6 with a similar potency and exerted these maximal effects at 100 microM, whereas nicotine failed to do so at 1 mM. With a slower time course, CCh, high K+, and PGE1 caused accumulations of [3H]-inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] and [3H]inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In an N1E-115 cell homogenate, [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4, and [3H]Ins(1,3,4)P3 were converted to [3H]InsP5 through [3H]-Ins(1,3,4,6)P4. The above results indicate that Ins(1,3,4,6)P4, InsP5, and InsP6 are rapidly formed by several kinds of stimulants in N1E-115 cells.  相似文献   

18.
N Sasakawa  T Nakaki  R Kato 《FEBS letters》1990,261(2):378-380
When [3H]inositol-prelabeled cultured bovine adrenal chromaffin cells were stimulated with nicotine (10 microM), a large and transient increase in [3H]inositol pentakisphosphate (InsP5) accumulation was observed. The accumulation reached the maximum level at 15 s, then declined to the basal level at 2 min. Nicotine also induced [3H]inositol tetrakisphosphate (InsP4) and [3H]inositol hexakisphosphate (InsP6) accumulation with a slower time course and a lesser magnitude than [3H]InsP5. The peaks of [3H]InsP4, [3H]InsP5 and [3H]InsP6 coincided with those of 32P radioactivity, when cells were doubly labeled with [3H]inositol and inorganic 32P. These results suggest that inositol pentakisphosphate is rapidly increased by nicotine, a cholinergic agonist, in cultured adrenal chromaffin cells.  相似文献   

19.
Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver   总被引:29,自引:0,他引:29  
The inositol lipid pools of isolated rat hepatocytes were labeled with [3H]myo-inositol, stimulated maximally with vasopressin and the relative contents of [3H]inositol phosphates were measured by high performance liquid chromatography. Inositol 1,4,5-trisphosphate accumulated rapidly (peak 20 s), while inositol 1,3,4-trisphosphate and a novel inositol phosphate (ascribed to inositol 1,3,4,5-tetrakisphosphate) accumulated at a slower rate over 2 min. Incubation of hepatocytes with 10 mM Li+ prior to vasopressin addition selectively augmented the levels of inositol monophosphate, inositol 1,4-bisphosphate, and inositol 1,3,4-trisphosphate. A kinase was partially purified from liver and brain cortex which catalyzed an ATP-dependent phosphorylation of [3H]inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. Incubation of purified [3H]inositol 1,3,4,5-tetrakisphosphate with diluted liver homogenate produced initially inositol 1,3,4-trisphosphate and subsequently inositol 1,3-bisphosphate, the formation of which could be inhibited by Li+. The data demonstrate that the most probable pathway for the formation of inositol 1,3,4,5-tetrakisphosphate is by 3-phosphorylation of inositol 1,4,5-trisphosphate by a soluble mammalian kinase. Degradation of both compounds occurs first by a Li+-insensitive 5-phosphatase and subsequently by a Li+-sensitive 4-phosphatase. The prolonged accumulation of both inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in vasopressin-stimulated hepatocytes suggest that they have separate second messenger roles, perhaps both relating to Ca2+-signalling events.  相似文献   

20.
In the rat pancreatoma cell line, AR4-2J, three inositol tetrakisphosphate isomers were identified, (1,3,4,6), (1,3,4,5), (3,4,5,6), which were increased during activation of phospholipase C by bombesin. Two other isomers were identified, (1,4,5,6) and a fifth isomer which was either (1,2,3,4) or (1,2,3,6), which have not previously been detected in any cell type. To study the metabolic interrelationships between these compounds and inositol 1,3,4,5,6-pentakisphosphate in the intact cell, their turnover was assessed under different protocols of [3H]myo-inositol labeling; the inositol phosphates were labeled to near steady state or under conditions where either rapidly or slowly turning over inositol polyphosphates were preferentially labeled. The relative specific radioactivities of inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, inositol 1,3,4-trisphosphate, and inositol 1,3,4,6-tetrakisphosphate were very similar in bombesin-stimulated cells, consistent with the pathway for the conversion of inositol 1,4,5-trisphosphate to the other three inositol polyphosphates. Compared with these inositol phosphates, the turnover of inositol 1,3,4,5,6-pentakisphosphate was slow. An accumulation of radioactivity into inositol 1,3,4,5,6-pentakisphosphate was observed only under labeling conditions where its relative specific radioactivity was substantially below that of inositol 1,3,4,6-tetrakisphosphate. This indicated that the precursor for de novo synthesis of inositol 1,3,4,5,6-pentakisphosphate was inositol 1,3,4,6-tetrakisphosphate. Bombesin stimulated the net breakdown of inositol 1,3,4,5,6-pentakisphosphate and increased the level of inositol 3,4,5,6-tetrakisphosphate; the relative specific radioactivities of these two compounds were similar under all conditions. These data led to the novel proposal that inositol 3,4,5,6-tetrakisphosphate is the product of inositol 1,3,4,5,6-pentakisphosphate breakdown. This reaction was apparently stimulated by a regulated change in the enzyme(s) which interconvert inositol 1,3,4,5,6-pentakisphosphate and inositol 3,4,5,6-tetrakisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号