首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phagocyte ingestion of monosodium urate (MSU) crystals can induce proinflammatory responses and trigger acute gouty inflammation. Alternatively, the uptake of MSU crystals by mature macrophages can be noninflammatory and promote resolution of gouty inflammation. Macrophage activation by extracellular MSU crystals involves apparent recognition and ingestion mediated by TLR2 and TLR4, with subsequent intracellular recognition linked to caspase-1 activation and IL-1beta processing driven by the NACHT-LRR-PYD-containing protein-3 inflammasome. In this study, we examined the potential role in gouty inflammation of CD14, a phagocyte-expressed pattern recognition receptor that functionally interacts with both TLR2 and TLR4. MSU crystals, but not latex beads, directly bound recombinant soluble (s) CD14 in vitro. CD14(-/-) bone marrow-derived macrophages (BMDMs) demonstrated unimpaired phagocytosis of MSU crystals but reduced p38 phosphorylation and approximately 90% less IL-1beta and CXCL1 release. Attenuated MSU crystal-induced IL-1beta release in CD14(-/-) BMDMs was mediated by decreased pro-IL-1beta protein expression and additionally by decreased caspase-1 activation and IL-1beta processing consistent with diminished NACHT-LRR-PYD-containing protein-3 inflammasome activation. Coating of MSU crystals with sCD14, but not sTLR2 or sTLR4, restored IL-1beta and CXCL1 production in CD14(-/-) BMDMs in vitro. Gain of function of CD14 directly enhanced TLR4-mediated signaling in response to MSU crystals in transfected Chinese hamster ovary cells in vitro. Last, MSU crystal-induced leukocyte influx at 6 h was reduced by approximately 75%, and local induction of IL-1beta decreased by >80% in CD14(-/-) mouse s.c. air pouches in vivo. We conclude that engagement of CD14 is a central determinant of the inflammatory potential of MSU crystals.  相似文献   

2.
We previously reported that several stresses can induce cytokine-induced neutrophil chemoattractant expression in a nuclear factor kappaB (NF-kappaB)-dependent manner. In this study, we focused further on the regulation of NF-kappaB. The activation of NF-kappaB and the subsequent cytokine-induced neutrophil chemoattractant induction in response to interleukin-1beta (IL-1beta) were inhibited by proteasome inhibitors, MG132 and proteasome inhibitor I. Translocation of NF-kappaB into nuclei occurs by the phosphorylation, multi-ubiquitination, and degradation of IkappaBalpha, a regulatory protein of NF-kappaB. Nascent IkappaBalpha began to degrade 5 min after treatment with IL-1beta and disappeared completely after 15 min. However, IkappaBalpha returned to basal levels after 45-60 min. Interestingly, resynthesized IkappaBalpha was already phosphorylated at Ser-32. These results suggest that 1) the upstream signals are still activated, although the translocation of NF-kappaB peaks at 15 min; and 2) the regulated protein(s) acts downstream of IkappaBalpha phosphorylation. Western blotting showed that the resynthesized and phosphorylated IkappaB molecules were also upward-shifted by multi-ubiquitination in response to IL-1beta treatment. On the other hand, ATP-dependent Leu-Leu-Val-Tyr cleaving activity transiently increased, peaked at 15 min, and then decreased to basal levels at 60 min. Furthermore, the cytosolic fraction that was stimulated by IL-1beta for 15 min, but not for 0 and 60 min, could degrade phosphorylated and multi-ubiquitinated IkappaBalpha. These results indicate that the transient translocation of NF-kappaB in response to IL-1beta may be partly dependent on transient proteasome activation.  相似文献   

3.
4.
IntroductionIn gout, monosodium urate (MSU) crystals deposit intra-articularly and cause painful arthritis. In the present study we tested the hypothesis that Transient Receptor Poten-tial Ankyrin 1 (TRPA1), an ion channel mediating nociceptive signals and neurogenic in-flammation, is involved in MSU crystal-induced responses in gout by utilizing three experi-mental murine models.MethodsThe effects of selective pharmacological inhibition (by HC-030031) and genetic depletion of TRPA1 were studied in MSU crystal-induced inflammation and pain by using 1) spontaneous weight-bearing test to assess MSU crystal-induced joint pain, 2) subcutaneous air-pouch model resembling joint inflammation to measure MSU crystal-induced cytokine production and inflammatory cell accumulation, and 3) MSU crystal-induced paw edema to assess acute vascular inflammatory responses and swelling.ResultsIntra-articularly injected MSU crystals provoked spontaneous weight shift off from the affected limb in wild type but not in TRPA1 knock-out mice referring alleviated joint pain in TRPA1 deficient animals. MSU crystal-induced inflammatory cell infiltration and accumulation of cytokines MCP-1, IL-6, IL-1beta, MPO, MIP-1alpha and MIP-2 into subcu-taneous air-pouch (resembling joint cavity) was attenuated in TRPA1 deficient mice and in mice treated with the selective TRPA1 inhibitor HC-030031 as compared to control animals. Further, HC-030031 treated and TRPA1 deficient mice developed tempered inflammatory edema when MSU crystals were injected into the paw.ConclusionsTRPA1 mediates MSU crystal-induced inflammation and pain in experimental models supporting the role of TRPA1 as a potential mediator and a drug target in gout flare.  相似文献   

5.
Acute gouty arthritis results from monosodium urate (MSU) crystal deposition in joint tissues. Deposited MSU crystals induce an acute inflammatory response which leads to damage of joint tissue. Pycnogenol (PYC), an extract from the bark of Pinus maritime, has documented antiinflammatory and antioxidant properties. The present study aimed to investigate whether PYC had protective effects on MSU-induced inflammatory and nitrosative stress in joint tissues both in vitro and in vivo. MSU crystals upregulated cyclooxygenase 2 (COX-2), interleukin 8 (IL-8) and inducible nitric oxide synthase (iNOS) gene expression in human articular chondrocytes, but only COX-2 and IL-8 in synovial fibroblasts. PYC inhibited the up-regulation of COX-2, and IL-8 in both articular chondrocytes and synovial fibroblasts. PYC attenuated MSU crystal induced iNOS gene expression and NO production in chondrocytes. Activation of NF-κB and SAPK/JNK, ERK1/2 and p38 MAP kinases by MSU crystals in articular chondrocytes and synovial fibroblasts in vitro was attenuated by treatment with PYC. The acute inflammatory cell infiltration and increased expression of COX-2 and iNOS in synovial tissue and articular cartilage following intra-articular injection of MSU crystals in a rat model was inhibited by coadministration of PYC. Collectively, this study demonstrates that PYC may be of value in treatment of MSU crystal-induced arthritis through its anti-inflammatory and anti-nitrosative activities.  相似文献   

6.
The aim of this study was determine the effect of bradykinin receptor antagonism on MSU crystal-induced chemokine production and leukocyte recruitment. Mice were injected intraperitoneally with monosodium urate (MSU) crystals ± bradykinin B1- or B2 receptor antagonists, Des-Arg-HOE-140 and HOE-140, respectively. MSU crystal-induced chemokine production and leukocyte recruitment in the peritoneum were measured over 24h and B1 and B2 receptor expression on leukocytes and peritoneal membrane was determined by flow cytometry and fluorescence microscopy. Data analysis showed that only B2 receptor antagonism decreased monocyte and neutrophil infiltration 24 h post MSU crystal administration. Decreased leukocyte infiltration was associated with reduced monocyte (CCL2) chemokine levels. MSU crystal-induced damage to the surrounding visceral membrane was also attenuated in the presence of B2 receptor antagonism. Together, these data show that bradykinin receptor 2 plays a role in maintaining MSU crystal-induced leukocyte infiltration and membrane permeability and identify the B2 receptor as a potential therapeutic target for managing inflammation in gout.  相似文献   

7.
8.
Cystic fibrosis (CF) is associated with severe neutrophilic airway inflammation. We showed that moxifloxacin (MXF) inhibits IL-8 and MAPK activation in monocytic and respiratory epithelial cells. Azithromycin (AZM) and ciprofloxacin (CIP) are used clinically in CF. Thus we now examined effects of MXF, CIP, and AZM directly on CF cells. IB3, a CF bronchial cell line, and corrected C38 cells were treated with TNF-alpha, IL-1beta, or LPS with or without 5-50 microg/ml MXF, CIP, or AZM. IL-6 and IL-8 secretion (ELISA), MAPKs ERK1/2, JNK, p38, and p65 NF-kappaB (Western blot) activation were measured. Baseline IL-6 was sixfold higher in IB3 than C38 cells but IL-8 was similar. TNF-alpha and IL-1beta increased IL-6 and IL-8 12- to 67-fold with higher levels in IB3 than C38 cells post-TNF-alpha (P < 0.05). Levels were unchanged following LPS. Baseline phosphorylated form of ERK1/2 (p-ERK1/2), JNK, and NF-kappaB p65 were higher in IB3 than C38 cells (5-, 1.4-, and 1.4-fold), and following TNF-alpha increased, as did the p-p38, by 1.6- to 2-fold. MXF (5-50 microg/ml) and CIP (50 microg/ml), but not AZM, suppressed IL-6 and IL-8 secretion by up to 69%. MXF inhibited TNF-alpha-stimulated MAPKs ERK1/2, 46-kDa JNK, and NF-kappaB up to 60%, 40%, and 40%, respectively. In contrast, MXF did not inhibit p38 activation, implying a highly selective pretranslational effect. In conclusion, TNF-alpha and IL-1beta induce an exaggerated inflammatory response in CF airway cells, inhibited by MXF more than by CIP or AZM. Clinical trials are recommended to assess efficacy in CF and other chronic lung diseases.  相似文献   

9.
Microcrystals of calcium pyrophosphate dihydrate (CPPD) and monosodium urate (MSU) deposited in synovium and articular cartilage initiate joint inflammation and cartilage degradation in large part by binding and directly activating resident cells. TLRs trigger innate host defense responses to infectious pathogens, and the expression of certain TLRs by synovial fibroblasts has revealed the potential for innate immune responses to be triggered by mesenchymally derived resident cells in the joint. In this study we tested the hypothesis that chondrocytes also express TLRs and that one or more TLRs centrally mediate chondrocyte responsiveness to CPPD and MSU crystals in vitro. We detected TLR2 expression in normal articular chondrocytes and up-regulation of TLR2 in osteoarthritic cartilage chondrocytes in situ. We demonstrated that transient transfection of TLR2 signaling-negative regulator Toll-interacting protein or treatment with TLR2-blocking Ab suppressed CPPD and MSU crystal-induced chondrocyte release of NO, an inflammatory mediator that promotes cartilage degeneration. Conversely, gain-of-function of TLR2 in normal chondrocytes via transfection was associated with increased CPPD and MSU crystal-induced NO release. Canonical TLR signaling by parallel pathways involving MyD88, IL-1R-associated kinase 1, TNF receptor-associated factor 6, and IkappaB kinase and Rac1, PI3K, and Akt critically mediated NO release in chondrocytes stimulated by both CPPD and MSU crystals. We conclude that CPPD and MSU crystals critically use TLR2-mediated signaling in chondrocytes to trigger NO generation. Our results indicate the potential for innate immunity at the level of the articular chondrocyte to directly contribute to inflammatory and degenerative tissue reactions associated with both gout and pseudogout.  相似文献   

10.
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine secreted by several cell types, including mononuclear and pituitary cells. It has also been shown to counteract cortisol-induced inhibition of inflammatory cytokine secretion. The purpose of this study was to determine whether MIF antagonized the effect of hydrocortisone on the NF-kappaB/IkappaB signal transduction pathway in lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells. Physiological doses of hydrocortisone (50-200 ng/ml) diminished both the LPS-stimulated decrease in cytosolic IkappaBalpha levels and the subsequent increase in nuclear NF-kappaB DNA binding. In the presence of both LPS and hydrocortisone, 1 ng/ml of MIF antagonized the effects of hydrocortisone, resulting in decreased cytosolic IkappaBalpha levels (P < 0.05) and increased nuclear NF-kappaB DNA binding (P < 0.05). In the absence of hydrocortisone, MIF had no effect on LPS-induced decreases in IkappaBalpha. In the absence of LPS, MIF inhibited hydrocortisone-induced increases in IkappaBalpha (P = 0.03). Thus the mechanism by which MIF antagonizes the effect of hydrocortisone on the NF-kB/IkappaB signal transduction pathway is through inhibiting the ability of hydrocortisone to increase cytosolic IkappaBalpha.  相似文献   

11.
The ubiquitin-proteasome pathway (UPP) is involved in the degradation of the extracellular matrix (ECM) and trophoblastic invasion during early pregnancy. Our previous studies demonstrated that inhibition of UPP suppresses expression of matrix metalloproteinase (MMP)-2 and -9. LMP2 is an important proteasome subunit that is critical for proteasome activity. This study investigated the regulatory mechanism of LMP2 on the expression and activities of MMP-2 and MMP-9. Our results showed that transfection of LMP2 siRNA plasmid into the human invasive extravillous trophoblast cell line (HTR8/Svneo) could significantly suppress expression of LMP2 mRNA and protein. The mRNA expression of MMP-2 and MMP-9 and their activities were markedly decreased in the LMP2-inhibited cells. Inhibition of LMP2 could also reduce IkappaBalpha mRNA level, although the expression of phosphorylated IkappaBalpha was increased. In the LMP2-inhibited cells, expression of mRNA encoding NF-kappaB subunits p50 and p65 remained normal, but the p50 protein level was significantly decreased in the cytosolic and nuclear extracts, while p65 protein was markedly reduced only in the nuclear extract. We also demonstrated that blockage of the NF-kappaB pathway by the NF-kappaB translocation inhibitor SN50 markedly reduced the expression of MMP-2 and MMP-9 in HTR8/Svneo cells, a result that is fully consistent with the results from the LMP2-inhibited HTR8/Svneo cells. These data suggest that LMP2 contributes to IkappaBalpha degradation and p50 generation, and that inhibition of LMP2 suppresses expression and activities of MMP-2 and MMP-9 by blocking the transfer of active NF-kappaB heterodimers into the nucleus.  相似文献   

12.
13.
TLR8-mediated NF-kappaB and IRF7 activation are abolished in human IRAK-deficient 293 cells and IRAK4-deficient fibroblast cells. Both wild-type and kinase-inactive mutants of IRAK and IRAK4, respectively, restored TLR8-mediated NF-kappaB and IRF7 activation in the IRAK- and IRAK4-deficient cells, indicating that the kinase activity of IRAK and IRAK4 is probably redundant for TLR8-mediated signaling. We recently found that TLR8 mediates a unique NF-kappaB activation pathway in human 293 cells and mouse embryonic fibroblasts, accompanied only by IkappaBalpha phosphorylation and not IkappaBalpha degradation, whereas interleukin (IL)-1 stimulation causes both IkappaBalpha phosphorylation and degradation. The intermediate signaling events mediated by IL-1 (including IRAK modifications and degradation and TAK1 activation) were not detected in cells stimulated by TLR8 ligands. TLR8 ligands trigger similar levels of IkappaBalpha phosphorylation and NF-kappaB and JNK activation in TAK1(-/-) mouse embryo fibroblasts (MEFs) as compared with wild-type MEFs, whereas lack of TAK1 results in reduced IL-1-mediated NF-kappaB activation and abolished IL-1-induced JNK activation. The above results indicate that although TLR8-mediated NF-kappaB and JNK activation are IRAK-dependent, they do not require IRAK modification and are TAK1-independent. On the other hand, TLR8-mediated IkappaBalpha phosphorylation, NF-kappaB, and JNK activation are completely abolished in MEKK3(-/-) MEFs, whereas IL-1-mediated signaling was only moderately reduced in these deficient MEFs as compared with wild-type cells. The differences between IL-1R- and TLR8-mediated NF-kappaB activation are also reflected at the level of IkappaB kinase (IKK) complex. TLR8 ligands induced IKKgamma phosphorylation, whereas IKKalpha/beta phosphorylation and IKKgamma ubiquitination that can be induced by IL-1 were not detected in cells treated with TLR8 ligands. We postulate that TLR8-mediated MEKK3-dependent IKKgamma phosphorylation might play an important role in the activation of IKK complex, leading to IkappaBalpha phosphorylation.  相似文献   

14.
15.
Microsomal prostaglandin E synthase (mPGES)-1 is a newly identified inducible enzyme of the arachidonic acid cascade with a key function in prostaglandin (PG)E2 synthesis. We investigated the kinetics of inducible cyclo-oxygenase (COX)-2 and mPGES-1 expression with respect to the production of 6-keto-PGF1alpha and PGE2 in rat chondrocytes stimulated with 10 ng/ml IL-1beta, and compared their modulation by peroxisome-proliferator-activated receptor (PPAR)gamma agonists. Real-time PCR analysis showed that IL-1beta induced COX-2 expression maximally (37-fold) at 12 hours and mPGES-1 expression maximally (68-fold) at 24 hours. Levels of 6-keto-PGF1alpha and PGE2 peaked 24 hours after stimulation with IL-1beta; the induction of PGE2 was greater (11-fold versus 70-fold, respectively). The cyclopentenone 15-deoxy-Delta12,14prostaglandin J2 (15d-PGJ2) decreased prostaglandin synthesis in a dose-dependent manner (0.1 to 10 microM), with more potency on PGE2 level than on 6-keto-PGF1alpha level (-90% versus -66% at 10 microM). A high dose of 15d-PGJ2 partly decreased COX-2 expression but decreased mPGES-1 expression almost completely at both the mRNA and protein levels. Rosiglitazone was poorly effective on these parameters even at 10 microM. Inhibitory effects of 10 microM 15d-PGJ2 were neither reduced by PPARgamma blockade with GW-9662 nor enhanced by PPARgamma overexpression, supporting a PPARgamma-independent mechanism. EMSA and TransAM analyses demonstrated that mutated IkappaBalpha almost completely suppressed the stimulating effect of IL-1beta on mPGES-1 expression and PGE2 production, whereas 15d-PGJ2 inhibited NF-kappaB transactivation. These data demonstrate the following in IL-1-stimulated rat chondrocytes: first, mPGES-1 is rate limiting for PGE2 synthesis; second, activation of the prostaglandin cascade requires NF-kappaB activation; third, 15d-PGJ2 strongly inhibits the synthesis of prostaglandins, in contrast with rosiglitazone; fourth, inhibition by 15d-PGJ2 occurs independently of PPARgamma through inhibition of the NF-kappaB pathway; fifth, mPGES-1 is the main target of 15d-PGJ2.  相似文献   

16.
17.
18.
19.
20.
Cloning and characterization of two novel zebrafish P2X receptor subunits   总被引:6,自引:0,他引:6  
Activation of Kupffer cells by lipopolysaccharide (LPS) after ethanol feeding results in overproduction of TNF-alpha, leading to liver injury. Since dilinoleoylphosphatidylcholine (DLPC) protects against liver injury and has antioxidant properties, we investigated whether it alters LPS signaling leading to decreased TNF-alpha production. Kupffer cells were isolated from rats fed alcohol-containing or isocaloric control diets for 3 weeks. With ethanol, cytochrome P4502E1 was upregulated. When stimulated with LPS in culture, Kupffer cells released more TNF-alpha compared to control rats; DLPC diminished the increase. It also reduced ERK1/2 and p38 phosphorylation as well as NF-kappaB activation with decreased nuclear p65 and increased cytosolic IkappaB-alpha expression. ERK1/2 and NF-kappaB activation were abolished by the ERK1/2 inhibitor PD098059. The p38 inhibitor SB203580 abolished p38 activation without affecting NF-kappaB. Both inhibitors reduced TNF-alpha generation. Thus, DLPC diminishes LPS-dependent TNF-alpha generation by inhibiting p38 and ERK1/2 activation; the latter leads to decreased NF-kappaB activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号