首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The energy state of tumor-bearing rats   总被引:2,自引:0,他引:2  
Rats bearing the Walker-256 carcinosarcoma have a profoundly altered liver metabolite content with significant increases in the concentrations of glucose 6-phosphate, fructose 1,6-bisphosphate, citrate, lactate, and alanine, while the concentrations of glucose, pyruvate, dihydroxyacetone phosphate, and glutamine are decreased. As a result of these changes both the cytosolic NAD+/NADH ratio and the cytosolic phosphorylation potential are significantly lowered while no changes are detected in either the cytosolic NADP+/NADPH ratio or the mitochondrial NAD+/NADH ratio. These hepatic changes are accompanied by marked increases in the circulating concentrations of lactate, non-esterified fatty acids, and triacylglycerols. The activities of both liver hexokinase and phosphofructokinase are also significantly elevated in the tumor-bearing rats. The changes observed both in the redox state and phosphorylation potential are in agreement with the energy imbalance associated with tumor burden.  相似文献   

2.
When the extracellular concentration of glucose was raised from 3 mM to 7 mM (the concentration interval in which beta-cell depolarization and the major decrease in K+ permeability occur), the cytosolic free [NADPH]/[NADP+] ratio in mouse pancreatic islets increased by 29.5%. When glucose was increased to 20 mM, a 117% increase was observed. Glucose had no effect on the cytosolic free [NADH]/[NAD+] ratio. Neither the cytosolic free [NADPH]/[NADP+] ratio nor the corresponding [NADH]/[NAD+] ratio was affected when the islets were incubated with 20 mM-fructose or with 3 mM-glucose + 20 mM-fructose, although the last-mentioned condition stimulated insulin release. The insulin secretagogue leucine (10 mM) stimulated insulin secretion, but lowered the cytosolic free [NADPH]/[NADP+] ratio; 10 mM-leucine + 10 mM-glutamine stimulated insulin release and significantly enhanced both the [NADPH]/[NADP+] ratio and the [NADH]/[NAD+] ratio. It is concluded that the cytosolic free [NADPH]/[NADP+] ratio may be involved in coupling beta-cell glucose metabolism to beta-cell depolarization and ensuing insulin secretion, but it may not be the sole or major coupling factor in nutrient-induced stimulation of insulin secretion.  相似文献   

3.
Dehydroepiandrosterone (DHEA) treatment of rats decreases gain of body weight without affecting food intake; simultaneously, the activities of liver malic enzyme and cytosolic glycerol-3-P dehydrogenase are increased. In the present study experiments were conducted to test the possibility that DHEA enhances thermogenesis and decreases metabolic efficiency via trans-hydrogenation of cytosolic NADPH into mitochondrial FADH2 with a consequent loss of energy as heat. The following results provide evidence which supports the proposed hypothesis: (a) the activities of cytosolic enzymes involved in NADPH production (malic enzyme, cytosolic isocitrate dehydrogenase, and aconitase) are increased after DHEA treatment; (b) cytosolic glycerol-3-P dehydrogenase may use both NAD+ and NADP+ as coenzymes; (c) activities of both cytosolic and mitochondrial forms of glycerol-3-P dehydrogenase are increased by DHEA treatment; (d) cytosol obtained from DHEA-treated rats synthesizes more glycerol-3-P during incubation with fructose-1,6-P2 (used as source of dihydroxyacetone phosphate) and NADP+; the addition of citratein vitro further increases this difference; (e) mitochondria prepared from DHEA-treated rats more rapidly consume glycerol-3-P added exogenously or formed endogenously in the cytosol in the presence of fructose-1,6-P2 and NADP+.  相似文献   

4.
The precise metabolic steps that couple glucose catabolism to insulin secretion in the pancreatic beta cell are incompletely understood. ATP generated from glycolytic metabolism in the cytosol, from mitochondrial metabolism, and/or from the hydrogen shuttles operating between cytosolic and mitochondrial compartments has been implicated as an important coupling factor. To identify the importance of each of these metabolic pathways, we have compared the fates of four fuel secretagogues (glucose, pyruvate, dihydroxyacetone, and glycerol) in the INS1-E beta cell line. Two of these fuels, dihydroxyacetone and glycerol, are normally ineffective as secretagogues but are enabled by adenovirus-mediated expression of glycerol kinase. Comparison of these two particular fuels allows the effect of redox state on insulin secretion to be evaluated since the phosphorylated products dihydroxyacetone phosphate and glycerol phosphate lie on opposite sides of the NADH-consuming glycerophosphate dehydrogenase reaction. Based upon measurements of glycolytic metabolites, mitochondrial oxidation, mitochondrial matrix calcium, and mitochondrial membrane potential, we find that insulin secretion most tightly correlates with mitochondrial metabolism for each of the four fuels. In the case of glucose stimulation, the high control strength of glucose phosphorylation sets the pace of glucose metabolism and thus the rate of insulin secretion. However, bypassing this reaction with pyruvate, dihydroxyacetone, or glycerol uncovers constraints imposed by mitochondrial metabolism, each of which attains a similar maximal limit of insulin secretion. More specifically, we found that the hyperpolarization of the mitochondrial membrane, related to the proton export from the mitochondrial matrix, correlates well with insulin secretion. Based on these findings, we propose that fuel-stimulated secretion is in fact limited by the inherent thermodynamic constraints of proton gradient formation.  相似文献   

5.
The NADH shuttle system is composed of the glycerol phosphate and malate-aspartate shuttles. We generated mice that lack mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), a rate-limiting enzyme of the glycerol phosphate shuttle. Application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle, to mGPDH-deficient islets demonstrated that the NADH shuttle system was essential for coupling glycolysis with activation of mitochondrial ATP generation to trigger glucose-induced insulin secretion. The present study revealed that blocking the NADH shuttle system severely suppressed closure of the ATP-sensitive potassium (K(ATP)) channel and depolarization of the plasma membrane in response to glucose in beta cells, although properties of the K(ATP) channel on the excised beta cell membrane were unaffected. In mGPDH-deficient islets treated with aminooxyacetate, Ca(2+) influx through the plasma membrane induced by a depolarizing concentration of KCl in the presence of the K(ATP) channel opener diazoxide restored insulin secretion. However, the level of the secretion was only approximately 40% of wild-type controls. Thus, glucose metabolism through the NADH shuttle system leading to efficient ATP generation is pivotal to activation of both the K(ATP) channel-dependent pathway and steps distal to an elevation of cytosolic Ca(2+) concentration in glucose-induced insulin secretion.  相似文献   

6.
Glucose stimulation of pancreatic beta cells induces oscillations of the membrane potential, cytosolic Ca(2+) ([Ca(2+)](i)), and insulin secretion. Each of these events depends on glucose metabolism. Both intrinsic oscillations of metabolism and repetitive activation of mitochondrial dehydrogenases by Ca(2+) have been suggested to be decisive for this oscillatory behavior. Among these dehydrogenases, mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), the key enzyme of the glycerol phosphate NADH shuttle, is activated by cytosolic [Ca(2+)](i). In the present study, we compared different types of oscillations in beta cells from wild-type and mGPDH(-/-) mice. In clusters of 5-30 islet cells and in intact islets, 15 mM glucose induced an initial drop of [Ca(2+)](i), followed by an increase in three phases: a marked initial rise, a partial decrease with rapid oscillations and eventually large and slow oscillations. These changes, in particular the frequency of the oscillations and the magnitude of the [Ca(2+)] rise, were similar in wild-type and mGPDH(-/-) mice. Glucose-induced electrical activity (oscillations of the membrane potential with bursts of action potentials) was not altered in mGPDH(-/-) beta cells. In single islets from either type of mouse, insulin secretion strictly followed the changes in [Ca(2+)](i) during imposed oscillations induced by pulses of high K(+) or glucose and during the biphasic elevation induced by sustained stimulation with glucose. An imposed and controlled rise of [Ca(2+)](i) in beta cells similarly increased NAD(P)H fluorescence in control and mGDPH(-/-) islets. Inhibition of the malate-aspartate NADH shuttle with aminooxyacetate only had minor effects in control islets but abolished the electrical, [Ca(2+)](i) and secretory responses in mGPDH(-/-) islets. The results show that the two distinct NADH shuttles play an important but at least partially redundant role in glucose-induced insulin secretion. The oscillatory behavior of beta cells does not depend on the functioning of mGPDH and on metabolic oscillations that would be generated by cyclic activation of this enzyme by Ca(2+).  相似文献   

7.
The present study was undertaken to determine the main metabolic secretory signals generated by the mitochondrial substrate MeS (methyl succinate) compared with glucose in mouse and rat islets and to understand the differences. Glycolysis and mitochondrial metabolism both have key roles in the stimulation of insulin secretion by glucose. Both fuels elicited comparable oscillatory patterns of Ca2+ and changes in plasma and mitochondrial membrane potential in rat islet cells and clonal pancreatic beta-cells (INS-1). Saturation of the Ca2+ signal occurred between 5 and 6 mM MeS, while secretion reached its maximum at 15 mM, suggesting operation of a K(ATP)-channel-independent pathway. Additional responses to MeS and glucose included elevated NAD(P)H autofluorescence in INS-1 cells and islets and increases in assayed NADH and NADPH and the ATP/ADP ratio. Increased NADPH and ATP/ADP ratios occurred more rapidly with MeS, although similar levels were reached after 5 min of exposure to each fuel, whereas NADH increased more with MeS than with glucose. Reversal of MeS-induced cell depolarization by Methylene Blue completely inhibited MeS-stimulated secretion, whereas basal secretion and KCl-induced changes in these parameters were not affected. MeS had no effect on secretion or signals in the mouse islets, in contrast with glucose, possibly due to a lack of malic enzyme. The data are consistent with the common intermediates being pyruvate, cytosolic NADPH or both, and suggest that cytosolic NADPH production could account for the more rapid onset of MeS-induced secretion compared with glucose stimulation.  相似文献   

8.
Effects of glucose concentration and anoxia upon the metabolite concentrations and rates of glycolysis and respiration have been investigated in the perfused liver of the fetal guinea pig. In most cases the metabolite concentrations in the perfused liver were similar to those observed in vivo. Between 50 days and term there was a fall in the respiratory rate and in the concentration of ATP and fructose 1,6-diphosphate and an increase in the concentration of glutamate, glycogen and glucose. Reducing the medium glucose concentration from 10 mM to 1 mM or 0.1 mM depressed lactate production and the concentration of most of the phosphorylated intermediates (except 6-phosphogluconate) in the liver of the 50-day fetus. This indicates a fall in glycolytic rate which is not in accord with the known kinetic properties of hexokinase in the fetal liver. Anoxia increased lactate production by, and the concentrations of, the hexose phosphates ADP and AMP in the 50-day to term fetal liver, while the concentration of ribulose 5-phosphate, ATP and some triose phosphates fell. These results are consistent with an activation of glycolysis, particularly at phosphofructokinase and of a reduction in pentose phosphate pathway activity, particularly at 6-phosphogluconate dehydrogenase.The calculated cytosolic NAD+/NADH ratio for the perfused liver was similar to that measured in vivo and evidence is presented to suggest that the dihydroxyacetone phosphate/glycerol 3-phosphate ratio gives a better indication of cytosolic redox than the lactate/pyruvate ratio. The present observations indicate that phosphofructokinase and hexokinase and possibly pyruvate kinase control the glycolytic rate and that glyceraldehyde-3-phosphate dehydrogenase is at equilibrium in the perfused liver of the fetal guinea pig.  相似文献   

9.
Effects of glucose concentration and anoxia upon the metabolite concentrations and rates of glycolysis and respiration have been investigated in the perfused liver of the fetal guinea pig. In most cases the metabolite concentrations in the perfused liver were similar to those observed in vivo. Between 50 days and term there was a fall in the respiratory rate and in the concentration of ATP and fructose 1,6-diphosphate and an increase in the concentration of glutamate, glycogen and glucose. Reducing the medium glucose concentration from 10 mM to 1 mM or 0.1 mM depressed lactate production and the concentration of most of the phosphorylated intermediates (except 6-phosphogluconate) in the liver of the 50-day fetus. This indicates a fall in glycolytic rate which is not in accord with the known kinetic properties of hexokinase in the fetal liver. Anoxia increased lactate production by, and the concentrations of, the hexose phosphates ADP and AMP in the 50-day to term fetal liver, while the concentration of ribulose 5-phosphate, ATP and some triose phosphates fell. These results are consistent with an activation of glycolysis, particularly at phosphofructokinase and of a reduction in pentose phosphate pathway activity, particularly at 6-phosphogluconate dehydrogenase. The calculated cytosolic NAD+/NADH ratio for the perfused liver was similar to that measured in vivo and evidence is presented to suggest that the dihydroxyacetone phosphate/glycerol 3-phosphate ratio gives a better indication of cytosolic redox than the lactate/pyruvate ratio. The present observations indicate that phosphofructokinase hexokinase and possibly pyruvate kinase control the glycolytic rate and that glyceraldehyde-3-phosphate dehydrogenase is at equilibrium in the perfused liver of the fetal guinea pig.  相似文献   

10.
Acute fatty acid (FA) exposure potentiates glucose-stimulated insulin secretion in β cells through metabolic and receptor-mediated effects. We assessed the effect of fatty acids on the dynamics of the metabolome in INS-1 cells following exposure to [U-13C]glucose to assess flux through metabolic pathways. Metabolite profiling showed a fatty acid-induced increase in long chain acyl-CoAs that were rapidly esterified with glucose-derived glycerol-3-phosphate to form lysophosphatidic acid, mono- and diacylglycerols, and other glycerolipids, some implicated in augmenting insulin secretion. Glucose utilization and glycolytic flux increased, along with a reduction in the NADH/NAD+ ratio, presumably by an increase in conversion of dihydroxyacetone phosphate to glycerol-3-phosphate. The fatty acid-induced increase in glycolysis also resulted in increases in tricarboxylic cycle flux and oxygen consumption. Inhibition of fatty acid activation of FFAR1/GPR40 by an antagonist decreased glycerolipid formation, attenuated fatty acid increases in glucose oxidation, and increased mitochondrial FA flux, as evidenced by increased acylcarnitine levels. Conversely, FFAR1/GPR40 activation in the presence of low FA increased flux into glycerolipids and enhanced glucose oxidation. These results suggest that, by remodeling glucose and lipid metabolism, fatty acid significantly increases the formation of both lipid- and TCA cycle-derived intermediates that augment insulin secretion, increasing our understanding of mechanisms underlying β cell insulin secretion.  相似文献   

11.
alpha-L-Glycerolphosphate dehydrogenase (sn-glycerol-3-phosphate:NAD+ 2-oxidoreductase, EC 1.1.1.8) from Saccharomyces carlsbergensis was purified 400-fold. The enzyme preparation is free of interfering activities, such as glyceraldehyde phosphate dehydrogenase, alcohol dehydrogenase, triose phosphate isomerase and glycerolphosphatase. At pH 7.0 it is specific for NADH (Km = 0.027 mM with 0.8 mM dihydroxyacetone phosphate) and dihydroxyacetone phosphate (Km = 0.2 mM with 0.2 mM NADH). Between pH 5.0 and 6.0 the enzyme functions with NADPH, but only at 7% of the rate with NADH. Various anions (I- greater than SO42- greater than Br- greater than Cl-) act as inhibitors competing with the substrate dihydroxyacetone phosphate. Inorganic phosphate (Ki = 0.1 mM), pyrophosphate and arsenate are strong inhibitors. The nucleotides ATP and ADP are also inhibitory, but their action seems to be of the same type as the general anion competition (Ki = 0.73 mM for ATP). The results are consistent with the notion that the enzyme may regulate the redox potential of the NAD+/NADH couple during fermentation.  相似文献   

12.
1. Brown adipose tissue of the hamster possesses high specific activities of soluble, cytoplasmic NAD-linked, as well as mitochondrial flavin-coupled, glycerol-3-phosphate dehydrogenases. The ratio of the two enzyme activities is high (close to 1), when compared with other tissues of the hamster. 2. In the presence of rotenone, NADH is oxidised very poorly by homogenates of brown adipose tissue. A high rate of oxidation is obtained upon further addition of dihydroxyacetone phosphate, which itself is negligible oxidised. When followed fluorimetrically glycerol 3-phosphate can also be observed to induce NADH oxidation, but only after a significant lag time. Similar results are obtained with isolated mitochondria plus high-speed supernatant. With high-speed supernatant alone, only dihydroxyacetone phosphate has any effect, whereas with isolated mitochondria neither dihydroxyacetone phosphate nor glycerol 3-phosphate induce any NADH disappearance. 3. Respiration induced by NADH plus dihydroxyacetone phosphate in homogenates equals 56% of the respiration induced by glycerol 3-phosphate alone. 4. Respiration induced by NADH plus dihydroxyacetone phosphate, as well as that induced by glycerol 3-phosphate, is inhibited by the same concentrations of inhibitors as are required for inhibition of the mitochondrial dehydrogenase i.e. EDTA, long-chain unsaturated fatty acids, long-chain fatty acyl CoA esters. 5. In isolated brown adipocytes in the presence of rotenone, norepinephrine significantly inhibits respiration induced by glycerol 3-phosphate. 6. The results obtained are discussed with respect to the role of glycerol 3-phosphate as an electron sink for cytosolic reducing equivalents to maintain a low level of extramitochondrial NADH. A means of maintaining a level of glycerol 3-phosphate adequate for triglyceride synthesis is also considered.  相似文献   

13.
An NAD-dependent glycerol 3-phosphate dehydrogenase (sn-glycerol 3-phosphate: NAD oxidoreductase; EC 1.1.1.8) has been purified from spinach leaves by a three-step procedure involving ion-exchange, gel filtration, and affinity chromatography. The enzyme has been purified over 10,000-fold to a specific activity of 38. It has a molecular weight of approximately 63,500. The pH optimum for the reduction of dihydroxyacetone phosphate is 6.8 and for glycerol 3-phosphate oxidation it is 9.5. During dihydroxyacetone phosphate reduction hyperbolic kinetics were observed when either NADH or dihydroxyacetone phosphate was the variable substrate, but concentrations of NADH greater than 150 μm were inhibitory. Michaelis constants were 0.30–0.35 mm for dihydroxyacetone phosphate and 0.01 mm for NADH. Glycerol 3-phosphate oxidation obeyed Michaelis-Menten kinetics with a Km of 0.19 mm for NAD and 1.6 mm for glycerol 3-phosphate. The enzyme was specific for those substrates, and dihydroxyacetone, glyceraldehyde, glyceraldehyde 3-phosphate, NADPH, NADP, and glycerol were not utilized. The spinach leaf enzyme appears to be in the cytoplasm and probably functions for the production of glycerol 3-phosphate from dihydroxyacetone phosphate.  相似文献   

14.
Inactivation of TPI1, the Saccharomyces cerevisiae structural gene encoding triose phosphate isomerase, completely eliminates growth on glucose as the sole carbon source. In tpi1-null mutants, intracellular accumulation of dihydroxyacetone phosphate might be prevented if the cytosolic NADH generated in glycolysis by glyceraldehyde-3-phosphate dehydrogenase were quantitatively used to reduce dihydroxyacetone phosphate to glycerol. We hypothesize that the growth defect of tpi1-null mutants is caused by mitochondrial reoxidation of cytosolic NADH, thus rendering it unavailable for dihydroxyacetone-phosphate reduction. To test this hypothesis, a tpi1delta nde1delta nde2delta gut2delta quadruple mutant was constructed. NDE1 and NDE2 encode isoenzymes of mitochondrial external NADH dehydrogenase; GUT2 encodes a key enzyme of the glycerol-3-phosphate shuttle. It has recently been demonstrated that these two systems are primarily responsible for mitochondrial oxidation of cytosolic NADH in S. cerevisiae. Consistent with the hypothesis, the quadruple mutant grew on glucose as the sole carbon source. The growth on glucose, which was accompanied by glycerol production, was inhibited at high-glucose concentrations. This inhibition was attributed to glucose repression of respiratory enzymes as, in the quadruple mutant, respiratory pyruvate dissimilation is essential for ATP synthesis and growth. Serial transfer of the quadruple mutant on high-glucose media yielded a spontaneous mutant with much higher specific growth rates in high-glucose media (up to 0.10 h(-1) at 100 g of glucose. liter(-1)). In aerated batch cultures grown on 400 g of glucose. liter(-1), this engineered S. cerevisiae strain produced over 200 g of glycerol. liter(-1), corresponding to a molar yield of glycerol on glucose close to unity.  相似文献   

15.
Adenine and pyridine nucleotide levels as well as those of phosphate, phosphocreatine, lactate, pyruvate, beta-hydroxybutyrate, acetoacetate, glucose, and glycogen were measured in histologically defined parietal and mucous cell sections of biopsies of dog gastric mucosa at rest, and in various secretory states. As a result of stimulation of secretion, there appeared to be no change in adenine nucleotide levels, or phosphocreatine, but there was a rise in inorganic phosphate and a fall in phosphorylation potential. However, there was a marked increase in NADH, but no change in NADPH with onset of acid secretion. The increase in the lactate to pyruvate ratio showed that the increased NADH level occurred in the cytoplasm and these data are discussed with reference to change in cell pH.  相似文献   

16.
We surveyed the BALB/cHeA mouse, which lacks cytosolic glycerol phosphate dehydrogenase an enzyme that catalyzes a reaction in the glycerol phosphate shuttle. The other enzyme of this shuttle, mitochondrial glycerol phosphate dehydrogenase, is abundant in skeletal muscle and pancreatic islets suggesting that the shuttle's activity is high in these tissues. Levels of glycerol phosphate (low) and dihydroxyacetone phosphate (high) were very abnormal in nonislet tissue, especially in skeletal muscle. Intermediates situated before the triose phosphates in the glycolysis pathway were increased and those after the triose phosphates were generally low, depending on the tissue. The lactate/pyruvate ratio in muscle was low signifying a low cytosolic NAD/NADH ratio. This suggests that a nonfunctional glycerol phosphate shuttle caused a block in glycolysis at the step catalyzed by glyceraldehyde phosphate dehydrogenase. When exercised, mice were unable to maintain normal ATP levels in skeletal muscle. Blood glucose, serum insulin levels, and pancreatic islet mass were normal. In isolated pancreatic islets insulin release, glucose metabolism and ATP levels were normal, but lactate levels and lactate/pyruvate ratios with a glucose load were slightly abnormal. The BALB/cHeA mouse can maintain NAD/ NADH ratios sufficient to function normally under most conditions, but the redox state is not normal. Glycerol phosphate is apparently formed at a slow rate. Skeletal muscle is severely affected probably because it is dependent on the glycerol phosphate shuttle more than other tissues. It most likely utilizes glycerol phosphate rapidly and, due to the absence of glycerol kinase in muscle, is unable to rapidly form glycerol phosphate from glycerol. Glycerol kinase is also absent in the pancreatic insulin cell, but this cell's function is essentially normal probably because of redundancy of NAD(H) shuttles.  相似文献   

17.
The effects of D-glyceraldehyde on the hepatocyte contents of various metabolites were examined and compared with the effects of fructose, glycerol and dihydroxyacetone, which all enter the glycolytic/gluconeogenic pathways at the triose phosphate level. D-Glyceraldehyde (10 MM) caused a substantial depletion of hepatocyte ATP, as did equimolar concentrations of fructose and glycerol. D-Glyceraldehyde and fructose each caused a 2-fold increase in fructose 1,6-bisphosphate and the accumulation of millimolar quantities of fructose 1-phosphate in the cells. D-Glyceraldehyde caused an increase in the glycerol 3-phosphate content and a decrease in the dihydroxyacetone phosphate content, whereas dihydroxyacetone increased the content of both metabolites. The increase in the [glycerol 3-phosphate]/[dihydroxyacetone phosphate] ratio caused by D-glyceraldehyde was not accompanied by a change in the cytoplasmic [NAD+]/[NADH] ratio, as indicated by the unchanged [lactate]/[pyruvate] ratio. The accumulation of fructose 1-phosphate from D-glyceraldehyde and dihydroxyacetone phosphate in the hepatocyte can account for the depletion of the intracellular content of the latter. Presumably ATP is depleted as the result of the accumulation of millimolar amounts of a phosphorylated intermediate, as is the case with fructose and glycerol. It is suggested that the accumulation of fructose 1-phosphate during hepatic fructose metabolism is the result of a temporary increase in the D-glyceraldehyde concentration because of the high rate of fructose phosphorylation compared with triokinase activity. The equilibrium constant of aldolase favours the formation and thus the accumulation of fructose 1-phosphate.  相似文献   

18.
The aim of this work was to investigate the capacity for synthesis of starch and fatty acids from exogenous metabolites by plastids from developing embryos of oilseed rape (Brassica napus L.). A method was developed for the rapid isolation from developing embryos of intact plastids with low contamination by cytosolic enzymes. The plastids contain a complete glycolytic pathway, NADP-glucose-6-phosphate dehydrogenase, NADP-6-phosphogluconate dehydrogenase, fructose-1,6-bisphosphatase, NADP-malic enzyme, the pyruvate dehydrogenase complex (PDC), and acetyl-CoA carboxylase. Organelle fractionation studies showed that 67% of the total cellular PDC activity was in the plastids. The isolated plastids were fed with 14C-labelled carbon precursors and the incorporation of 14C into starch and fatty acids was determined. 14C from glucose-6-phosphate (G-6-P), fructose, glucose, fructose-6-phosphate and dihydroxyacetone phosphate (DHAP) was incorporated into starch in an intactness- and ATP-dependent manner. The rate of starch synthesis was highest from G-6-P, although fructose gave rates which were 70% of those from G-6-P. Glucose-1-phosphate was not utilized by intact plastids for starch synthesis. The plastids utilized pyruvate, G-6-P, DHAP, malate and acetate as substrates for fatty acid synthesis. Of these substrates, pyruvate and G-6-P supported the highest rates of synthesis. These studies show that several cytosolic metabolites may contribute to starch and/or fatty acid synthesis in the developing embryos of oilseed rape.  相似文献   

19.
Glucose-stimulated insulin secretion is a multistep process dependent on beta-cell metabolic flux. Our previous studies on intact pancreatic islets used two-photon NAD(P)H imaging as a quantitative measure of the combined redox signal from NADH and NADPH (referred to as NAD(P)H). These studies showed that pyruvate, a non-secretagogue, enters beta-cells and causes a transient rise in NAD(P)H. To further characterize the metabolic fate of pyruvate, we have now developed one-photon flavoprotein microscopy as a simultaneous assay of lipoamide dehydrogenase (LipDH) autofluorescence. This flavoprotein is in direct equilibrium with mitochondrial NADH. Hence, a comparison of LipDH and NAD(P)H autofluorescence provides a method to distinguish the production of NADH, NADPH, or both. Using this method, the glucose dose response is consistent with an increase in both NADH and NADPH. In contrast, the transient rise in NAD(P)H observed with pyruvate stimulation is not accompanied by a significant change in LipDH, which indicates that pyruvate raises cellular NADPH without raising NADH. In comparison, methyl pyruvate stimulated a robust NADH and NADPH response. These data provide new evidence that exogenous pyruvate does not induce a significant rise in mitochondrial NADH. This inability likely results in its failure to produce the ATP necessary for stimulated secretion of insulin. Overall, these data are consistent with either a restricted pyruvate dehydrogenase-dependent metabolism or a buffering of the NADH response by other metabolic mechanisms.  相似文献   

20.
Mitochondrial metabolism plays a pivotal role in the pancreatic beta cell by generating signals that couple glucose sensing to insulin secretion. We have demonstrated previously that mitochondrially derived glutamate participates directly in the stimulation of insulin exocytosis. The aim of the present study was to impose altered cellular glutamate levels by overexpression of glutamate decarboxylase (GAD) to repress elevation of cytosolic glutamate. INS-1E cells infected with a recombinant adenovirus vector encoding GAD65 showed efficient overexpression of the GAD protein with a parallel increase in enzyme activity. In control cells glutamate levels were slightly increased by 7.5 mm glucose (1.4-fold) compared with the effect at 15 mm (2.3-fold) versus basal 2.5 mm glucose. Upon GAD overexpression, glutamate concentrations were no longer elevated by 15 mm glucose as compared with controls (-40%). Insulin secretion was stimulated in control cells by glucose at 7.5 mm (2.5-fold) and more efficiently at 15 mm (5.2-fold). INS-1E cells overexpressing GAD exhibited impaired insulin secretion on stimulation with 15 mm glucose (-37%). The secretory response to 30 mm KCl, used to raise cytosolic Ca(2+) levels, was unaffected. Similar results were obtained in perifused rat pancreatic islets following adenovirus transduction. This GAD65-mediated glutamate decarboxylation correlating with impaired glucose-induced insulin secretion is compatible with a role for glutamate as a glucose-derived factor participating in insulin exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号