首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The core-recognition motif for TCDD-liganded AhR/ARNT complex of the dioxin-responsive element (DRE) contains four guanine residues, three on the antisense (5'-T(T)/(A)GCGTG-3') and one on the sense (5'-CACGC(A)/(T)A-3') strand. It has been reported that, in methylation-protection and methylation-interference assays, the TCDD-liganded AhR/ARNT contacts all four guanine residues. On the other hand, it is known that some anticancer drugs, and various environmental and workplace chemicals, including strongly human carcinogenic nitrosamines, lead to the highly miscoding 6-O-methylation of guanine. In the present study, we have investigated whether specific methylation of guanine at the 6-O-position interferes with the binding of TCDD-liganded AhR/ARNT complex to its recognition motif in the CYP1A1 enhancer, and how individual 6-O-methylated guanines contribute to this interference. We found that only two 6-O-methylguanine residues are critical: the closest to the 5'-end within the three-nucleotide sequence (5'-GTG-3'), identical to a half-site E-box element, on the antisense strand, and the only guanine on the sense strand. In contrast, the 6-O-methylguanine closest to the 5'-end (well) and the one closest to the 3'-end (to a lesser extent), both on the antisense strand, were still able to bind the TCDD-liganded AhR/ARNT complex. This shows that the 6-O-methylation of guanine in the core sequences of CYP1A1 enhancer interferes with the binding of the ligand-activated AhR/ARNT complex in a differentially selective manner; it fully impedes binding of this complex to DRE (the prerequisite of most of the toxic effects of TCDD) only when one of the two particular guanines is methylated at the 6-O-position.  相似文献   

2.
3.
4.
5.
6.
Key regulatory regions necessary for the expression of the gene encoding FcepsilonRI alpha-chain, a component of the high-affinity IgE receptor primarily responsible for IgE-dependent allergic response, were investigated. Two regions, -74/-69 and -55/-47, which contained binding motifs for proteins belonging to the Ets family and the GATA family, respectively, were shown to be necessary for the activation of the alpha-chain promoter. Both the regulatory elements enhanced the promoter activity only in alpha-chain-producing cells PT18 and RBL-2H3 (mast cell lines), indicating that the elements required specific trans-acting proteins present in the alpha-chain-producing cells. EMSA using nuclear extracts and in vitro-translated proteins revealed that Elf-1 and GATA-1 bound to the enhancer elements. This is the first report describing the regulation in the expression of the FcepsilonRI alpha-chain.  相似文献   

7.
8.
9.
10.
Potential mechanisms were investigated whereby CYP2B18, a cytochrome P450 gene exhibiting high constitutive expression but only low levels of phenobarbital-inducibility in the guinea pig liver, may be differentially regulated versus the highly inducible rat CYP2B2 gene. To comparatively assess potential regulatory sequences associated with CYP2B18, a guinea pig genomic library was screened enabling isolation of the CYP2B18 gene. The genomic screening process resulted in the identification of at least four closely-related CYP2B18 genes, designated here as CYP2B18A-D. Of these isolates, CYP2B18A exhibited sequence identical to that of the CYP2B18 cDNA. Further, the deduced amino acid sequence of the CYP2B18 cDNA was identical to that of N-terminal and internally-derived peptide sequences obtained in this investigation from CYP2B18 protein isolated from guinea pig liver. Genomic structural sequences were derived for CYP2B18A, together with the respective 5'-upstream and intronic regions of the gene. Comparison of the CYP2B18A and CYP2B2 gene sequences revealed the lack of repetitive LINE gene sequences in CYP2B18A, putative silencing elements that effect neighboring genes, although these sequences were present in both 5'-upstream and 3'-downstream regions of CYP2B2. We determined that the phenobarbital-responsive enhancer module was absent from the 5'-upstream region as well as the intronic regions of CYP2B18A gene. We hypothesize that the compromised phenobarbital inducibility of CYP2B18A stems from its lack of a functional phenobarbital responsive enhancer module.  相似文献   

11.
Major advances have been made during the last decade in our understanding of adrenal steroid hormone biosynthesis. Two key players in these pathways are the human mitochondrial cytochrome P450 enzymes CYP11B1 and CYP11B2, which catalyze the final steps in the biosynthesis of cortisol and aldosterone. Using data from mutations found in patients suffering from steroid hormone-related diseases, from mutagenesis studies and from the construction of three-dimensional models of these enzymes, structural information could be deduced that provide a clue to the stereo- and regiospecific steroid hydroxylation reactions carried out by these enzymes. In this review, we summarize the current knowledge on the physiological function and the biochemistry of these enzymes. Furthermore, the pharmacological and toxicological importance of these steroid hydroxylases, the means for the identification of their potential inhibitors and possible biotechnological applications are discussed.  相似文献   

12.
13.
14.
15.
A 443-base pair fragment (+622 to +1064) from the second intron of the human apolipoprotein B gene was shown to contain a tissue-specific enhancer when placed in front of an apolipoprotein B promoter-chloramphenicol acetyltransferase construct in transfection experiments. To identify potential regulatory mutations in this region of the gene, DNA from various subjects was examined for the presence of point mutations by means of chemical cleavage of mismatched heteroduplexes. An A----G substitution within the second intron of the gene at position +722 was identified in three unrelated subjects and confirmed by DNA sequencing. Although the base substitution was contained within a nuclear protein-binding site, as determined by DNase I footprinting, it did not appear to affect the protein/DNA interaction in its vicinity, as shown by gel retardation experiments. The single base substitution at position +722 abolishes a StyI restriction site, thus creating a StyI polymorphism. Using allele-specific oligonucleotides, we screened the DNA of 172 subjects for the presence of this polymorphism: two other subjects carrying the polymorphism were found. In each of the five unrelated subjects, the polymorphism was associated with the same haplotype.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号