首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate how an amoeba mechanically moves its own center of gravity using the model organism Physarum plasmodium. Time-dependent velocity fields of protoplasmic streaming over the whole plasmodia were measured with a particle image velocimetry program developed for this work. Combining these data with measurements of the simultaneous movements of the plasmodia revealed a simple physical mechanism of locomotion. The shuttle streaming of the protoplasm was not truly symmetric due to the peristalsis-like movements of the plasmodium. This asymmetry meant that the transport capacity of the stream was not equal in both directions, and a net forward displacement of the center of gravity resulted. The generality of this as a mechanism for amoeboid locomotion is discussed.  相似文献   

2.
The possibility of tight coupling of phospholipase C with the signal pathway PI3K/ PTEN, a ubiquitous mechanism for the control of chemotaxis and cell shape in free-living amoebae and mammalian tissue cells, has been investigated in Physarum polycephalum plasmodium, a multinuclear amoeboid cell with the autooscillatory mode of motility. It was found that on the maintenance of contractile autooscillations and protoplasmic shuttle streaming, U73122, an inhibitor of the signal transduction to phospholipase C, induces degradation of the plasmodium frontal zone, decreases efficiency of locomotion and suppresses the chemotaxis toward glucose as well as the response of oscillator to this attractant. The identity of the effects of U73122 with those shown for wortmannin and LY294002, widely used PI3K inhibitors (Matveeva et al. 2008. Biophysics. 53, 533–538), suggests a tight coupling of the signal pathways of phospholipase C and PI3K/PTEN. U73122 increases the period of contractile oscillations and abolishes its cyclic changes attributed for the plasmodium migration. The results indicate that motile behavior of the plasmodium is under the receptor-mediated control.  相似文献   

3.
Takamatsu A  Fujii T  Endo I 《Bio Systems》2000,55(1-3):33-38
The plasmodium of the true slime mold, Physarum polycephalum, which shows various nonlinear oscillatory phenomena, for example, in its thickness, protoplasmic streaming and concentration of intracellular chemicals, can be regarded as a collective of nonlinear oscillators. The plasmodial oscillators are interconnected by microscale tubes whose dimensions can be closely related to the strength of interaction between the oscillators. Investigation of the collective behavior of the oscillators under the conditions in which the interaction strength can be systematically controlled gives significant information on the characteristics of the system. In this study, we proposed a living model system of a coupled oscillator system in the Physarum plasmodium. We patterned the geometry and dimensions of the microscale tube structure in the plasmodium by a microfabricated structure (microstructure). As the first step, we constructed a two-oscillator system for the plasmodium that has two wells (oscillator part) and a channel (coupling part). We investigated the oscillation behavior by monitoring the thickness oscillation of the plasmodium in the microstructure with various channel widths. It was found that the oscillation behavior of two oscillators dynamically changed depending on the channel width. Based on the results of measurements of the tube dimensions and the velocity of the protoplasmic streaming in the tube, we discuss how the channel width relates to the interaction strength of the coupled oscillator system.  相似文献   

4.
The plasmodium of the true slime mold Physarum polycephalum is a large amoeboid organism that displays “smart” behavior such as chemotaxis and the ability to solve mazes and geometrical puzzles. These amoeboid behaviors are based on the dynamics of the viscoelastic protoplasm and its biochemical rhythms. By incorporating both these aspects, we constructed a mathematical model for the dynamics of the organism as a first step towards understanding the relation between protoplasmic movement and its unusual abilities. We tested the validity of the model by comparing it with physiological observation. Our model reproduces fundamental characteristics of the spatio-temporal pattern of the rhythmic movement: (1) the antiphase oscillation between frontal tip and rear when the front is freely extending; (2) the asynchronous oscillation pattern when the front is not freely extending; and (3) the formation of protoplasmic mounds over a longer time scale. Both our model and physiological observation suggest that cell stiffness plays a primary role in plasmodial behaviors, in contrast to the conventional theory of coupled oscillator systems.  相似文献   

5.
Spatio-temporal organization of a migrating plasmodium was studied both by analysing intracellular concentrations of adenine and cyclic nucleotides and by applying image processing for recording oscillatory changes in thickness with use of microcomputers. ATP and ADP concentrations were about twice as high in the front as in the rear, while AMP distributed uniformly. On the other hand, cAMP and cGMP concentrations were several times higher in the rear than in the front, showing oscillations in between. The cAMP concentrations at the front oscillated with a phase advancing about one-third of the period with respect to the phase of the thickness oscillation, while cGMP concentration there varied only little. ATP concentration oscillated concomitantly with H+. A feedback control loop consisting of (ATP-H+)-cAMP-Ca2+ is proposed. The possible mechanism of rhythmic contractions involving mitochondria which may excrete pulses of Ca2+ and induce cell polarization is discussed.  相似文献   

6.
It has been reported that protoplasmic streaming stops during the synchronous mitosis exhibited by growing plasmodia of P. polycephalum. Our data reveal that at no time during the mitotic cycle did streaming stop. However, during a 3–5 min period at anaphase the percent of each oscillation period accounted for by an outward flow was precisely equal in duration to the corresponding inward flow. At all other periods the duration of outward flow exceeded that of inward flow. Plasmodial migration or locomotion was briefly arrested at telophase, although shuttle streaming persisted.  相似文献   

7.
The Physarum plasmodium reacts tactically to external stimuli. The cell behavior of this giant amoeboid cell was studied by analysing intracellular ATP concentration. The two-dimensional (2D) spatial distribution of ATP depended on cell shape: a polar pattern for a unidirectionally migrating plasmodium, a bowl shape for a circular plasmodium, a hump shape for an oval plasmodium, or a wavy pattern for plasmodia stimulated with blue light or confined in a small chamber, etc. Local external stimulation brought about new patterns of ATP distribution. The ATP concentrations around the stimulated frontal region were reduced by about a half stimulation with KCl (repellent) or casamino acids (attractant). In both cases, migration was inhibited. Migration velocity increased almost linearly with increasing concentration of intracellular ATP above the threshold (about 20 micrograms/mg protein). Under anaerobic conditions or at low temperatures, the intracellular ATP oscillated slowly with a periodicity of about 30 min. Pattern formations in the intracellular ATP concentration and amoeboid coordination are discussed in terms of coupled chemical oscillators in a self-organizing system.  相似文献   

8.
We studied responses of cellular rhythm and light-induced movement to periodic irradiation in a unicellular amoeboid organism, the Physarum plasmodium. The intrinsic frequency of the contraction rhythm, which is based on biochemical oscillations, became synchronized with the frequency of periodic irradiation with light when both frequencies were close enough. In order to study the role of the synchronization in light-induced movement, periodic irradiation was applied to only part of the plasmodium. The rate of avoidance of light was modulated in the frequency band in which the synchronization occurred. The synchronization property of the contraction oscillation underlies the regulation of tactic movement in plasmodium.  相似文献   

9.
The aim of this work is to clarify the role of the electrical activity of the Physarum polycephalum plasmodium in the control of the contractile activity and self-organization of the directed locomotion. This single-celled organism with a non-excitable membrane is a classic object that is used in studies of amoeboid motility. Its patterns of motor behavior and signal systems are common for many tissue cells. The presence of 50 mM KCl in an agar substrate under half of a separate plasmodial strand strongly inhibits the formation of the frontal zone and leads to sharp morphological polarization of the strand, which suggests the involvement of electrical processes in the autowave self-organization of the plasmodial structure. The gigantic sizes of the plasmodium make it possible to record its electrical activity simultaneously at different parts of the cell. It has been established that potentials and currents at parts of the plasmodium that are distant from each other oscillate synchronously and differ only in the shape of the signals, probably due to differences in the phases or the number of excited harmonics. We recorded currents (~50 pA) of single ion channels of the plasmodial membrane using the classical local voltage-clamp method. It has been found that the oscillation spectrum of the current that is generated by the plasmodium has high-frequency fluctuations, which are probably connected with periodic detachments of the membrane from the cytoskeleton during the formation and growth of the pseudopodia. It has been also shown that neomycin, a substrate inhibitor of phospholipase C, prevents oscillations of both the mechanical and electrical activity of the plasmodium. This is consistent with its well-established ability to inhibit mechanosensitive Ca2+ channels, which are apparently present in the plasmodial membrane. These data indicate the presence of a general signal system that is linked with the dynamics of the membrane- cytoskeleton association, which could be involved in the galvano- and chemotaxis of amoeboid cells.  相似文献   

10.
Summary It was shown that the velocity distribution of the intracapillary streaming of protoplasm in a plasmodium ofPhysarum polycephalum is the same no matter whether the flow is spontaneous or whether it is induced artificially by external local air pressure applied to the plasmodium. Thus we conclude that the protoplasmic flow in the plasmodium is caused by local difference in endoplasm pressure. The view that the seat of the motive force responsible for the flow is located in the streaming protoplasm itself is untenable for this type of streaming.  相似文献   

11.
Understanding how biological systems solve problems could aid the design of novel computational methods. Information processing in unicellular eukaryotes is of particular interest, as these organisms have survived for more than a billion years using a simple system. The large amoeboid plasmodium of Physarum is able to solve a maze and to connect multiple food locations via a smart network. This study examined how Physarum amoebae compute these solutions. The mechanism involves the adaptation of the tubular body, which appears to be similar to a network, based on cell dynamics. Our model describes how the network of tubes expands and contracts depending on the flux of protoplasmic streaming, and reproduces experimental observations of the behavior of the organism. The proposed algorithm based on Physarum is simple and powerful.  相似文献   

12.
The electric potential difference (1 to 15 mv.) between two loci of the slime mold connected with a strand of protoplasm changes rhythmically with the same period (60 to 180 seconds) as that of back and forth protoplasmic streaming along the strand. When atmospheric pressure at a part of the plasmodium is increased (about 10 cm. H2O), the electric potential at this part becomes positive (0 to 20 mv.) to another part with a time constant of 2 to 15 minutes. If the atmospheric pressure at a part of the plasmodium is changed (about 10 cm. H2O) periodically, the electric potential rhythm also changes with the same period as that of the applied pressure change, and the amplitude of the former grows to a new level (i.e., forced oscillation). The electric potential rhythm, in this case, is generally delayed about 90° in phase angle from the external pressure change. The period of the electric potential rhythm which coincided with that of the pressure change is maintained for a while after stopping the application of the pressure change, if the period is not much different from the native flow rhythm. Such a pressure effect is brought about by the forced transport of protoplasm and is reversible as a rule. In the statistical analysis made by Kishimoto (1958) and in the rheological treatment made in the report, the rhythmic deformation of the contractile protein networks is supposed to be the cause of the protoplasmic flow along the strand and of the electric potential rhythm. The role of such submicroscopic networks in the protoplasm in various kinds of protoplasmic movement is emphasized.  相似文献   

13.
Summary Oscillations of ectoplasmic contraction in plasmodia of the myxomycetePhysarum polycephalum growing on agar containing semidefined medium were studied to determine if the contractile force is altered during the synchronous mitosis. In interphase the regular oscillations of contraction in the plasmodial sheet had an average period of 0.93 minutes in plasmodia growing at 24 °C. During mitosis the amplitude of these oscillations gradually decreased, ceasing for an average time of 2.7 minutes in 74% of the 23 plasmodia studied. Cessation of oscillating contractions in mitosis was accompanied by a decrease in the width of the channels embedded in the plasmodial sheet, and a decrease in the velocity of endoplasmic shuttle streaming usually to a complete standstill. Of 13 plasmodia in which the mitotic stage was very accurately determined, the stop in oscillating contractions occurred during metaphase in 10 plasmodia, and in prometaphase, anaphase, telophase in the 3 others. The cessation of contractile oscillations or of streaming did not occur absolutely simultaneously during mitosis in widely separated locations within one plasmodium, indicating mitotic asynchrony over a period of a few minutes within each plasmodium. We suggest that the halt of plasmodial migration during mitosis reported by others is caused by a decrease or cessation at slightly different times in the amplitude of ectoplasmic contractile oscillations in different areas of a plasmodium in mitosis resulting in an overall lack of coordination of endoplasmic flow throughout the plasmodium, thus temporarily halting migration. Possible physiological mechanisms linking a decrease in actomyosin contraction with the metaphase stage of mitosis are discussed.  相似文献   

14.
显型原质团是绒泡菌目黏菌的营养生长阶段,其最明显的现象是往返原生质流,但一直并不清楚原生质流反向流动的原因。观察研究了淡黄绒泡菌和全白绒泡菌原质团中的原生质流,结果表明:由于菌脉中堵塞或是在原质团前缘尚未分化通道引起反向原生质流,从而引起原质团多方向生长使原质团前缘呈现扇面状。原生质流总的方向是扇面端,并完成原质团运动。  相似文献   

15.
Summary Electron micrographs of fixed sections of the plasmodium of the classic protoplasmic material,Physarum polycephalum, are presented. Numerous round nuclei having well-defined membranes and containing one to three dense nucleoli were especially prominent in the plasmodium. In the surrounding cytoplasm, many irregular membrane-limited bodies were evident, some containing tiny rod-like elements and others with inner structures resembling mitochondria. In addition, there can be seen many small dense granules plus various vacuoles and other inclusions.  相似文献   

16.
Microinjection of DNAase I, which is known to form a specific complex with G-actin, induces characteristic changes in cytoplasmic streaming, locomotion and morphology of the contractile apparatus of A. proteus. Light microscopical studies show pronounced streaming originating from the uroid and/or the retracting pseudopods, which ceases 10--15 min after injection of DNAase I, at a time when ultrasctructural studies show that the actin filament system is very much reduced. These results suggest that a controlled reversible equilibrium between soluble and polymerized forms of actin is a necessary requirement for amoeboid movement. The topographic distribution of contractile filaments beneath the plasma membrane visualized by correlated light- and electron microscopy of DNAase I-injected cells establishes the importance of the membrane-bound filamentous layer for three major aspects of streaming: (1) Streaming originates by local contractions of a cell membrane-associated filament layer at the uroid and/or retracting pseudopods, creating a pressure flow. (2) This flow continues beneath the membrane, which is stabilized by filaments in the lateral regions between the posterior end, with a high hydrostatic pressure, and the anterior end, with a low hydrostatic pressure. (3) Pseudopods or extending areas are created by a local destabilization of the cell periphery caused by the separation of the filamentous layer from the plasma membrane.  相似文献   

17.
The relationship between cell shape and rhythmic contractile activity in the large amoeboid organism Physarum polycephalum was studied. The organism develops intricate networks of veins in which protoplasmic sol moved to and fro very regularly. When migrating on plain agar, the plasmodium extends like a sheet and develops dendritic veins toward the rear. After a particular stimulation, the vein organization changes into veinless or vein-network structures. In both structures, the mixing rate of the protoplasm, which is related to communication among contraction oscillators, decreased compared with that of the dendritic one. Accompanying these changes in vein structure, the spatio-temporal pattern of the rhythmic contraction changed into a small-structured pattern from a synchronized one. In the above process, cell shape affects the contraction pattern, but, conversely, the contraction pattern effects the cell shape. To demonstrate this, a phase difference in the rhythmic contraction was induced artificially by entraining the intrinsic rhythm to external temperature oscillations. New veins then formed along the direction parallel to the phase difference of the rhythm. Consequently, the vein organization of the cell interacts with the contractile activity to form a feedback loop in a mechanism of contraction pattern formation.  相似文献   

18.
A G Lomagin 《Tsitologiia》1975,17(11):1273-1277
The thermostabilities of the "unordered" and shuttle protoplasmic streamings in myxomycete Physarum polycephalum plasmodia was studied. A comparison of these thermostabilities has revealed that the cessation of the former streaming occurs at temperatures higher than those required for arresting the shuttle streaming. The difference between the two types of protoplasmic streamings is better seen in the rate of repair of protoplasmic streaming halted by a 10 minutes heating at 38-41 degrees C. For example, the unordered streaming is restored 2 minutes after heating plasmodia at 39 degrees for 10 min., while the shuttle streaming is resumed in 24 minutes. It is supposed that the two protoplasmic streamings are independent to an appreciable extent, and that the shuttle streaming, being more complex and coordinated, has appeared in the evolution at later stages than the unordered one. The higher heat sensitivity of the shuttle streaming substantiates a view of the lower stability to injury in regulatory mechanisms if compared to the stability of motile mechanisms.  相似文献   

19.
PARK  D.; ROBINSON  P. M. 《Annals of botany》1967,31(4):731-738
A fungal vacuolation factor causes vacuolation when appliedto the plasmodium ofP. polycephalum, and also results in negativechemotaxis of the plasmodium. This, and the relationship betweenthe normal distribution of vacuoles in the plasmodium and itsdirection of locomotion, suggests that a similar factor maybe operative in determining polarity. A vacuolation factor hasbeen extracted from P. polycephalum. A vacuolar-reticular system in the cytoplasm shows a cycle ofcontractions and expansions that, in the advancing lobe at least,is usually in phase with the oscillating streaming pattern ofthe plasmodium in that region. The possible significance ofthese findings for the mechanism of streaming is discussed.  相似文献   

20.
Summary Phototactic responses in a giant amoeboid cell ofPhysarum plasmodium were studied both by analyzing intracellular ATP content and by applying image processing for recording oscillatory changes in thickness with use of a microcomputer. The ATP content fluctuated and deviated from the initial level upon exposure to light with varying wavelength from 400 to 600 nm. The maximum decrease in the integrated value dt with T=9 minutes occurred at the wavelength 450 nm. The ATP in a migrating plasmodium distributed twice as high in the front as in the rear. This polar pattern became unstable, and a new wavy pattern appeared by stimulating a local frontal part with blue light. In a concentrically extending plasmodium, peripheral and inside regions oscillated in opposite phase to each other. When part of this organism was exposed to light, stimulated and unslimulated regions began to oscillate in opposite phase, and phase waves propagated inward the stimulated region. And the protoplasm there became thinner, the strongest avoidance reaction occurring to 450 nm light as in ATP response. Phototactic behavior inPhysarum is discussed in terms of bifurcation in spatio-temporal organization appearing in a self-organizing system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号